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0. Introduction

The subject of these lecture notes is comparison theory in Riemannian geometry:
What can be said about a complete Riemannian manifold when (mainly lower) bounds
for the sectional or Ricci curvature are given? Starting from the comparison theory for
the Riccati ODE which describes the evolution of the principal curvatures of equidis-
tant hypersurfaces, we discuss the global estimates for volume and length given by
Bishop-Gromov and Toponogov. An application is Gromov’s estimate of the number
of generators of the fundamental group and the Betti numbers when lower curvature
bounds are given. Using convexity arguments, we prove the ”soul theorem” of Cheeger
and Gromoll and the sphere theorem of Berger and Klingenberg for nonnegative cur-
vature. If lower Ricci curvature bounds are given we exploit subharmonicity instead
of convexity and show the rigidity theorems of Myers-Cheng and the splitting theorem
of Cheeger and Gromoll. The Bishop-Gromov inequality shows polynomial growth of
finitely generated subgroups of the fundamental group of a space with nonnegative Ricci
curvature (Milnor). We also discuss briefly Bochner’s method.

The leading principle of the whole exposition is the use of convexity methods.
Five ideas make these methods work: The comparison theory for the Riccati ODE,
which probably goes back to L.Green [15] and which was used more systematically by
Gromov [20], the triangle inequality for the Riemannian distance, the method of support
function by Greene and Wu [16],[17],[34], the maximum principle of E.Hopf, generalized
by E.Calabi [23], [4], and the idea of critical points of the distance function which was
first used by Grove and Shiohama [21]. We have tried to present the ideas completely
without being too technical.

These notes are based on a course which I gave at the University of Trento in March
1994. It is a pleasure to thank Elisabetta Ossanna and Stefano Bonaccorsi who have
worked out and typed part of these lectures. We also thank Evi Samiou and Robert
Bock for many valuable corrections.

Augsburg, September 1994

J.-H. Eschenburg
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1. Covariant derivative and curvature.

Notation: By M we always denote a smooth manifold of dimension n. For p ∈M ,
the tangent space at p is denoted by TpM , and TM denotes the tangent bundle. If
M ′ is another manifold and f : M → M ′ a smooth (i.e. C∞) map, its differential at
some point p ∈ M is always denoted by dfp : TpM → Tf(p)M

′. For v ∈ TpM we write
dfp(v) = dfp.v = ∂vf . If c : I → M is a (smooth) