
Modular forms and arithmetic geometry

Stephen S. Kudla1

The aim of these notes is to describe some examples of modular forms whose Fourier
coefficients involve quantities from arithmetical algebraic geometry. At the moment,
no general theory of such forms exists, but the examples suggest that they should
be viewed as a kind of arithmetic analogue of theta series and that there should
be an arithmetic Siegel–Weil formula relating suitable averages of them to special
values of derivatives of Eisenstein series. We will concentrate on the case for which
the most complete picture is available, the case of generating series for cycles on
the arithmetic surfaces associated to Shimura curves over Q, expanding on the
treatment in [40]. A more speculative overview can be found in [41].

In section 1, we review the basic facts about the arithmetic surface M associated to
a Shimura curve over Q. These arithmetic surfaces are moduli stacks over Spec(Z)
of pairs (A, ι) over a base S, where A is an abelian scheme of relative dimension 2
and ι is an action on A of a maximal order OB in an indefinite quaternion algebra
B over Q. In section 2, we recall the definition of the arithmetic Chow group
ĈH

1
(M), following Bost, [7], and we discuss the metrized Hodge line bundle ω̂ and

the conjectural value of 〈ω̂, ω̂〉, where 〈 , 〉 is the height pairing on ĈH
1
(M). In the

next two sections, we describe divisors Z(t), t ∈ Z>0, on M. These are defined as
the locus of (A, ι, x)’s where x is a special endomorphism (Definition 3.1) of (A, ι)
with x2 = −t. Since such an x gives an action on (A, ι) of the order Z[

√
−t] in the

imaginary quadratic field kt = Q(
√
−t), the cycles Z(t) can be viewed as analogues

of the familiar CM points on modular curves. In section 3, the complex points and
hence the horizontal components of Z(t) are determined. In section 4, the vertical
components of Z(t) are determined using the p-adic uniformization of the fibers Mp

of bad reduction of M. In section 5, we construct Green functions Ξ(t, v) for the
divisors Z(t), depending on a parameter v ∈ R×

>0. When t < 0, the series defining
Ξ(t, v) becomes a smooth function on M(C). These Green functions are used in

section 6 to define classes Ẑ(t, v) ∈ ĈH
1
(M), for t ∈ Z, t �= 0, and an additional

class Ẑ(0, v) is defined using ω̂. The main result of section 6 (Theorem 6.3) says
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that generating series

θ̂(τ) =
∑

t∈Z

Ẑ(t, v) qt, τ = u + iv, q = e(τ),

is the q–expansion of a (nonholomorphic) modular form of weight 3
2 , which we call

an arithmetic theta function. The proof of this result is sketched in section 7. The
main ingredients are (i) the fact that the height pairing of θ̂(τ) with various classes

in ĈH
1
(M), e.g., ω̂, can be shown to be modular, and (ii) the result of Borcherds,

[5], which says that a similar generating series with coefficients in the usual Chow
group of the generic fiber CH1(MQ) is a modular form of weight 3

2 . In section 8,
we use the arithmetic theta function to define an arithmetic theta lift

θ̂ : S 3
2
−→ ĈH

1
(M), f �→ θ̂(f) = 〈 f, θ̂ 〉Pet,

from a certain space of modular forms of weight 3
2 to the arithmetic Chow group.

This lift is an arithmetic analogue of the classical theta lift from modular forms
of weight 3

2 to automorphic forms of weight 2 for Γ = O×
B . According to the

results of Waldspurger, reviewed in section 9, the nonvanishing of this classical
lift is controlled by a combination of local obstructions and, most importantly,
the central value L(1, F ) of the standard Hecke L-function2 of the cusp form F of
weight 2 coming from f via the Shimura lift. In section 10, we describe a doubling
integral representation (Theorem 10.1) of the Hecke L-function, involving f and an
Eisenstein series E(τ, s, B) of weight 3

2 and genus 2. At the central point s = 0,
E(τ, 0, B) = 0. In the case in which the root number of the L-function is −1, we
obtain a formula (Corollary 10.2)

〈 E ′
2(

(
τ1

−τ̄2

)

, 0;B) , f(τ2) 〉Pet, τ2 = f(τ1) · C(0) · L′(
1
2
, π),

for an explicit constant C(0), whose vanishing is controlled by local obstructions.
Finally, in section 11, we state a conjectural identity (Conjecture 11.1)

〈 θ̂(τ1), θ̂(τ2) 〉 ??= E ′
2(

(
τ1

−τ̄2

)

, 0;B)

relating the height pairing of the arithmetic theta function and the restriction to
the diagonal of the derivative at s = 0 of the weight 3

2 Eisenstein series. This

2Here we assume that F is a newform, so that L(1, F ) = L( 1
2
, π), where π is the corresponding

cuspidal automorphic representation.
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identity is equivalent to a series of identities of Fourier coefficients, (11.1),

〈 Ẑ(t1, v1), Ẑ(t2, v2) 〉 · qt1
1 qt2

2

=
∑

T∈Sym2(Z)∨

diag(T )=(t1,t2)

E ′
2,T (

(
τ1

τ2

)

, 0;B).

Here

Sym2(Z)∨ = { T =
(

t1 m
m t2

)

| t1, t2 ∈ Z, m ∈ 1
2

Z }

is the dual lattice of Sym2(Z) with respect to the trace pairing. We sketch the
proof of these identities in the case where t1t2 is not a square (Theorem 11.2). As
a consequence, we prove Conjecture 11.1 up to a linear combination of theta series
for quadratic forms in one variable (Corollary 11.3). Assuming that f is orthogonal
to such theta series, we can substitute the height pairing 〈 Ẑ(t1, v1), Ẑ(t2, v2) 〉 for
the derivative of the Eisenstein series in the doubling identity and obtain,

〈 θ̂(τ1), θ̂(f) 〉 = f(τ1) · C(0) · L′(
1
2
, π),

in the case of root number −1. This yields the arithmetic inner product formula

〈 θ̂(f), θ̂(f) 〉 = 〈 f, f 〉 · C(0) · L′(
1
2
, π),

analogous to the Rallis inner product formula for the classical theta lift. Some
discussion of the relation of this result to the Gross-Kohnen-Zagier formula, [24],
is given at the end of section 11.

Most of the results described here are part of a long term collaboration with Michael
Rapoport and Tonghai Yang. I would also like to thank J.-B. Bost, B. Gross, M.
Harris, J. Kramer, and U. Kühn for their comments and suggestions.
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§1. Shimura curves and arithmetic surfaces.

Let B be an indefinite quaternion algebra over Q and let D(B) be the product of
the primes p for which Bp = B ⊗Q Qp is a division algebra. For the moment, we
allow the case B = M2(Q), where D(B) = 1. The three dimensional Q–vector
space

(1.1) V = {x ∈ B | tr(x) = 0}

is equipped with the quadratic form Q(x) = ν(x) = −x2. Here ν (resp. tr)
is the reduced norm (resp. trace) on B; in the case B = M2(Q), this is the
usual determinant (resp. trace). The bilinear form associated to Q is given by
(x, y) = tr(xyι), where x �→ xι is the involution on B given by xι = tr(x)− x. The
action of H = B× on V by conjugation, h : x → hxh−1, preserves the quadratic
form and induces an isomorphism

(1.2) H
∼−→ GSpin(V ),

where GSpin(V ) is the spinor similitude group of V . Since B is indefinite, i.e., since
BR = B ⊗Q R 	 M2(R), V has signature (1, 2). Let

(1.3) D = { w ∈ V (C) | (w, w) = 0, (w, w̄) < 0 }/ C× ⊂ P(V (C)),

so that D is an open subset of a quadric in P(V (C)). Then the group H(R) acts
naturally on D, and, if we fix an isomorphism BR 	 M2(R), then there is an
identification

(1.4) C \ R
∼−→ D, z �→ w(z) :=

(
z −z2

1 −z

)

mod C×,

which is equivariant for the action of H(R) 	 GL2(R) on C \R by fractional linear
transformations.
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Let OB be a maximal order in B and let Γ = O×
B . In the case B = M2(Q), one

may take OB = M2(Z), so that Γ = GL2(Z). Also let

(1.5) K = (ÔB)× ⊂ H(Af ),

where ÔB = OB ⊗Z Ẑ, for Ẑ = lim
←
N

Z/NZ. Then the quotient

(1.6) M(C) = H(Q)\
(

D × H(Af )/K

)

	 Γ\D,

which should be viewed as an orbifold, is the set of complex points of a Shimura
curve M , if D(B) > 1, or of the modular curve (without its cusp), if D(B) = 1.
From now on, we assume that D(B) > 1, although much of what follows can be
carried over for D(B) = 1 with only slight modifications. The key point is to
interpret M as a moduli space.

Let M be the moduli stack over Spec(Z) for pairs (A, ι) where A is an abelian
scheme over a base S with an action ι : OB → EndS(A) satisfying the determinant
condition, [49], [36], [9],

(1.7) det(ι(b); Lie(A)) = ν(b).

Over C, such an (A, ι) is an abelian surface with OB action. For example, for
z ∈ D 	 C \ R, the isomorphism

(1.8) λz : BR 	 M2(R) ∼−→ C2, b �→ b ·
(

z
1

)

=
(

w1

w2

)

determines a lattice Lz = λz(OB) ⊂ C2. The complex torus Az = C2/Lz is an
abelian variety with a natural OB action given by left multiplication, and hence
defines an object (Az, ι) ∈ M(C). Two points in D give the same lattice if and
only if they are in the same O×

B–orbit, and, up to isomorphism, every (A, ι) over C

arises in this way. Thus, the construction just described gives an isomorphism

(1.9) [ Γ\D ] ∼−→ M(C)

of orbifolds, and M gives a model of M(C) over Spec(Z) with generic fiber

(1.10) M = M×Spec(Z) Spec(Q),
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the Shimura curve over Q.

Since we are assuming that D(B) > 1, M is proper of relative dimension 1 over
Spec(Z) and smooth over Spec(Z[D(B)−1]). We will ignore the stack aspect from
now on and simply view M as an arithmetic surface over Spec(Z).

The surface M has bad reduction at primes p | D(B) and this reduction can be
described via p-adic uniformization [9], [46]. Let Ω̂p be Drinfeld’s p-adic upper
half plane. It is a formal scheme over Zp with a natural action of PGL2(Qp). Let
W = W (F̄p) be the Witt vectors of F̄p and let

(1.11) Ω̂W = Ω̂p ×Spf(Zp) Spf(W )

be the base change of Ω̂p to W . Also, let Ω̂•
W = Ω̂W × Z, and let g ∈ GL2(Qp) act

on Ω̂•
W by

(1.12) g : (z, i) → ( g(z), i + ordp(det(g)) ).

Let B(p) be the definite quaternion algebra over Q with invariants

(1.13) inv�(B(p)) =

{
−inv�(B) if � = p, ∞,

inv�(B) otherwise.

Let H(p) = (B(p))× and

(1.14) V (p) = { x ∈ B(p) | tr(x) = 0 }.

For convenience, we will often write B′ = B(p), H ′ = H(p) and V ′ = V (p) when p

has been fixed. Fix isomorphisms

(1.15) H ′(Qp) 	 GL2(Qp), and H ′(Ap
f ) 	 H(Ap

f ).

Let M̂p be the base change to W of the formal completion of M along its fiber at
p. Then, the Drinfeld–Cherednik Theorem gives an isomorphism of formal schemes
over W

(1.16) M̂p
∼−→ H ′(Q)\

(

Ω̂•
W × H(Ap

f )/Kp

)

	 Γ′\Ω̂•
W ,

where K = KpK
p and Γ′ = H ′(Q)∩H ′(Qp)Kp. The special fiber Ω̂p ×Zp Fp of Ω̂p

is a union of projective lines P[Λ] indexed by the vertices [Λ] of the building B of
PGL2(Qp). Here [Λ] is the homothety class of the Zp–lattice Λ in Q2

p. The crossing
points of these lines are double points indexed by the edges of B, and the action
of PGL2(Qp) on components is compatible with its action on B. Thus, the dual
graph of the special fiber of M̂p is isomorphic to Γ′\B•, where B• = B × Z.
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§2. Arithmetic Chow groups.

The modular forms of interest in these notes will take values in the arithmetic
Chow groups of M. We will use the version of these groups with real coefficients
defined by Bost, [7], section 5.5. Let Ẑ1(M) be the real vector space spanned by
pairs (Z, g), where Z is a real linear combination of Weil divisors on M and g is
a Green function for Z. In particular, if Z is a Weil divisor, g is a C∞ function
on M(C) \ Z(C), with a logarithmic singularity along the Z(C), and satisfies the
Green equation

(2.1) ddcg + δZ = [ωZ ],

where ωZ is a smooth (1, 1)-form on M(C), and [ωZ ] is the corresponding cur-
rent. If Z =

∑

i ci Zi is a real linear combination of Weil divisors, then g =
∑

i ci gi is a real linear combination of such Green functions. By construction,
α · (Z, g) = (αZ, αg) for α ∈ R. The first arithmetic Chow group, with real coeffi-

cients, ĈH
1

R
(M), is then the quotient of Ẑ1(M) by the subspace spanned by pairs

d̂iv(f) = (div(f),− log |f |2) where f is a rational function on M, and div(f) is its
divisor. Finally, we let

(2.2) ĈH
1
(M) = ĈH

1

R
(M) ⊗R C.

Note that restriction to the generic fiber yields a degree map

(2.3) deg
Q

: ĈH
1
(M) −→ CH1(M) ⊗ C

deg−→ C.

The group ĈH
2
(M) is defined analogously, and the arithmetic degree map yields

an isomorphism

(2.4) d̂eg : ĈH
2
(M) ∼−→ C.

Moreover, there is a symmetric R–bilinear height pairing3

(2.5) 〈 , 〉 : ĈH
1

R
(M) × ĈH

1

R
(M) −→ R.

According to the index Theorem, cf. [7], Theorem 5.5, this pairing is nondegenerate

and has signature (+,−,−, . . . ). We extend it to an Hermitian pairing on ĈH
1
(M),

conjugate linear in the second argument.

3Here the symmetry must still be checked in the case of a stack, cf. section 4 of [49].
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Let A be the universal abelian scheme over M with zero section ε, and let

(2.6) ω = ε∗Ω2
A/M

be the Hodge line bundle on M. We define the natural metric on ω by letting

(2.7) ||sz||2nat =

∣
∣
∣
∣
∣

(
i

2π

)2 ∫

Az

sz ∧ s̄z

∣
∣
∣
∣
∣
.

for any section s : z �→ sz, where, for z ∈ M(C), Az is the associated abelian
variety. As in section 3 of [49], we set

(2.8) || ||2 = e−2C || ||2nat

where 2C = log(4π) + γ, where γ is Euler’s constant. The reason for this choice of
normalization is explained in the introduction to [49]. The pair ω̂ = (ω, || ||) defines
an element of P̂ic(M), the group of metrized line bundles on M. We write ω̂ for

the image of this class in ĈH
1

R
(M) under the natural map P̂ic(M) → ĈH

1

R
(M).

The pullback to D of the restriction of ω to M(C) is trivialized by the section α

defined as follows. For z ∈ D, let αz be the holomorphic 2–form on Az = C2/Lz

given by

(2.9) αz = D(B)−1(2πi)2 dw1 ∧ dw2

where w1 and w2 are the coordinates on the right side of (1.6). Then

(2.10) ωC =
[

Γ\(D × C)
]
,

where the action of γ ∈ Γ is given by

(2.11) γ : (z, ζ) �−→ (γ(z), (cz + d)2 ζ).

Thus, on M(C), ω is isomorphic to the canonical bundle Ω1
M(C), under the map

which sends αz to dz. The resulting metric on Ω1
M(C) is

||dz||2 = ||αz||2 = e−2C

∣
∣
∣
∣
∣

(
i

2π

)2 ∫

Az

αz ∧ ᾱz

∣
∣
∣
∣
∣

= e−2C (2π)−2 (2π)4 D(B)−2 vol(M2(R)/OB) · Im(z)2(2.12)

= e−2C (2π)2 · Im(z)2.
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In [49], it was conjectured that

(2.13) 〈 ω̂, ω̂ 〉 ??= ζD(B)(−1)
[

2
ζ ′(−1)
ζ(−1)

+ 1 − 2C −
∑

p|D(B)

p log(p)
p − 1

]

,

where

(2.14) ζD(B)(s) = ζ(s) ·
∏

p|D(B)

(1 − p−s),

and 2C = log(4π) + γ, as before. In the case D(B) = 1, i.e., for a modular curve,
the analogous value for 〈 ω̂, ω̂ 〉 was established, independently, by Bost, [8], and
Kühn, [53], cf. the introduction to [49] for a further discussion of normalizations.
It will be convenient to define a constant c by

(2.15)
1
2

deg
Q
(ω̂) · c := 〈 ω̂, ω̂ 〉 − RHS of (2.13).

In particular, 〈 ω̂, ω̂ 〉 has the conjectured value if and only if c = 0. It seems likely
that this conjecture can be proved using recent work of Bruinier, Burgos and Kühn,
[12], on heights of curves on Hilbert modular surfaces. Their work uses an extended
theory of arithmetic Chow groups, developed by Burgos, Kramer and Kühn, [13],
which allows metrics with singularities of the type which arise on compactified
Shimura varieties. In addition, they utilize results of Bruinier, [10], [11], concern-
ing Borcherds forms. Very general conjectures about such arithmetic degrees and
their connections with the equivariant arithmetic Riemann–Roch formula have been
given by Maillot and Roessler, [55]. Some connections of arithmetic degrees with
Fourier coefficients of derivatives of Eisenstein series are discussed in [39].

§3. Special cycles, horizontal components.

Just as the CM points on the modular curves are constructed as the points where
the corresponding elliptic curves have additional endomorphisms, cycles on M can
be defined by imposing additional endomorphisms as follows.

Definition 3.1. For a given (A, ι), the space of special endomorphisms of (A, ι)
is

(3.1) V (A, ι) = { x ∈ EndS(A) | tr(x) = 0 and x ◦ ι(b) = ι(b) ◦ x, ∀b ∈ OB }.
Over a connected base, this free Z–module of finite rank has a Z–valued quadratic
form Q given by

(3.2) −x2 = Q(x) · idA.
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Definition 3.2. For a positive integer t, let Z(t) be the moduli stack over Spec(Z)
of triples (A, ι, x), where (A, ι) is as before and x ∈ V (A, ι) is a special endomor-
phism with Q(x) = t.

There is a natural morphism

(3.3) Z(t) −→ M, (A, ι, x) �→ (A, ι),

which is unramified, and, by a slight abuse of notation, we write Z(t) for the divisor
on M determined by this morphism.

Over C, such a triple (A, ι, x) is an abelian surface with an action of OB ⊗Z Z[
√
−t],

i.e., with additional ‘complex multiplication’ by the order Z[
√
−t] in the imaginary

quadratic field kt = Q(
√
−t). Suppose that A 	 Az = C2/Lz, so that, by (1.8),

the tangent space Te(Az) is given as BR 	 C2 = Te(Az). Since the lift x̃R of x in
the diagram

(3.4)
BR 	 C2 −→ Az

x̃R = r(jx) ↓ x̃ ↓ x ↓
BR 	 C2 −→ Az

commutes with the left action of OB and carries OB into itself, it is given by right
multiplication r(jx) by an element jx ∈ OB ∩ V with ν(jx) = t. Since the map x̃

is holomorphic, it follows that z ∈ Dx, the fixed point set of jx on D. To simplify
notation, we will write x in place of jx. Then, we find that

(3.5) Z(t)(C) =
[

Γ\Dt

]
,

where

(3.6) Dt =
∐

x∈OB∩V

Q(x)=t

Dx.

In particular, Z(t)(C), which can be viewed as a set of CM points on the Shimura
curve M(C), is nonempty if and only if the imaginary quadratic field kt embeds in
B.

The horizontal part Zhor(t) of Z(t) is obtained by taking the closure in M of these
CM–points, i.e.,

(3.7) Zhor(t) := Z(t)Q.
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Finally, if we write 4t = n2d where −d is the discriminant of the imaginary quadratic
field kt = Q(

√
−t), then the degree of the divisor Z(t)Q is given by

(3.8) deg
Q
Z(t) = 2δ(d, D(B))H0(t, D(B)),

where

(3.9) δ(d, D(B)) =
∏

p|D(B)

(1 − χd(p)),

and

H0(t, D(B)) =
∑

c|n

h(c2d)
w(c2d)

(3.10)

=
h(d)
w(d)

·
(

∑

c|n
(c,D(B))=1

c
∏

�|c
(1 − χd(�)�−1)

)

.

Here h(c2d) is the class number of the order Oc2d in kt of conductor c, w(c2d) is the
number of roots of unity in Oc2d, and χd is the Dirichlet character for the field kt.
Note that, in this formula, we are counting points on the orbifold [Γ\D], so that each
point pr(z), z ∈ D, is counted with multiplicity e−1

z where ez = |Γz| is the order of
the stabilizer of z in Γ. For example, suppose that z ∈ Dx for x ∈ V ∩ OB with
Q(x) = t. Then, since Z[x] 	 Z[

√
−t] is an order of conductor n, Q[x]∩OB ⊃ Z[x]

is an order of conductor c for some c | n, and ez = w(c2d) = | (Q[x] ∩ OB)×|.

§4. Special cycles, vertical components.

In this section, we describe the vertical components of the special cycles Z(t) in
some detail, following [46]. In the end, we obtain a ‘p-adic uniformization’, (4.27),
quite analogous to the expression (3.5) for Z(t)(C). We first review the construction
of the p-adic uniformization isomorphism (1.16).

Let B be the division quaternion algebra over Qp and let OB be its maximal order.
Let Zp2 be the ring of integers in the unramified quadratic extension Qp2 of Qp.
Fixing an embedding of Qp2 into B, we have Zp2 ↪→ OB , and we can choose an
element Π ∈ OB with Π2 = p such that Πa = aσΠ, for all a ∈ Qp2 , where σ is the
generator of the Galois group of Qp2 over Qp. Then OB = Zp2 [Π].
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Recall that W = W (F̄p). Let Nilp be the category of W–schemes S such that p is
locally nilpotent in OS , and for S ∈ Nilp, let S̄ = S ×W F̄p.

A special formal (s.f.) OB–module over a W scheme S is a p-divisible formal group
X over S of dimension 2 and height 4 with an action ι : OB ↪→ EndS(X). The Lie
algebra Lie(X), which is a Zp2 ⊗OS–module, is required to be free of rank 1 locally
on S.

Fix a s.f. OB–module X over Spec(F̄p). Such a module is unique up to OB–linear
isogeny, and

(4.1) End0
OB

(X) 	 M2(Qp).

We fix such an isomorphism. Consider the functor

(4.2) D• : Nilp → Sets

which associates to each S ∈ Nilp the set of isomorphism classes of pairs (X, ρ),
where X is a s.f. OB–module over S and

(4.3) ρ : X ×Spec(F̄p) S̄ −→ X ×S S̄

is a quasi-isogeny4. The group GL2(Qp) acts on D• by

(4.4) g : (X, ρ) �→ (X, ρ ◦ g−1).

There is a decomposition

(4.5) D• =
∐

i

Di,

where the isomorphism class of (X, ρ) lies in Di(S) if ρ has height i. The action of
g ∈ GL2(Qp) carries Di to Di−ord det(g). Drinfeld showed that D• is representable
by a formal scheme, which we also denote by D•, and that there is an isomorphism
of formal schemes

(4.6) D• ∼−→ Ω̂•
W

which is equivariant for the action of GL2(Qp).

4This means that, locally on S, there is an integer r such that prρ is an isogeny.
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Similarly, using the notation, B, OB , H, etc., of section 1, the formal scheme M̂p

represents the functor on Nilp which associates to S the set of isomorphism classes
of triples (A, ι, η̄) where A is an abelian scheme of relative dimension 2 over S, up
to prime to p–isogeny, with an action OB ↪→ EndS(A) satisfying the determinant
condition (1.7), and η̄ is Kp–equivalence class of OB–equivariant isomorphisms

(4.7) η : V̂ p(A) ∼−→ B(Ap
f ),

where

(4.8) V̂ p(A) ∼−→
∏

� 	=p

T�(A) ⊗ Q

is the rational Tate module of A. Two isomorphisms η and η′ are equivalent iff
there exists an element k ∈ Kp such that η′ = r(k) ◦ η.

Fix a base point (A0, ι0, η̄0) in M̂p(F̄p), and let

(4.9) M̂∼
p : Nilp −→ Sets

be the functor which associates to S the set of isomorphism classes of tuples
(A, ι, η̄, ψ), where (A, ι, η̄) is as before, and

(4.10) ψ : A0 ×Spec(F̄p) S̄ −→ A ×S S̄

is an OB–equivariant p-primary isogeny.

To relate the functors just defined, we let

(4.11) B′ = End0(A0, ι0), and H ′ = (B′)×,

and fix η0 ∈ η̄0. Since the endomorphisms of V̂ p(A0) coming from B′(Ap
f ) =

B′⊗Q Ẑp commute with OB , the corresponding endomorphisms of B(Ap
f ), obtained

via η0, are given by right multiplications by elements of B(Ap
f ). Thus we obtain

identifications, as in (1.15),

(4.12) B′(Ap
f ) ∼−→ B(Ap

f )op, and H ′(Ap
f ) ∼−→ H(Ap

f )op,

where the order of multiplication is reversed in Bop and Hop. We also identify
B with Bp and take X = A0(p), the p-divisible group of A0, with the action of
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OB = OB ⊗Z Zp coming from ι0. Note that we also obtain an identification B′
p 	

GL2(Qp), via (4.1).

Once these identifications have been made, there is a natural isomorphism

(4.13) M̂∼
p

∼−→ D• × H(Ap
f )/Kp

defined as follows. To a given (A, ι, η̄, ψ) over S, we associate:

X = A(p) = the p-divisible group of A,

ι = the action of OB = OB ⊗Z Zp on A(p),(4.14)

ρ = ρ(ψ) = the quasi-isogeny

ρ(ψ) : X ×Spec(F̄p) S̄ −→ A(p) ×S S̄

determined by ψ,

so that (X, ρ) defines an element of D•. For η ∈ η̄, there is also a diagram

(4.15)

V̂ p(A0)
η0∼−→ B(Ap

f )

ψ∗ ↓ ↓ r(g)

V̂ p(A)
η
∼−→ B(Ap

f )

where r(g) denotes right multiplication5 by an element g ∈ H(Ap
f ). The coset gKp

is then determined by the equivalence class η̄, and the isomorphism (4.13) sends
(A, ι, η̄, ψ) to ((X, ρ), gKp).

The Drinfeld-Cherednik Theorem says that, by passing to the quotient under the
action of H ′(Q), we have

(4.16)

M̂∼
p

∼−→ D• × H(Ap
f )/Kp

↓ ↓

M̂p
∼−→ H ′(Q)\

(

D• × H(Ap
f )/Kp

)

.

Via the isomorphism D• ∼→ Ω̂•
W of (4.6), this yields (1.16).

5This is the reason for the “op” in the isomorphism (4.12), since we ultimately want a left action

of H′(Ap
f
).
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We can now describe the formal scheme determined by the cycle Z(t), following
section 8 of [46]. Let6 Ĉp(t) be the base change to W of the formal completion of
Z(t) along its fiber at p, and let Ĉ ∼

p (t) be the fiber product:

(4.17)
Ĉ ∼

p (t) −→ M̂∼
p

↓ ↓
Ĉp(t) −→ M̂p.

A point of Ĉp(t) corresponds to a collection (A, ι, η̄, x), where x ∈ V (A, ι) is a special
endomorphism with Q(x) = t. In addition, since we are now working with A’s up to
prime to p isogeny, we also require that the endomorphism η∗(x) of B(Ap

f ), obtained
by transfering, via η, the endomorphism of V̂ p(A) induced by x, is given by right
multiplication by an element jp

f (x) ∈ V (Ap
f )∩ ÔB . This condition does not depend

on the choice of η in the Kp–equivalence class η̄.

Next, we would like to determine the image of Ĉ ∼
p (t) in D• ×H(Ap

f )/Kp under the
isomorphism in the top line of (4.16). Let

(4.18) V ′ = { x ∈ B′ | tr(x) = 0 } = V (A0, ι0) ⊗Z Q,

where V (A0, ι0) is the space of special endomorphisms of (A0, ι0). We again write Q

for the quadratic form on this space. For a point of Ĉ ∼
p (t) associated to a collection

(A, ι, η̄, x, ψ), let ((X, ρ), gKp) be the corresponding point in D•×H(Ap
f )/Kp. The

special endomorphism x ∈ V (A, ι) induces an endomorphism of A ×S S̄ and, thus,
via the isogeny ψ, there is an associated endomorphism ψ∗(x) ∈ V ′(Q). This
element satisfies two compatibility conditions with the other data:

(i) ψ∗(x) determines an element j = j(x) ∈ V ′(Qp) = End0
OB

(X). By con-
struction, this element has the property that the corresponding element

(4.19) ρ ◦ j ◦ ρ−1 ∈ End0
OB

(X ×S S̄)

is, in fact, the restriction of an element of EndOB
(X), viz. the endomor-

phism induced by original x. Said another way, j defines an endomorphism
of the reduction X ×S S̄ which lifts to an endomorphism of X.

(ii) Via the diagram (4.15),

(4.20) g−1 ψ∗(x) g ∈ V (Ap
f ) ∩ Ôp

B .

6We change to Ĉ to avoid confusion with the notation Ẑ(t, v) used for classes in the arithmetic

Chow group.
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Here we are slightly abusing notation and, in effect, are identifying ψ∗(x) ∈ V ′(Q)
with an element of V (Ap

f ) obtained via the identification

(4.21) V ′(Ap
f ) ∼−→ V (Ap

f )

coming from (4.12).

Condition (i) motivates the following basic definition, [46], Definition 2.1.

Definition 4.1. For a special endomorphism j ∈ V ′(Qp) of X, let Z•(j) be the
closed formal subscheme of D• consisting of the points (X, ρ) such that ρ ◦ j ◦ ρ−1

lifts to an endomorphism of X.

We will also write Z(j) ⊂ D for the subschemes where the height of the quasi-
isogeny ρ is 0. We will give a more detailed description of Z(j) in a moment.

As explained above and in more detail in [46], section 8, there is a map

(4.22) Ĉ ∼
p (t) ↪→ V ′(Q) ×D• × H(Ap

f )/Kp

whose image is the set:

(4.23) (�) :=





(y, (X, ρ), gKp)

∣
∣
∣
∣

(i) Q(y) = t

(ii) (X, ρ) ∈ Z•(j(y))

(iii) y ∈ g (V (Ap
f ) ∩ Ôp

B) g−1





.

Taking the quotient by the group H ′(Q), we obtain the following p-adic uniformiza-
tion of the special cycle:

Proposition 4.2. The construction aboves yields isomorphisms:

Ĉp(t)
∼−→ H ′(Q)\(�)

↓ ↓

M̂p
∼−→ H ′(Q)\

(

D• × H(Ap
f )/Kp

)

of formal schemes over W .

Remark 4.3. In fact, in this discussion, the compact open subgroup Kp giving
the level structure away from p can be arbitrary. In the case of interest, where
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Kp = (Ôp
B)×, the last diagram can be simplified as follows. Let

(4.24) L′ = V ′(Q) ∩
(
B′(Qp) × Ôp

B

)
,

so that L′ is a Z[p−1]–lattice in V ′(Q). Also, as in section 1, let

(4.25) Γ′ = H ′(Q) ∩
(
H ′(Qp) × Kp

)
,

so that (the projection of) Γ′ is an arithmetic subgroup of H ′(Qp) 	 GL2(Qp).
Finally, let

(4.26) D•
t =

∐

y∈L′

Q(y)=t

Z•(j(y)).

Then,

(4.27)
Ĉp(t)

∼−→
[
Γ′\D•

t

]

↓ ↓
M̂p

∼−→
[
Γ′\D• ]

.

Of course, we should now view these quotients as orbifolds, and, in fact, should
formulate the discussion above in terms of stacks.

To complete the picture of the vertical components of our cycle Z(t), we need a more
precise description of the formal schemes Z•(j) for j ∈ V ′(Qp), as obtained in the
first four sections of [46]. Note that we are using the quadratic form Q(j) = det(j),
whereas, in [46], the quadratic form q(j) = j2 = −Q(j) was used. It is most
convenient to give this description in the space Ω̂•

W = Ω̂W ×Z. In fact, we will just
consider Z(j) ⊂ Ω̂W , and we will assume that p �= 2. The results for p = 2, which
are very similar, are described in section 11 of [49]. Recall that the special fiber of
Ω̂W is a union of projective lines P[Λ], indexed by the vertices [Λ] of the building B
of PGL2(Qp).

The first result, proved in section 2 of [46], describes the support of Z(j) in terms
of the building.

Proposition 4.4. (i)

P[Λ] ∩ Z(j) �= ∅ ⇐⇒ j(Λ) ⊂ Λ.
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In particular, if Z(j) �= ∅, then ordp(Q(j)) ≥ 0.
(ii)

j(Λ) ⊂ Λ ⇐⇒ d([Λ],Bj) ≤ 1
2
· ordp(Q(j)).

Here Bj is the fixed point set of j on B, and d(x, y) is the distance between the
points x and y ∈ B.

Recall that the distance function on the building B is PGL2(Qp)–invariant and
gives each edge length 1.

In effect, if we write Q(j) = ε pα, for ε ∈ Z×
p , then the support of Z(j) lies in the

set of P[Λ]’s indexed by vertices of B in the ‘tube’ T (j) of radius α
2 around the fixed

point set Bj of j.

Next, the following observation of Genestier is essential, [46], Theorem 3.1:
Write Q(j) = ε pα. Then

(4.28) Z(j) =

{
(Ω̂W )j if α = 0,

(Ω̂W )1+j if α > 0.

where (Ω̂W )x denotes the fixed point set of the element x ∈ GL2(Qp) acting on Ω̂W ,
via its projection to PGL2(Qp). Using this fact, one can obtain local equations for
Z(j) in terms of the local coordinates on Ω̂W , cf. [46], section 3. Recall that there
are standard coordinate neighborhoods associated to each vertex [Λ] and each edge
[Λ0,Λ1] of B, cf. [46], section 1. By Proposition 4.4, it suffices to compute in
the neighborhoods of those P[Λ]’s which meet the support of Z(j). For the full
result, see Propositions 3.2 and 3.3 in [46]. In particular, embedded components
can occur. But since these turn out to be negligible, e.g., for intersection theory,
cf. section 4 of [46], we can omit them from Z(j) to obtain the divisor Z(j)pure

which has the following description.

Proposition 4.5. Write Q(j) = ε pα, and let

µ[Λ](j) = max{ 0,
α

2
− d([Λ],Bj) }.

(i) If α is even and −ε ∈ Z×,2
p , then

Z(j)pure =
∑

[Λ]

µ[Λ](j) · P[Λ].
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(ii) If α is even and −ε /∈ Z×,2
p , then

Z(j)pure = Z(j)h +
∑

[Λ]

µ[Λ](j) · P[Λ],

where the horizontal part Z(j)h is the disjoint union of two divisors projecting
isomorphically to Spf(W ) and meeting the special fiber in ‘ordinary special’ points
of P[Λ(j)], where [Λ(j)] is the unique vertex Bj of B fixed by j.
(iii) If α is odd, then

Z(j)pure = Z(j)h +
∑

[Λ]

µ[Λ](j) · P[Λ],

where the horizontal divisor Z(j)h is Spf(W ′) where W ′ is the ring of integers in
a ramified quadratic extension of W ⊗Z Q and Z(j)h meets the special fiber in the
double point pt∆(j) where ∆(j) is the edge of B containing the unique fixed point
Bj of j.
Thus Z(j)pure is a sum with multiplicities of regular one dimensional formal schemes.

In case (i), the split case, Qp(j) 	 Qp ⊕ Qp, the element j lies in a split torus A in
GL2(Qp), and Bj is the corresponding apartment in B. More concretely, if e0 and
e1 are eigenvectors of j giving a basis of Q2

p, then Bj is the geodesic arc connecting
the vertices [Zp e0 ⊕ prZp e1], for r ∈ Z. The P[Λ]’s for [Λ] ∈ Bj have multiplicity
α
2 in Z(j), and the multiplicity decreases linearly with the distance from Bj . The
cycle Z(j) is infinite and there are no horizontal components.

In case (ii), the inert case, Qp(j) is an unramified quadratic extension of Qp, the
element j lies in the corresponding nonsplit Cartan subgroup of GL2(Qp) and Bj =
[Λ(j)] is a single vertex. The corresponding P[Λ(j)] occurs with multiplicity α

2 in
Z(j), and the multiplicity of the vertical components P[Λ] decreases linearly with
the distance d([Λ], [Λ(j)]).

Finally, in case (iii), the ramified case, Qp(j) is a ramified quadratic extension of
Qp, the element j lies in the corresponding nonsplit Cartan subgroup of GL2(Qp)
and Bj is the midpoint of a unique edge ∆(j) = [Λ0,Λ1]. The vertical components
P[Λ0] and P[Λ1] occur with multiplicity α−1

2 in Z(j), and, again, the multiplicity of
the vertical components P[Λ] decreases linearly with the distance d([Λ],Bj), which
is now a half-integer.
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This description of the Z(j)’s, together with the p-adic unformization of Propo-
sition 4.2, gives a fairly complete picture of the vertical components of the cycles
Z(t) in the fibers Mp, p | D(B), of bad reduction. Several interesting features are
evident.

For example, the following result gives a criterion for the occurrence of such com-
ponents.

Proposition 4.6. For p | D(B), the cycle Z(t) contains components of the fiber
Mp of bad reduction if and only if ordp(t) ≥ 2, and no prime � �= p with � | D(B)
is split in kt.

Note that the condition amounts to (i) ordp(t) ≥ 2, and (ii) the field kt embeds
into B(p)

For example, if more than one prime p | D(B) splits in the quadratic field kt =
Q(

√
−t), then Z(t) is empty. If p | D(B) splits in kt, and all other primes � | D(B)

are not split in kt, then the generic fiber Z(t)Q is empty, and Z(t) is a vertical
cycle in the fiber at p, provided ordp(t) ≥ 2. In general, if p | D(B), and kt embeds
in B(p), then the vertical component in Mp of the cycle Z(p2rt) grows as r goes to
infinity, while the horizontal part does not change. Indeed, if we change t to p2rt,
then, by (3.8), deg

Q
Z(p2rt) = deg

Q
Z(t), while both the radius of the tube T (prj)

and the multiplicity function µ[Λ](prj) increase.

Analogues of these results about cycles defined by special endomorphisms are ob-
tained in [45] and [47] for Hilbert–Blumenthal varieties and Siegel modular varieties
of genus 2 respectively.

§5. Green functions.

To obtain classes in the arithmetic Chow group ĈH
1

R
(M) from the Z(t)’s, it is

necessary to equip them with Green functions. These are defined as follows; see
[37] for more details. For x ∈ V (R), with Q(x) �= 0, let

(5.1) Dx = { z ∈ D | (x, w(z)) = 0 }.

Here w(z) ∈ V (C) is any vector with image z in P(V (C)). The set Dx consists of
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two points if Q(x) > 0, and is empty if Q(x) < 0. By (3.5) and (3.6), we have

(5.2) Z(t)(C) =
∑

x∈OB∩V

Q(x)=t

mod Γ

pr(Dx)

where pr : D → Γ\D. For x ∈ V (R), with Q(x) �= 0, and z ∈ D, let

(5.3) R(x, z) = |(x, w(z))|2|(w(z), w(z))|−1.

This function on D vanishes precisely on Dx. Let

(5.4) β1(r) =
∫ ∞

1

e−ru u−1 du = −Ei(−r)

be the exponential integral. Note that

(5.5) β1(r) =

{
− log(r) − γ + O(r), as r → 0,

O(e−r), as r → ∞.

Thus, the function

(5.6) ξ(x, z) = β1(2πR(x, z))

has a logarithmic singularity on Dx and decays exponentially as z goes to the
boundary of D. A straightforward calculation, [37], section 11, shows that ξ(x, ·)
is a Green function for Dx.

Proposition 5.1. As currents on D,

ddcξ(x) + δDx
= [ϕ0

∞(x)µ],

where, for z ∈ D 	 C \ R with y = Im(z),

µ =
1
2π

i

2
dz ∧ dz̄

y2

is the hyperbolic volume form and

ϕ0
∞(x, z) =

[
4π(R(x, z) + 2Q(x) ) − 1

]
· e−2πR(x,z).
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Recall that ddc = − 1
2πi∂∂̄.

Remark. For fixed z ∈ D,

(5.7) (x, x)z = (x, x) + 2R(x, z)

is the majorant attached to z, [63]. Thus, the function

(5.8) ϕ∞(x, z) · µ = ϕ0
∞(x, z) · e−2πQ(x) · µ

is (a very special case of) the Schwartz function valued in smooth (1, 1)–forms on
D defined in [43]. In fact, the function ξ(x, z) was first obtained by solving the
Green equation of Proposition 5.1 with this right hand side.

Because of the rapid decay of ξ(x, ·), we can average over lattice points.

Corollary 5.2. For v ∈ R×
>0, let

Ξ(t, v)(z) :=
∑

x∈OB∩V
Q(x)=t

ξ(v
1
2 x, z).

(i) For t > 0, Ξ(t, v) defines a Green function for Z(t).
(ii) For t < 0, Ξ(t, v) defines a smooth function on M(C).

Note, for example, that for t > 0,

(5.9)
Z(t)(C) = ∅

and Ξ(t, v) = 0
⇐⇒ {x ∈ OB ∩ V, Q(x) = t} = ∅ ⇐⇒ kt does not

embed in B.

An explicit construction of Green functions for divisors in general locally symmetric
varieties is given by Oda and Tsuzuki, [58], by a different method.

§6. The arithmetic theta series.

At this point, we can define a family of classes in ĈH
1
(M). These can be viewed

as an analogue for the arithmetic surface M of the Hirzebruch-Zagier classes TN in
the middle cohomology of a Hilbert modular surface, [29].
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Definition 6.1. For t ∈ Z, with t �= 0, and for a parameter v ∈ R×
+, define classes

in ĈH
1

R
(M) by

Ẑ(t, v) =

{
(Z(t),Ξ(t, v) ) if t > 0,

( 0,Ξ(t, v) ) if t < 0.

For t = 0, define
Ẑ(0, v) = −ω̂ − (0, log(v)) + (0, c),

where c is the constant defined by (2.15).

We next construct a generating series for these classes; again, this can be viewed
as an arithmetic analogue of the Hirzebruch–Zagier generating series for the TN ’s.
For τ = u + iv ∈ H, the upper half plane, let q = e(τ) = e2πiτ .

Definition 6.2. The arithmetic theta series is the generating series

θ̂(τ) =
∑

t∈Z

Ẑ(t, v) qt ∈ ĈH
1
(M)[[q]].

Note that, since the imaginary part v of τ appears as a parameter in the coefficient
Ẑ(t, v), this series is not a holomorphic function of τ .

The arithmetic theta function θ̂(τ) is closely connected with the generating series
for quadratic divisors considered by Borcherds, [5], and the one for Heegner points
introduced by Zagier, [78]. The following result, [42], justifies the terminology. Its
proof, which will be sketched in section 7, depends on the results of [49] and of
Borcherds, [5].

Theorem 6.3. The arithmetic theta series θ̂(τ) is a (nonholomorphic) modular

form of weight 3
2 valued in ĈH

1
(M).

As explained in Proposition 7.1 below, the arithmetic Chow group ĈH
1
(M) can be

written as direct sum

ĈH
1
(M) = ĈH

1
(M, µ)C ⊕ C∞

0 (M(C))

where ĈH
1
(M, µ)C a finite dimensional complex vector space, the Arakelov Chow

group of M for the hyperbolic metric µ, (7.7), and C∞
0 (M(C)) is the space of
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smooth functions on M(C) with integral 0 with respect to µ. Theorem 6.3 then

means that there is a smooth function of φAr of τ valued in ĈH
1
(M, µ)C and a

smooth function φ(τ, z) on H ×M(C), with
∫

M(C)

φ(τ, z) dµ(z) = 0,

and such that the sum φ(τ) = φAr(τ) + φ(τ, z) satisfies the usual transformation
law for a modular form of weight 3

2 , for Γ0(4D(B)), and such that the q–expansion
of φ(τ) is the formal generating series θ̂(τ) of Definition 6.2. By abuse of notation,
we write θ̂(τ) both for φ(τ) and for its q–expansion.

§7. Modularity of the arithmetic theta series.

Although the arithmetic theta series θ̂(τ) can be viewed as a kind of generating
series for lattice vectors in the spaces V (A, ι) of special endomorphisms, there is no
evident analogue of the Poisson summation formula, which is the key ingredient of
the proof of modularity of classical theta series. Instead, the modularity of θ̂(τ) is

proved by computing its height pairing with generators of the group ĈH
1
(M) and

identifying the resulting functions of τ with known modular forms.

First we recall the structure of the arithmetic Chow group ĈH
1

R
(M), [20], [66], [7].

There is a map

(7.1) a : C∞(M(C)) −→ ĈH
1

R
(M), φ �−→ (0, φ)

from the space of smooth functions on the curve M(C). Let 11 = a(1) be the

image of the constant function. Let Vert ⊂ ĈH
1

R
(M) be the subspace generated by

classes of the form (Yp, 0), where Yp is a component of a fiber Mp. The relation
d̂iv(p) = (Mp,− log(p)2) ≡ 0 implies that (Mp, 0) ≡ 2 log(p) · 11, so that 11 ∈ Vert.
The spaces a(C∞(M(C)) and Vert span the kernel of the restriction map

(7.2) resQ : ĈH
1

R
(M) −→ CH1(MQ)R

to the generic fiber. Here CH1(MQ)R = CH1(MQ) ⊗Z R.

Let

(7.3) MWR = MW(M)R = Jac(M)(Q) ⊗Z R
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be the Mordell–Weil space of the Shimura curve M = MQ, and recall that this
space is the kernel of the degree map

(7.4) MWR −→ CH1(M)R

deg−→ R.

Note that the degree of the restriction of the class ω̂ to the generic fiber is positive,
since it is given by the integral of the hyperbolic volume form over [Γ\D].

Finally, let C∞
0 = C∞(M(C))0 be the space of smooth functions which are orthog-

onal to the constants with respect to the hyperbolic volume form.

The following is a standard result in the Arakelov theory of arithmetic surfaces,
[32], [15], [7].

Proposition 7.1. Let

M̃W :=
(

R ω̂ ⊕ Vert ⊕ a(C∞
0 )

)⊥

be the orthogonal complement of R ω̂ ⊕ Vert ⊕ a(C∞
0 ) with respect to the height

pairing. Then

ĈH
1

R
(M) = M̃W ⊕

(

R ω̂ ⊕ Vert
)

⊕ a(C∞
0 ),

where the three summands are orthogonal with respect to the height pairing. More-
over, the restriction map resQ induces an isometry

resQ : M̃W ∼−→ MW

with respect to the Gillet–Soulé–Arakelov height pairing on M̃W and the negative
of the Neron–Tate height pairing on MW.

In addition, there are some useful formulas for the height pairings of certain classes.
For example, for any Ẑ ∈ ĈH

1
(M),

(7.5) 〈 Ẑ, 11 〉 =
1
2

deg
Q
(Ẑ).

In particular, 11 is in the radical of the restiction of the height pairing to Vert, and
〈 ω̂, 11 〉 = 1

2 deg
Q
(ω̂) > 0. Also, for φ1 and φ2 ∈ C∞

0 ,

(7.6) 〈 a(φ1), a(φ2) 〉 =
1
2

∫

M(C)

ddcφ1 · φ2.
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Note that the subgroup

(7.7) ĈH
1
(M, µ)R = M̃W ⊕ Rω̂ ⊕ Vert

is the Arakelov Chow group (with real coefficients) for the hyperbolic metric µ.

Returning to the arithmetic theta series θ̂(τ), we consider its pairing with various

classes in ĈH
1

R
(M). To describe these, we first introduce an Eisenstein series of

weight 3
2 associated to the quaternion algebra B, [49]. Let Γ′ = SL2(Z) and let Γ′

∞
be the stabilizer of the cusp at infinity. For s ∈ C, let

(7.8) E(τ, s;B) = v
1
2 (s− 1

2 )
∑

γ∈Γ′
∞\Γ′

(cτ + d)−
3
2 |cτ + d|−(s− 1

2 ) ΦB(γ, s),

where γ =
(

a b
c d

)

and ΦB(γ, s) is a function of γ and s depending on B. This

series converges absolutely for Re(s) > 1 and has an analytic continuation to the
whole s–plane. It satisfies the functional equation, [49], section 16,

(7.9) E(τ, s;B) = E(τ,−s;B),

normalized as in Langlands theory.

The following result is proved in [49].

Theorem 7.2.
(i)

2 · 〈 θ̂(τ), 11 〉 = −vol(M(C)) +
∑

t>0

deg(Z(t)Q) qt

= E(τ,
1
2
;B).

(ii)

〈 θ̂(τ), ω̂ 〉 =
∑

t

〈 Ẑ(t, v), ω̂ 〉 qt

= E ′(τ,
1
2
;B).
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This result is proved by a direct computation of the Fourier coefficients on the two
sides of (i) and (ii). For (i), the identity amounts to the formula

(7.10) deg(Z(t)Q) qt = 2 δ(d;D(B))H0(t;D(B)) qt = E ′
t(τ,

1
2
;D(B)),

with the notation as in (3.8), (3.9) and (3.10) above. Recall that we write 4t = n2d

where −d is the discriminant of the field kt.

For example, if D(B) = 1, i.e., in the case of B = M2(Q),

(7.11) H0(t; 1) =
∑

c|n

h(c2d)
w(c2d)

.

Thus, 2H0(t; 1) = H(4t), where H(t) is the ‘class number’ which appears in the
Fourier expansion of Zagier’s nonholomorphic Eisenstein series of weight 3

2 , [14],
[78]:

(7.12) F(τ) = − 1
12

+
∑

t>0

H(t) qt +
∑

m∈Z

1
16π

v−
1
2

∫ ∞

1

e−4πm2vr r−
3
2 dr q−m2

.

In fact, when D(B) = 1, the value of our Eisenstein series is
(7.13)

E(τ,
1
2
; 1) = − 1

12
+

∑

t>0

2 H0(t; 1) qt +
∑

m∈Z

1
8π

v−
1
2

∫ ∞

1

e−4πm2vr r−
3
2 dr · q−m2

.

As in (i) of Theorem 7.2, both of these series have an interpretation in term of
degrees of 0–cycles of CM points on the modular curve, [76]. Their relation to a
regularized integral of a theta series is proved by J. Funke in [16], [17].

The computations involved in (ii) are significantly more difficult. For example, if
t > 0 and Z(t)Q(C) is nonempty, then, [49], Theorem 8.8, the t-th Fourier coefficient
of E ′(τ, 1

2 ;B) is

E ′
t(τ,

1
2
;B)

(7.14)

= 2 δ(d;D)H0(t;D) · qt ·
[

1
2

log(d) +
L′(1, χd)
L(1, χd)

− 1
2

log(π) − 1
2
γ

+
1
2
J(4πtv) +

∑

p
p�D

(

log |n|p −
b′p(n, 0;D)
bp(n, 0;D)

)

+
∑

p
p|D

Kp log(p)
]

.
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Here, we write D for D(B), 4t = n2d, as before, and

(7.15) Kp =






−k + (p+1)(pk−1)
2(p−1) if χd(p) = −1, and

−1 − k + pk+1−1
p−1 if χd(p) = 0,

with k = kp = ordp(n). Also,

(7.16) J(x) =
∫ ∞

0

e−xr
[
(1 + r)

1
2 − 1

]
r−1 dr.

Finally, for a prime p � D,

(7.17)
1

log p
·
b′p(n, 0;D)
bp(n, 0;D)

=
χd(p) − χd(p) (2k + 1)pk + (2k + 2)pk+1)

1 − χd(p) + χd(p) pk − pk+1
− 2p

1 − p

The connection of this rather complicated quantity with arithmetic geometry is not
at all evident. Nonetheless, the identity of part (ii) of Theorem 7.2 asserts that

(7.18) E ′
t(τ,

1
2
;B) = 〈 Ẑ(t, v), ω̂ 〉 qt.

Recall that the points of the generic fiber Z(t)Q correspond to abelian surfaces
A with an action of OB ⊗Z Z[

√
−t], an order in M2(kt). The contribution to

〈 Ẑ(t, v), ω̂ 〉 of the associated horizontal component of Z(t) is the Faltings height
of A. Due to the action of OB ⊗Z Z[

√
−t ], A is isogenous to a product E×E where

E is an elliptic curve with CM by the order Od, and so the Faltings heights are
related by

(7.19) hFal(A) = 2hFal(E) + an isogeny correction.

Up to some combinatorics involving counting of the points Z(t)Q, the terms on the
first line of the right side of (7.14) come from hFal(E), while sum on p � D(B) on
the second line arises from the isogeny correction. The J(4πtv) term comes from
the contribution of the Green function Ξ(t, v) with parameter v. Finally, the cycle
Z(t) can have vertical components, and the sum on p | D(B) comes from their
pairing with ω̂.

The analogue of (ii) also holds for modular curves, i.e., when D(B) = 1. In this
case, there are some additional terms, as in the nonholomorphic parts of (7.12) and

(7.13). These terms are contributions from a class in ĈH
1

R
(M) supported in the

cusp, [76], [51].
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To continue the proof of modularity of θ̂(τ), we next consider the height pairing of
θ̂(τ) with classes of the form (Yp, 0) in Vert, and with classes of the form (0, φ), for
φ ∈ C∞

0 , which might be thought of as ‘vertical at infinity’.

First we consider 〈 θ̂(τ), (Yp, 0) 〉. For p �= 2, the intersection number of a component
Yp indexed by [Λ] with a cycle Z(t) is calculated explicitly in [46]. For p = 2, the
computation is very similar. Using this result, we obtain, [42]:

Theorem 7.3. Assume that p | D(B) and that p �= 2. Then, for a component Yp

of Mp associated to a homothety class of lattices [Λ], there is a Schwartz function
ϕ[Λ] ∈ S(V (p)(Af )) and associated theta function of weight 3

2

θ(τ, ϕ[Λ]) =
∑

x∈V (p)(Q)

ϕ[Λ](x) qQ(x),

such that
〈 θ̂(τ), (Yp, 0) 〉 = θ(τ, ϕ[Λ]).

Next consider the height pairings with classes of the form a(φ) = (0, φ) for φ ∈ C∞
0 .

Here we note that, for a class (Z, gZ) ∈ ĈH
1

R(M),

(7.20) 〈 (Z, gZ), a(φ) 〉 =
1
2

∫

M(C)

ωZ φ,

where ωZ = ddcgZ + δZ is the smooth (1, 1)–form on the right side of the Green
equation. The map (Z, gZ) �→ ωZ defines a map, [20], [66]

(7.21) ω : ĈH
1

R
(M) −→ A(1,1)(M(C)).

By the basic construction of the Green function Ξ(t, v) and Proposition 5.1, we
have

ω( θ̂(τ) ) =
∑

x∈OB∩V

ϕ0
∞(xv

1
2 , z) qQ(x) · µ(7.22)

: = θ(τ, ϕ0
∞)(z) · µ,

where θ(τ, ϕ0
∞)(z) is the theta series of weight 3

2 for the rational quadratic space V

of signature (1, 2). Thus,

(7.23) 〈 θ̂(τ), a(φ) 〉 =
1
2

∫

M(C)

θ(τ, ϕ0
∞)(z)φ(z) dµ(z),
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is the classical theta lift of φ. To describe this more precisely, recall that

(7.24) ddcφ =
1
2

∆{φ} · µ

where ∆ is the hyperbolic Laplacian, and consider functions φλ ∈ C∞
0 (M(C))

satisfying ∆φλ + λφλ = 0 for λ > 0. Let φλi
, for 0 < λ1 ≤ λ2 ≤ . . . be a basis

of such eigenfunctions, orthonormal with respect to µ. These are just the Maass
forms of weight 0 for the cocompact Fuchsian group Γ = O×

B . Recalling (7.6), we

see that the classes a(φλ) ∈ ĈH
1

R
(M) are orthogonal with respect to the height

pairing and span the subspace a(C∞
0 ). By (7.23), we have the following, [42].

Theorem 7.4. For a Maass form φλ of weight 0 for Γ, let

θ(τ ;φλ) :=
∫

M(C)

θ(τ, ϕ0
∞)(z) φλ(z) dµ(z)

be its classical theta lift, a Maass form of weight 3
2 and level 4D(B). Then

〈 θ̂(τ), a(φλ) 〉 =
1
2

θ(τ ;φλ).

Finally, we must consider the component θ̂MW(τ) of θ̂(τ) in the space M̃W. Recall
the isomorphism

(7.25) resQ : M̃W ∼−→ MW ⊂ CH1(M).

Write

(7.26) θB(τ) := resQ(θ̂(τ)) = −ω +
∑

t>0

Z(t) qt ∈ CH1(M),

where Z(t) (resp. ω) is the class of the 0–cycle Z(t)Q (resp. the line bundle ω =
resQ(ω̂)) in CH1(M). This series is essentially a special case of the generating func-
tion for divisors considered by Borcherds, [5], [6]. Assuming that certain spaces of
vector valued modular forms have bases with rational Fourier coefficients, Borcherds
proved that his generating series are modular forms, and McGraw, [56], verified
Borcherds assumption. The main point in Borcherds’ proof is the existence of
enough relations among the divisors in question, and such relations can be explic-
itly given via Borcherds construction of meromorphic modular forms with product
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expansions, [3], [4]. Thus, the series θB(τ) is a modular form of weight 3
2 valued in

CH1(M).

By (i) of Theorem 7.2, we have

(7.27) deg(θB(τ)) = E(τ,
1
2
;B),

and so, the function

(7.28) θMW(τ) := θB(τ) − E(τ,
1
2
;B) · ω

deg(ω)
∈ MW

is also modular of weight 3
2 . Thus we obtain, [42],

Theorem 7.5. The image of θ̂MW(τ) under the isomorphism (7.25), is given by

resQ( θ̂MW(τ) ) = resQ

(
θ̂(τ) − E(τ,

1
2
;B) deg

Q
(ω̂)−1 · ω̂

)

= θMW(τ) ∈ MW.

Thus, θ̂MW(τ) is a modular form of weight 3
2 .

This completes the proof of the modularity of the arithmetic theta function θ̂(τ).

§8. The arithmetic theta lift.

The arithmetic theta function θ̂(τ) can be used to define an arithmetic theta lift

θ̂ : S 3
2
−→ ĈH

1
(M), f �→ θ̂(f),

where S 3
2

is the space of cusp forms of weight 3
2 for Γ′ = Γ0(4D(B)), as follows.

Given a cusp form f of weight 3
2 for Γ′ = Γ0(4D(B)), let

(8.1) θ̂(f) = 〈 f, θ̂ 〉Pet =
∫

Γ′\H

f(τ) θ̂(τ) v
3
2

du dv

v2
∈ ĈH

1
(M).

This construction is analogous to the construction of Niwa, [57], of the classical
Shimura lift, [64], from S 3

2
to modular forms of weight 2 for O×

B . Recall that we
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extend the height pairing 〈 , 〉 on ĈH
1

R
(M) to an Hermitian pairing on ĈH

1
(M),

conjugate linear in the second argument. By adjointness, and Theorem 7.2,

(8.2) 〈θ̂(f), 11〉 = 〈f, 〈θ̂, 11〉 〉Pet =
1
2
〈f, E(

1
2
;B)〉Pet = 0,

and

(8.3) 〈θ̂(f), ω̂〉 = 〈f, 〈θ̂, ω̂〉 〉Pet = 〈f, E ′(
1
2
;B)〉Pet = 0.

If f is holomorphic, then, by Theorem 7.4, for any φ ∈ C∞
0 (M(C)),

(8.4) 〈θ̂(f), a(φ)〉 = 〈 f, 〈 θ̂, a(φ) 〉 〉 = 〈 f, θ(φ) 〉Pet = 0,

since θ(τ ;φ) is a combination of Maass forms of weight 3
2 . Thus, for f holomorphic

(8.5) θ̂(f) ∈ M̃W ⊕ Vert0 ⊂ ĈH
1
(M)

where

(8.6) Vert0 = Vert ∩ ker〈 ·, ω̂ 〉.

It remains to describe the components of θ̂(f) in the spaces Vert and M̃W. This is
best expressed in terms of automorphic representations.

§9. Theta dichotomy: Waldspurger’s theory.

We begin with a brief review of Waldspurger’s theory of the correspondence be-
tween cuspidal automorphic representations of the metaplectic cover of SL2 and
automorphic representations of PGL2 and its inner forms. For a more detailed
survey, the reader can consult [59], [70], [31], as well as the original papers [68],
[69], and especially, [73].

We fix the additive character ψ of A/Q which has trivial conductor, i.e., is trivial
on Ẑ =

∏

p<∞ Zp and has archimedean component ψ∞(x) = e(x) = e2πix. Since ψ

is fixed, we suppress it from the notation.

Let G = SL2 and let G′
A

be the 2–fold cover of G(A) which splits over G(Q). Let

A0(G′) = the space of genuine cusp forms for G′
A
.(9.1)

A00(G′) = the space of genuine cusp forms for G′
A
.

orthogonal to all O(1) theta series
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For an irreducible cuspidal automorphic representation σ 	 ⊗p≤∞σp in A00(G′),
Waldspurger constructs an irreducible cuspidal automorphic representation

(9.2) π = π(σ) = Wald(σ) = Wald(σ, ψ)

of PGL2(A), which serves as a kind of reference point for the description of the
global theta lifts for various ternary quadratic spaces. For each p ≤ ∞, there is
a corresponding local construction σp �→ Wald(σp, ψp), and the local and global
constructions are compatible, i.e.,

Wald(σ, ψ) 	 ⊗p≤∞Wald(σp, ψp).

Since we have fixed the additive character ψ = ⊗pψp, we will often omit it from
the notation.

For a quaternion algebra B over Q, let

(9.3) V B = { x ∈ B | tr(x) = 0 },

with quadratic form7 Q(x) = −x2 = ν(x), and let

(9.4) HB = B× 	 GSpin(V ).

For a Schwartz function ϕ ∈ S(V B(A)), g′ ∈ G′
A

and h ∈ HB(A), define the theta
kernel by

(9.5) θ(g′, h;ϕ) =
∑

x∈V B(Q)

ω(g′)ϕ(h−1x).

Here ω = ωψ is the Weil representation of G′
A

on S(V (A)). For f ∈ σ and ϕ ∈
S(V B(A)), the classical theta lift is

(9.6) θ(f ;ϕ) = 〈 f, θ(ϕ) 〉Pet =
∫

G′
Q
\G′

A

f(g′) θ(g′, h;ϕ) dg′ ∈ A0(HB).

The global theta lift of σ to HB is the space

(9.7) θ(σ;V B) ⊂ A0(HB),

7Note that Waldspurger uses the opposite sign.
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spanned by the θ(f ;ϕ)’s for f ∈ σ and ϕ ∈ S(V (A)). Here A0(HB) is the space
of cusp forms on HB(Q)\HB(A). Then θ(σ;V B) is either zero or is an irreducible
cuspidal representation of HB(A), [73], Prop. 20, p. 290.

For any irreducible admissible genuine representation σp of G′
p, the metaplectic

cover of G(Qp), there are analogous local theta lifts θ(σp, V
B
p ). Each of them is

either zero or is an irreducible admissible representation of HB
p . The local and

global theta lifts are compatible in the sense that

(9.8) θ(σ;V B) 	
{

⊗pθ(σp;V B
p ) or

0.

In particular, the global theta lift is zero if any local θ(σp;V B
p ) = 0, but the global

theta lift can also vanish even when there is no such local obstruction, i.e., even if
⊗p≤∞θ(σp;V B

p ) �= 0.

For each p, let B±
p be the quaternion algebra over Qp with invariant

(9.9) invp(B±
p ) = ±1.

Then the two ternary quadratic spaces

(9.10) V ±
p = { x ∈ B±

p | tr(x) = 0 }

have the same discriminant and opposite Hasse invariants. A key local fact estab-
lished by Waldspurger is:

Theorem 9.1. (Local theta dichotomy) For an irreducible admissible genuine
representaton σp of G′

p, precisely one of the spaces θ(σp;V +
p ) and θ(σp;V −

p ) is
nonzero.

Definition 9.2. Let εp(σp) = ±1 be the unique sign such that with

θ(σp, V
εp(σp)
p ) �= 0.

Examples: (i) If p is a finite prime and σp is an unramified principal series rep-
resentation, then εp(σp) = +1 and θ(σp;V +

p ) is a principal series representation of
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GL2(Qp). It is unramified if σp is unramified.
(ii) For a finite prime p and a character µp of Q×

p , with µ2
p = | |, there is a special

representation σp(µp) of G′
p. For σp = σp(µp), with µp = | | 12 ,

θ(σp, V
−
p ) = 11 �= 0, B−

p = Bp

θ(σp, V
+
p ) = 0, B+

p = M2(Qp)

Wald(σp, ψp) = unramified special σ(| | 12 , | |− 1
2 ) of GL2(Qp).

If µp �= | | 12 , then

θ(σp, V
+) = Wald(σp, ψp) = σ(µ, µ−1)

is a special representation of GL2(Qp) and θ(σp, V
−
p ) = 0.

(iii) If σ∞ = HDS 3
2
, the holomorphic discrete series representation of G′

R
of weight

3
2 , then

θ(σ∞, V −
∞) = 11 �= 0, B−

∞ = H

θ(σ∞, V +
∞) = 0, B+

∞ = M2(R)

Wald(σ∞, ψ∞) = DS2 = weight 2 disc. series of GL2(R).

Since we will be considering only holomorphic cusp forms of weight 3
2 and level 4N

with N odd and square free, these examples give all of the relevant local information.

The local root number εp( 1
2 ,Wald(σp)) = ±1 and the invariant εp(σp) are related

as follows. There is an element −1 in the center of G′
p which maps to −1 ∈ Gp,

and Waldspurger defines a sign ε(σp, ψp), the central sign of σp, by

(9.11) σp(−1) = ε(σp, ψp)χψ(−1) · Iσp ,

[73], p.225. Then,

(9.12) εp(σp) = εp(
1
2
,Wald(σp, ψp)) ε(σp, ψp).

Note that

(9.13)
∏

p

ε(σp, ψp) = 1.
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Thus, for a given global σ 	 ⊗pσp,

ε(
1
2
,Wald(σ, ψ)) = +1 ⇐⇒ there is a B/Q with invp(B) = εp(σp) for all p

(9.14)

⇐⇒ there is a B/Q with ⊗pθ(σp, V
B
p ) �= 0.

The algebra B is then unique, and, if B′ �	 B, the global theta lift θ(σ;V B′
) = 0

for local reasons. On the other hand, the global theta lift for V B is

(9.15) θ(σ, V B) 	
{

⊗pθ(σp, V
B
p ) or

0,

and Waldspurger’s beautiful result, [73], is that

(9.16) θ(σ, V B) �= 0 ⇐⇒ L(
1
2
,Wald(σ)) �= 0.

§10. The doubling integral.

The key to linking Waldspurger’s theory to the arithmetic theta lift is the doubling
integral representation of the Hecke L-function, [60], [54], [52], and in classical
language, [18], [2]. Let G̃ = Sp2 be the symplectic group of rank 2 over Q, and
let G̃′

A
be the 2–fold metaplectic cover of G̃(A). Recall that G = SL2 = Sp1. Let

i0 : G × G → G̃ be the standard embedding:

(10.1) i0 :
(

a1 b1

c1 d1

)

×
(

a2 b2

c2 d2

)

�−→






a1 b1

a2 b2

c1 d1

c2 d2




 .

For g ∈ G, let

(10.2) g∨ = Ad
(

1
−1

)

· g,

and let

(10.3) i(g1, g2) = i0(g1, g
∨
2 ).

Let P̃ ⊂ G̃ be the standard Siegel parabolic, and, for s ∈ C, let Ĩ(s) be the induced
representation

(10.4) Ĩ(s) = IndG̃′
A

P̃ ′
A

(δs+ 3
2 ) 	 ⊗pĨp(s),
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where δ is a certain lift to the cover P̃ ′
A

of the modulus character of P̃ (A). Here
we are using unnormalized induction. For a section Φ(s) ∈ Ĩ(s), there is a Siegel–
Eisenstein series

(10.5) E(g′, s,Φ) =
∑

γ∈P̃ ′
Q
\G̃′

Q

Φ(γg′, s),

convergent for Re(s) > 3
2 , and with an analytic continuation in s satisfying a

functional equation relating s and −s. For σ 	 ⊗pσp a cuspidal representation in
A0(G′), as above, the doubling integral is defined as follows:
For vectors f1, f2 ∈ σ and Φ(s) ∈ Ĩ(s),

(10.6) Z(s, f1, f2,Φ) =
∫

G′
Q
\G′

A
×G′

Q
\G′

A

f1(g′1) f2(g′2)E(i(g′1, g
′
2), s,Φ) dg′1 dg′2.

If f1, f2 and Φ(s) are factorizable and unramified outside of a set of places S,
including ∞ and 2, then, [60], [54], [44]8,

(10.7) Z(s, f1, f2,Φ) =
1

ζS(2s + 2)
LS(s +

1
2
,Wald(σ)) ·

∏

p∈S

Zp(s, f1,p, f2,p,Φp),

where Zp(s, f1,p, f2,p,Φp) is a local zeta integral depending on the local components
at p.

Now suppose that σ∞ = HDS 3
2
, and take the archimedean local components f1,∞ =

f2,∞ to be the weight 3
2 vectors. We can identify f1 and f2 with classical cusp forms

of weight 3
2 . Taking Φ∞(s) ∈ Ĩ∞(s) to be the standard weight 3

2 section Φ
3
2∞(s),

we can write the Eisenstein series as a classical Siegel Eisenstein series E(τ, s,Φf )
of weight 3

2 , where τ ∈ H2, the Siegel space of genus 2, and Φf (s) is the finite
component of Φ(s).

For a given indefinite quaternion algebra B, there is a section Φf (s) defined as
follows. For a finite prime p, the group G̃′

p acts on the Schwartz space S((V ±
p )2)

via the Weil representation ω determined by ψp, and there is a map

(10.8) λp : S((V ±
p )2) −→ Ĩp(0), ϕp �→ λp(ϕp)(g′) = ω(g′)ϕp(0).

8Note that [60] and [44] deal with the symplectic case, while the metaplectic case needed here is

covered in [54].
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Here V ±
p is the ternary quadratic space defined in (5.10). Note that a section Φp(s)

is determined by its restriction to the compact open subgroup K ′
p, the inverse image

of G̃(Zp) in G̃′
p. A section is said to be standard if this restriction is independent

of s. The function λp(ϕp) ∈ Ĩp(0) has a unique extension to a standard section of
Ĩp(s). Fix a maximal order R±

p in B±
p , and let ϕ±

p ∈ S((V ±
p )2) be the characteristic

function of (R±
p ∩V ±

p )2. Also let Re
p ⊂ R+

p be the Eichler order9 of index p, and let
ϕe

p be the characteristic function of (Re
p ∩ V +

p )2. We then have standard sections
Φ0

p(s), Φ−
p (s) and Φe

p(s) whose restrictions to K ′
p are λp(ϕ+

p ), λp(ϕ−
p ), and λp(ϕe

p)
respectively. Following [46], let

(10.9) Φ̃p(s) = Φ−
p (s) + Ap(s)Φ0

p(s) + Bp(s) Φe
p(s),

where Ap(s) and Bp(s) are entire functions of s such that
(10.10)

Ap(0) = Bp(0) = 0, and A′
p(0) = − 2

p2 − 1
log(p), B′

p(0) =
1
2

p + 1
p − 1

log(p).

Then let

(10.11) Φ̃B(s) =
(

⊗p|D(B) Φ̃p(s)
)

⊗
(

⊗p�D(B) Φ0
p(s)

)

.

Using this section, we can define a normalized Siegel Eisenstein series of weight 3
2

and genus 2 attached to B by

(10.12) E2(τ, s;B) = η(s, B) ζD(B)(2s + 2)E(τ, s; Φ̃B),

where η(s, B) is a certain normalizing factor and the partial zeta function is as in
(2.14). Then we have a precise version of the doubling identity, [52]:

Theorem 10.1. 10 For every indefinite quaternion algebra B over Q, the associ-
ated Siegel–Eisenstein series E2(τ, s;B) of genus 2 and weight 3

2 has the following
property. For each holomorphic ‘newform’ f of weight 3

2 and level 4D(B) associated
to an irreducible cuspidal representation σ = ⊗pσp:

〈 E2(
(

τ1

−τ̄2

)

, s;B) , f(τ2) 〉Pet, τ2

= C(s) C(s;σ;B)L(s +
1
2
,Wald(σ)) · f(τ1),

9So R+
p = M2(Zp) and x ∈ Re

p iff c ≡ 0 mod p.
10At the time of this writing, we must assume that 2 � D(B) and that ε2(σ2) = +1. It should not

be difficult to remove these restrictions.
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where11 C(0) �= 0, and

C(s;σ;B) =
∏

p|D(B)

Cp(s;σp;Bp),

with

Cp(0;σp;Bp) =

{
1 if εp(σp) = −1,

0 if εp(σp) = +1,

and, if εp(σp) = +1,
C ′

p(0;σp;Bp) = log(p).

Note that εp(σp) = 1 for p � 4D(B), and that

(10.13) ε(
1
2
,Wald(σ)) = −

∏

p|D(B)

εp(σp).

Thus, for example, for ε( 1
2 ,Wald(σ)) = +1, an odd number of p | D(B) have

εp(σp) = +1.

Corollary 10.2. With the notation and assumptions of Theorem 10.1,

〈 E ′
2(

(
τ1

−τ̄2

)

, 0;B) , f(τ2) 〉Pet, τ2

= f(τ1) · C(0) ·






L′( 1
2 ,Wald(σ)), if εp(σp) = −1

for all p | D(B),

L( 1
2 ,Wald(σ)) if εp(σp) = +1
× log(p), for a unique p | D(B),

0 otherwise.

§11. The arithmetic inner product formula.

Returning to the arithmetic theta lift and arithmetic theta function θ̂(τ), there
should be a second relation between derivatives of Eisenstein series and arithmetic
geometry, [37]:

11These are explicit elementary factors.
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Conjecture 11.1.

〈 θ̂(τ1), θ̂(τ2) 〉 = E ′
2(

(
τ1

−τ̄2

)

, 0;B).

Here recall that 〈 , 〉 has been extended to be conjugate linear in the second factor.
Additional discussion can be found in [38], [40], [41], [51]. This conjecture amounts
to identities on Fourier coefficients:

〈 Ẑ(t1, v1), Ẑ(t2, v2) 〉 · qt1
1 qt2

2(11.1)

=
∑

T∈Sym2(Z)∨

diag(T )=(t1,t2)

E ′
2,T (

(
τ1

τ2

)

, 0;B).

If t1t2 is not a square, then any T ∈ Sym2(Z)∨ with diag(T ) = (t1, t2) has det(T ) �=
0. Thus, only the nonsingular Fourier coefficients of E2(τ, s, B) contribute to the
right hand side of (11.1) in this case. Under the same condition, the cycles Z(t1) and
Z(t2) do not meet on the generic fiber, although they may have common vertical
components in the fibers of bad reduction.

On the other hand, if t1t2 = m2, then the singular matrices T =
(

t1 ±m
±m t2

)

occur on the right side of (11.1), and the cycles Z(t1) and Z(t2) meet in the generic
fiber and have common horizontal components.

The results of [37] and [46] yield the following.

Theorem 11.2. Suppose that t1t2 is not a square. In addition, assume that (11.11)
(resp. (11.26)) below holds for p = 2 if 2 � D(B) (resp. 2 | D(B) ). Then the
Fourier coefficient identity (11.1) holds.

We now briefly sketch the proof of Theorem 11.2. The basic idea is that there
is a decomposition of the height pairing on the left hand side of (11.1) into terms
indexed by T ∈ Sym2(Z)∨ with diag(T ) = (t1, t2). One can prove identities between
terms on the two sides corresponding to a given T .

Recalling the modular definition of the cycles given in section 3, the intersection
Z(t1) ∩ Z(t2) can be viewed as the locus of triples (A, ι,x), where x = [x1, x2] is a
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pair of special endomorphisms xi ∈ V (A, ι) with Q(xi) = ti. Associated to x is the
‘fundamental matrix’ Q(x) = 1

2 ((xi, xj)) ∈ Sym2(Z)∨, where ( , ) is the bilinear
form on the quadratic lattice V (A, ι). Thus we may write

(11.2) Z(t1) ∩ Z(t2) =
∐

T∈Sym2(Z)∨

diag(T )=(t1,t2)

Z(T ),

where Z(T ) is the locus of triples with Q(x) = T . Note that the fundamental
matrix is always positive semidefinite, since the quadratic form on V (A, ι) is positive
definite. On the other hand, if det(T ) �= 0, then Z(T )Q is empty, since the space
of special endomorphisms V (A, ι) has rank 0 or 1 in characteristic 0.

For a nonsingular T ∈ Sym2(Q), there is a unique global ternary quadratic space
VT with discriminant −1 which represents T ; the matrix of the quadratic form on
this space is

(11.3) QT =
(

T
det(T )−1

)

.

The space VT is isometric to the space of trace zero elements for some quaternion
algebra BT over Q, and the local invariants of this algebra must differ from those
of the given indefinite B at a finite set of places

(11.4) Diff(T, B) := { p ≤ ∞ | invp(BT ) = −invp(B) },

with |Diff(T, B)| even12.

The nonsingular Fourier coefficients of E2(τ, s;B) have a product formula

(11.5) E2,T (τ, s;B) = η(s;B) ζD(B)(2s + 2) · WT,∞(τ, s;
3
2
) ·

∏

p

WT,p(s; Φ̃B
p ),

where Φ̃B(s) = ⊗pΦ̃B
p (s) is given by (10.11). Moreover, for a finite prime p,

(11.6) p ∈ Diff(T, B) ⇐⇒ WT,p(0, Φ̃B
p ) = 0,

while

(11.7) ords=0 WT,∞(τ, s;
3
2
) =

{
0 if T > 0, and

1 if sig(T ) = (1, 1) or (0, 2).

12This is a slightly different definition than that used in [37], where ∞ is taken to be in the Diff

set for T indefinite. Hence the difference in parity.
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First suppose that T > 0, so that ∞ ∈ Diff(T, B), since V B has signature (1, 2)
and hence cannot represent T . If |Diff(T, B)| ≥ 4, then Z(T ) is empty and
E ′
2,T (τ, 0;B) = 0, so there is no contribution of such T ’s on either side of (11.1). If

T > 0 and |Diff(T, B)| = 2, then Diff(T, B) = {∞, p} for a unique finite prime p.
In this situation, it turns out that Z(T ) is supported in the fiber Mp at p. There
are two distinct cases:

(i) If p � D(B), then Z(T ) is a finite set of points in Mp.
(ii) If p | D(B), then Z(T ) can be a union of components Yp of the fiber at p,

with multiplicities.

In case (i), the contribution to the height pairing on the left side of (11.1) is log(p)
times the sum of the local multiplicities of points in Z(T ). It turns out that all
points have the same multiplicity, ep(T ), so that the contribution to (11.1) has the
form

(11.8) ep(T ) · |Z(T )(F̄p)|.

The computation of ep(T ) can be reduced to a special case of a problem in the
deformation theory of p–divisible groups which was solved by Gross and Keating,
[23]. As explained in section 14 of [37], their result yields the formula

(11.9) ep(T ) =






∑α−1
2

j=0 (α + β − 4j) pj if α is odd,

∑α
2 −1
j=0 (α + β − 4j) pj + 1

2 (β − α + 1) p
α
2 if α is even,

where, for p �= 2, T is equivalent, via the action of GL2(Zp), to diag(ε1 pα, ε2 pβ),
with ε1, ε2 ∈ Z×

p and 0 ≤ α ≤ β. The same result holds for p = 2, but with a
slightly different definition, [23], of the invariants α and β of T .

On the other hand, if Diff(T, B) = {∞, p} with p � D(B), then

E ′
2,T (τ, 0;B) = η(0;B) ζD(B)(2) · WT,∞(τ, 0;

3
2
)

(11.10)

×
W ′

T,p(0,Φ0
p)

WT,p(0,Φ−
p )

·
(

WT,p(0,Φ−
p ) ·

∏

� 	=p

WT,�(0, Φ̃B
� )

)

.

Here recall that the local sections Φ̃B
� (s) are as defined in (10.9) and (10.11). For

p �= 2, formulas of Kitaoka, [35], for representation densities αp(S, T ) of binary
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forms T by unimodular quadratic forms S can be used to compute the derivatives of
the local Whittaker functions, and yield, [37], Proposition 8.1 and Proposition 14.6,

(11.11)
W ′

T,p(0,Φ0
p)

WT,p(0,Φ−
p )

=
1
2
(p − 1) log(p) · ep(T ),

where ep(T ) is precisely the multiplicity (11.9)! On the other hand, up to simple
constants13,

WT,∞(
(

τ1

τ2

)

, 0;
3
2
) � qt1

1 qt2
2 ,(11.12)

and

WT,p(0,Φ−
p ) ·

∏

� 	=p

WT,�(0, Φ̃B
� ) � |Z(T )(F̄p)|.(11.13)

Note that to obtain (11.11) in the case p = 2, one needs to extend Kitaoka’s
representation density formula to this case; work on this is in progress.

Next, we turn to case (ii), where the component Z(T ) is attached to T with
diag(T ) = (t1, t2) and Diff(T, B) = {∞, p} with p | D(B). This case is studied
in detail in [46] under the assumption that p �= 2, using the p–adic uniformization
described in section 4 above. First, we can base change to Z(p) and use the in-
tersection theory explained in section 4 of [46]. The contribution of Z(T ) to the
height pairing is then

(11.14) χ(Z(T ),OZ(t1)

L

⊗OZ(t2) ) · log(p).

Here χ is the Euler–Poincaré characteristic and, for quasicoherent sheaves F and
G on M×Spec(Z) Spec(Z(p)), with supp(F)∩ supp(G) contained in the special fiber
and proper over Spec(Z(p)),

(11.15) χ(F
L

⊗ G) = χ(F ⊗ G) − χ(Tor1(F ,G)) + χ(Tor2(F ,G)).

Recall that, for i = 1, 2, Ĉp(ti) is the base change to W of the formal completion
of Z(ti) along its fiber at p. Similarly, we write Ĉp(T ) for the analogous formal
scheme over W determined by Z(T ). By Lemma 8.4 of [46],

(11.16) χ(Z(T ),OZ(t1)

L

⊗OZ(t2) ) = χ( Ĉp(T ),OĈp(t1)

L

⊗OĈp(t2)
),

13Hence the notation �.
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so that we can calculate after passing to the formal situation. The same arguments
which yield the p–adic uniformization, Proposition 4.2, of Ĉp(t) yields a diagram

(11.17)

Ĉp(T ) ∼−→ H ′(Q)\(��)
↓ ↓

M̂p
∼−→ H ′(Q)\

(

D• × H(Ap
f )/Kp

)

where

(11.18) (��) :=





(y, (X, ρ), gKp)

∣
∣
∣
∣

(i) Q(y) = T

(ii) (X, ρ) ∈ Z•(j(y))

(iii) y ∈
(
g (V (Ap

f ) ∩ Ôp
B) g−1

)2





.

Proceeding as in Remark 4.3, we obtain

(11.19) Ĉp(T ) ∼−→
[
Γ′\D•

T

]
,

where

(11.20) D•
T =

∐

y∈(L′)2

Q(y)=T

Z•(j(y)).

Here, recall from (4.25) that

(11.21) Γ′ = H ′(Q) ∩
(
H ′(Qp) × Kp ) =

(
O′

B

[1
p

] )×
.

Since any y ∈ L′ with Q(y) = T spans a nondegenerate 2–plane in V ′,

(11.22) Γ′
y = Γ′ ∩ Z(Q) 	

(
Z

[1
p

] )× = {±1} × pZ,

and the central element p acts on D• by translation by 2, i.e. carries Di to Di+2.
Thus, unfolding, as in [46], p.216, we have

(11.23) χ( Ĉp(T ),OĈp(t1)

L

⊗OĈp(t2)
) =

∑

y∈(L′)2

Q(y)=T

mod Γ′

χ(Z(j),OZ(j1)

L

⊗OZ(j2) ).

Here we have used the orbifold convention, which introduces a factor of 1
2 from the

±1 in Γ′
y which acts trivially, and the fact that the two ‘sheets’ Z(j) = Z0(j) and

Z1(j) make the same contribution.

Two of the main results of [46], Theorem 5.1 and 6.1, give the following:
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Theorem 11.3. (i) The quantity

ep(T ) := χ( Z(j),OZ(j1)

L

⊗OZ(j2) )

is the intersection number, [46], section 4, of the cycles Z(j1) and Z(j2) in the
formal scheme Dp. It depends only on the GL2(Zp)–equivalence class of T .
(ii) For p �= 2, and for T ∈ Sym2(Zp) which is GL2(Zp)–equivalent to diag(ε1pα, ε2p

β),
with 0 ≤ α ≤ β and ε1, ε2 ∈ Z×

p ,

ep(T ) = α+β+1−






pα/2 + 2pα/2−1
p−1 if α is even and (−ε1, p)p = −1,

(β − α + 1) pα/2 + 2pα/2−1
p−1 if α is even and (−ε1, p)p = 1,

2p(α+1)/2−1
p−1 if α is odd.

Part (i) of Theorem 11.3, together with (11.16) and (11.23), yields

(11.24) χ(Z(T ),OZ(t1)

L

⊗OZ(t2) ) = ep(T ) ·
( ∑

y∈(L′)2

Q(y)=T

mod Γ′

1
)
,

which is the analogue of (11.8) in the present case.

On the other hand, if Diff(T, B) = {∞, p} with p | D(B), the term on the right
side of (11.1) is

(11.25) E ′
2,T (τ, 0;B) = c · WT,∞(τ, 0;

3
2
) · W ′

T,p(0, Φ̃p) ·
∏

� 	=p

WT,�(0, Φ̃B
� ).

where c = η(0;B) ζD(B)(2). By [46], Corollary 11.4, the section Φ̃p(s) in (10.9)
satisfies,

W ′
T,p(0, Φ̃p) = p−2(p + 1) log(p) · ep(T )(11.26)

while
∏

� 	=p

WT,�(0,Φ�) �
( ∑

y∈(L′)2

Q(y)=T

mod Γ′

1
)
.(11.27)
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can be thought of as the number of ‘connected components’ of Z(T ). Note that,
the particular choice (10.10) of the coefficients Ap(s) and Bp(s) in the definition of
Φ̃p(s) was dictated by the identity (11.16), the proof of which is based on results
of Tonghai Yang, [74], on representation densities αp(S, T ) of binary forms T by
nonunimodular forms S. To obtain (11.16) in the case p = 2, one needs to extend
both the intersection calculations of [46] and the density formulas of [74] to this
case. The first of these tasks, begun in the appendix to section 11 of [50], is now
complete. The second is in progress.

Finally, the contribution to the right side of (11.1) of the terms for T of signature
(1, 1) or (0, 2), which can be calculated using the formulas of [65], coincides with
the contribution of the star product of the Green functions Ξ(t1, v1) and Ξ(t2, v2) to
the height pairing. This is a main result of [37]; for a sketch of the ideas involved,
cf. [38].

This completes the sketch of the proof of Theorem 11.2. � �

Before turning to consequences, we briefly sketch how part (ii) of Theorem 11.3
is obtained. By part (i) of that Theorem, it will suffice to compute the intersec-
tion number (Z(j1), Z(j2)) for j1 and j2 ∈ V ′(Qp) with j2

1 = −Q(j1) = −ε1p
α,

j2
2 = −Q(j2) = −ε2p

β and (j1, j2) = j1j2 + j2j1 = 0. By Theorem 5.1 of
[46], (Z(j1), Z(j2)) = (Z(j1)pure, Z(j2)pure), so that we may use the description
of Z(j)pure given in Proposition 4.5, above.

The following result, which combines Lemmas 4.7, 4.8, and 4.9 of [46], describes the
intersection numbers of individual components. Recall that the vertical components
P[Λ] of D are indexed by vertices [Λ] in the building B of PGL2(Qp).

Lemma 11.4. (i) For a pair of vertices [Λ] and [Λ′],

(P[Λ], P[Λ′]) =






1 if ([Λ], [Λ′]) is an edge,

−(p + 1) if [Λ] = [Λ′], and

0 otherwise.

(ii)
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(Z(j1)h, Z(j2)h) =
{

1 if α and β are odd,
0 otherwise.

(iii)

(Z(j1)h, P[Λ]) =






2 if α is even, (−ε1, p)p = −1, and Bj1 = [Λ],

1 if α is odd and d([Λ],Bj1) = 1
2 , and

0 otherwise.

and similarly for Z(j2)h.

The computation of the intersection number (Z(j1)pure, Z(j2)pure) is thus reduced
to a combinatorial problem. Recall from Proposition 4.5 above that the multiplicity
in Z(j1)pure of a vertical component P[Λ] indexed by a vertex [Λ] is determined by
the distance of [Λ] from the fixed point set Bj1 of j1 on B by the formula

µ[Λ](j1) = max{ 0,
α

2
− d([Λ],Bj1) }.

In particular, this multiplicity is zero outside of the tube T (j1) of radius α
2 around

Bj1 . Of course, the analogous description holds for Z(j2)pure. Our assumption
that the matrix of inner products of j1 and j2 is diagonal implies that j1 and j2
anticommute, and hence the relative position of the fixed point sets and tubes T (j1)
and T (j2) is particularly convenient.

For example, consider the case in which α and β are both even, with (−ε1, p)p =
1 and (−ε2, p)p = −1. These conditions mean that Qp(j1)× is a split Cartan
in GL2(Qp) and Qp(j2)× is a nonsplit, unramified, Cartan. The fixed point set
A = Bj1 is an apartment, and T (j1) is a tube of radius α

2 around it. Moreover,
Z(j1)h = ∅, so that Z(j1) consists entirely of vertical components. The fixed point
set Bj2 is a vertex [Λ0] and T (j2) is a ball of radius β

2 around it. Since j1 and j2
anticommute, the vertex [Λ0] lies in the apartment A = Bj1 . For any vertex [Λ],
the geodesic from [Λ0] to [Λ] runs a distance � inside the apartment A and then a
distance r outside of it. By (i) of Lemma 11.4, the contribution to the intersection
number of the vertices with � = 0 is

(11.28) −(p + 1)
α

2
+ (1 − p)

α/2−1
∑

r=1

(
α

2
− r)(p − 1)pr−1 = 1 − α − pα/2.

Here the first term is the contribution of [Λ0], since

(11.29) (P[Λ0], Z(j2)v) = −(p + 1)
β

2
+ (p + 1)(

β

2
− 1) = −(p + 1),



48

where Z(j2)v is the vertical part of Z(j2)pure. Similarly, for r > 0, there are
(p − 1)pr−1 vertices [Λ] at distance r (with � = 0), and each contributes

(11.30) (P[Λ], Z(j2)v) = (
β

2
− r + 1) − (p + 1)(

β

2
− r) + p(

β

2
− r − 1) = 1 − p.

Here we have used the fact that all such vertices lie inside the ball T (j2). Next,
consider vertices with 1 ≤ � ≤ (β −α)/2. Note that, if such a vertex [Λ] has r = α

2 ,
then [Λ] ∈ T (j2). The contribution of vertices with � values in this range is

(11.31) 2(1 − p)
(β−α)/2

∑

�=1

(
α

2
+

α/2−1
∑

r=1

(
α

2
− r)(p − 1)pr−1

)

= (α − β)(pα/2−1 − 1).

Next, in the range (β −α)/2 < � < β/2 and with r < β/2− �− 1, [Λ] ∈ T (j2), and
such [Λ]’s contribute

(11.32) 2(1−p)
β/2−1
∑

�=(β−α)/2+1

(
α

2
+

β/2−�−1
∑

r=1

(
α

2
−r)(p−1)pr−1

)

= 2α−4
pα/2−1 − 1

p − 1
.

Finally, the vertices on the boundary of the ball T (j2) contribute

(11.33) α + 2
β/2−1
∑

�=(β−α)/2+1

(
α

2
− (

β

2
− �))(p − 1)pβ/2−�−1 = 2

pα/2−1 − 1
p − 1

.

Summing these contributions and adding (P[Λ0], Z(j2)h) · α/2 = α, we obtain the
quantity claimed in (ii) of Theorem 11.3 in this case. The other cases are similar. �

We now describe the consequences of Theorem 11.2.

Corollary 11.5. Assume that the p–adic density identity (11.11) ( resp. (11.26))
holds for p = 2 when 2 | D(B) (resp. 2 � D(B)). Then

〈 θ̂(τ1), θ̂(τ2) 〉 = E ′
2(

(
τ1

−τ̄2

)

, 0;B)

+
∑

t1

(
∑

t2

t1t2=square

c(t1, t2, v1, v2) · q̄t2
2

)

qt1
1 .

for some coefficients c(t1, t2, v1, v2).

The extra term on the right hand side should vanish, according to Conjecture 11.1,
but, in any case, the coefficient of each qt1

1 is a modular form of weight 3
2 in τ2 with

only one square class of Fourier coefficients, i.e., is a distinguished form. But such
forms all come from O(1)’s, and so are orthogonal to cusp forms in A00(G′), [19].
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Corollary 11.6. With the notation and assumptions of Theorem 10.1 and assum-
ing that the p–adic density identity (11.11) holds for p = 2,

〈 θ̂(τ1), θ̂(f) 〉 = f(τ1) · C(0) ·






L′( 1
2 ,Wald(σ)),

L( 1
2 ,Wald(σ)) · log(p),

0

.

Proof.

〈 θ̂(τ1), θ̂(f) 〉 = 〈 θ̂(τ1), 〈 θ̂, f 〉Pet 〉

=
〈
〈 θ̂(τ1), θ̂(τ2) 〉, f(τ2)

〉

Pet
(11.34)

=
〈
E ′
2(

(
τ1

−τ̄2

)

, 0;B), f(τ2)
〉

Pet

= f(τ1) · C(0) ·






L′( 1
2 ,Wald(σ)),

L( 1
2 ,Wald(σ)) · log(p),

0

�

Corollary 11.7. With the notation and assumptions of Corollary 11.6,
(i) If εp(σp) = +1 for more than one p | D(B), then θ̂(f) = 0.
Otherwise
(ii) If ε( 1

2 ,Wald(σ)) = +1, then there is a unique prime p | D(B) such that
εp(σp) = +1, θ̂(f) ∈ Vertp ⊂ Vert, and

〈 θ̂(f), θ̂(f) 〉 = C(0) · 〈 f, f 〉 · L(
1
2
,Wald(σ)) · log(p).

(iii) If ε( 1
2 ,Wald(σ)) = −1, then θ̂(f) ∈ M̃W and

〈 θ̂(f), θ̂(f) 〉 = C(0) · 〈 f, f 〉 · L′(
1
2
,Wald(σ)).

This result gives an analogue of Waldspurger’s theory, described in section 9 above,
and of the Rallis inner product formula, [61], for the arithmetic theta lift (8.1).
Of course, the result only applies to forms of weight 3

2 , and we have made quite
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strong restrictions on the level of f . The restrictions on the level can most likely be
removed with some additional work, but the restriction on the weight is essential
to our setup.

In the case ε( 1
2 ,Wald(σ)) = +1, part (ii) gives a geometric interpretation of the

value L( 1
2 ,Wald(σ)) in terms of vertical components of M, analogous to the geo-

metric interpretation of the value of the base change L-function given by Gross in
his Montreal paper, [21].

Finally, if θ̂(f) �= 0, let

(11.35) Ẑ(t)(f) = Ẑ(t, v)(f) =
〈 Ẑ(t, v), θ̂(f) 〉
〈 θ̂(f), θ̂(f) 〉

· θ̂(f)

be the component of the cycle Ẑ(t, v) along the line spanned by θ̂(f). Note that, by
Corollary 11.6, this projection does not depend on v. The following is an analogue
of the Gross-Kohnen-Zagier relation, [24], [78]. Note that it holds in both cases
ε( 1

2 ,Wald(σ)) = +1 or ε( 1
2 ,Wald(σ)) = −1.

Corollary 11.8.
∑

t

Ẑ(t)(f) · qt =
f(τ) · θ̂(f)
〈 f, f 〉 .

Thus, the Fourier coefficients of f encode the position of the cycles Ẑ(t)(f) on the
θ̂(f) line. Both sides are invariant under scaling of f by a constant factor.

For the related results of Gross–Kohnen–Zagier in the case ε( 1
2 ,Wald(σ)) = −1,

cf. [24], especially Theorem C, p. 503, the discussion on pp. 556–561, and the
examples in [78], where the analogies with the work of Hirzebruch–Zagier are also
explained and used in the proof! Our class θ̂(f)/ < f, f >, which arises as the
image of f under the arithmetic theta lift, is the analogue of the class yf in [24].
To proved the main part of Theorem C of [24] in our case, namely that the πf–
isotypic components, where π = Wald(σ), of the classes Ẑ(t, v) either vanish or
lie on a line, we can use the Howe duality Theorem [30], [72] for the local theta
correspondence, cf. [42].

In [22], Gross gives a beautiful representation theoretic framework in which the
Gross–Zagier formula, [26], and a result of Waldspurger, [71], can be viewed to-
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gether. He works with unitary similitude groups G = GB = GU(2), constructed
from the choice of a quaternion algebra B over a global field k and a quadratic
extension E/k which splits B. The torus T over k with T (k) = E× embeds in

GB(k) = (B× × E×)/∆k×.

For a place v of k, the results of Tunnel, [67], and Saito, [62], show that the existence
of local T (kv)–invariant functionals on an irreducible admissible representation Πv

of Gv is controlled by the local root number εv(Πv) of the Langlands L-function
defined by a 4 dimensional symplectic representation of LG, [22], section 10. There
is a dichotomy phenomenon. If v is a place which is not split in E/k, then the local
quaternion algebras B+

v and B−
v are both split by Ev, so that the torus Tv embeds

in both similitude groups G+
v and G−

v . If Πv is a discrete series representation of
G+

v , then, by the local Jacquet–Langlands correspondence, there is an associated
representation Π′

v of G−
v , and

dim HomTv (Πv, C) + dim HomTv (Π′
v, C) = 1.

For a global cuspidal automorphic representation Π of G(A) = (GL2(A)×E×
A

)/A×,
there is a finite collection of quaternion algebras B over k, split by E, with automor-
phic cuspidal representations ΠB associated to Π by the global Jacquet–Langlands
correspondence. When the global root number ε(Π) for the degree 4 Langlands
L-function L(s,Π) is +1, Waldspurger’s theorem, [71], says that the nonvanishing
of the automorphic T (A)–invariant linear functional, defined on ΠB by integration
over A×T (k)\T (A), is equivalent to (i) the nonvanishing of the local linear func-
tionals14 and (ii) the nonvanishing of the central value L( 1

2 ,Π) of the L-function.
Suppose that k is a totally real number field, E is a totally imaginary quadratic
extension, and Πv is a discrete series of weight 2 at every archimedean place of
k. Then, in the case ε(Π) = −1, the local root number conditions determine a
Shimura curve MB over k, and Gross defines a T (Af )–invariant linear functional
on the associated Mordell–Weil space MWB using the 0–cycle attached to T . Gross
conjectures that the nonvanishing of this functional on the ΠB

f component of MWB

is equivalent to the nonvanishing of the central derivative L′( 1
2 ,Π), and that there

is an explicit expression for this quantity in terms of the height pairing of a suitable
‘test vector’. In the case k = Q, this is the classical Gross–Zagier formula, [26],
and in there is work of Zhang in the general case [79].

14By local root number conditions, this uniquely determines the quaternion algebra B for the

given E and Π.
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Thus, there is a close parallel between Gross’s ‘arithmetic’ version of Waldspurger’s
central value result [71] and our ‘arithmetic’ version of Waldspurger’s results on the
Shimura lift. It should be possible to formulate our conjectures above for Shimura
curves over an arbitrary totally real field k. It would be interesting to find a direct
connection between our constructions and the methods used by Shou-Wu Zhang,
[79].

Finally, it is possible to formulate a similar theory for central value/derivative
of the triple product L-function. This is discussed in [25], cf. also [27], [28].
It may be that all of these examples can be covered by some sort of arithmetic
version of Jacquet’s relative trace formula, [33], [34], [1]. Further speculations
about ‘arithmetic theta functions’ and derivatives of Eisenstein series can be found
in [40] and [41].
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[20] H. Gillet and C. Soulé, Arithmetic intersection theory, Publ. Math. IHES 72 (1990), 93–174.

[21] B. H. Gross, Heights and special values of L-series, Number Theory (Montreal, 1985) (H.

Kisilevsky and J. Labute, ed.), CMS Conf, Proc. 7, AMS, Providence, 1987, pp. 115–187.

[22] , Heegner points and representation theory, Proc. of Conference on Special Values of

Rankin L-Series, MSRI, Dec. 2001, to appear..

[23] B. H. Gross and K. Keating, On the intersection of modular correspondences, Invent. Math.

112 (1993), 225–245.

[24] B. H. Gross, W. Kohnen and D. Zagier, Heegner points and derivatives of L-functions. II,

Math. Annalen 278 (1987), 497–562.

[25] B. H. Gross and S. Kudla, Heights and the central critical values of triple product L-functions,

Compositio Math. 81 (1992), 143–209.

[26] B. H. Gross and D. Zagier, Heegner points and the derivatives of L-series, Inventiones math.

84 (1986), 225–320.

[27] M. Harris and S. Kudla, The central critical value of a triple product L-function, Annals of

Math. 133 (1991), 605–672.

[28] , On a conjecture of Jacquet, preprint, 2001, arXiv:math.NT/0111238.



54

[29] F. Hirzebruch and D. Zagier, Intersection numbers of curves on Hilbert modular surfaces and

modular forms of Nebentypus, Invent. Math. 36 (1976), 57–113.

[30] R. Howe, θ–series and invariant theory, Proc. Symp. Pure Math., vol. 33, 1979, pp. 275–285.

[31] R. Howe and I. I. Piatetski-Shapiro, Some examples of automorphic forms on Sp4, Duke

Math. J. 50 (1983), 55–106.

[32] P. Hriljac, Heights and arithmetic intersection theory, Amer. J. Math. 107 (1985), 23–38.

[33] H. Jacquet, On the nonvanishing of some L-functions, Proc. Indian Acad. Sci. 97 (1987),

117–155.

[34] , Sur un result de Waldspurger, Ann. Scinet. Éc. Norm. Sup. 19 (1986), 185–229.
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Progr. Math., 12, Birkhäuser, Boston, 1981, pp. 357–369.

[71] , Sur les valeurs de certaines fonctions L automorphes en leur centre de symétrie,

Compositio Math 54 (1985), 173–242.

[72] , Demonstration d’une conjecture de duality de Howe dans le case p-adique, p �= 2,

Festschrift in honor of Piatetski-Shapiro, vol 2, Israel Math. Conf. Proc., 1990, pp. 267–234.

[73] , Correspondances de Shimura et quaternions, Forum Math. 3 (1991), 219–307.

[74] T. Yang, An explicit formula for local densities of quadratic forms, J. Number Theory 72

(1998), 309–356.

[75] , The second term of an Eisenstein series, Proc. of the ICCM, (to appear).

[76] , Faltings heights and the derivative of Zagier’s Eisenstein series, Proc. of MSRI

workshop on Heegner points, preprint (2002).

[77] D. Zagier, Nombres de classes et formes modulaires de poids 3/2, C. R. Acad. Sc. Paris 281

(1975), 883–886.

[78] , Modular points, modular curves, modular surfaces and modular forms, Lecture Notes

in Math. 1111, Springer, Berlin, 1985, pp. 225–248.

[79] Shou-Wu Zhang, Gross–Zagier formula for GL2, Asian J. of Math. 5 (2001), 183–290.


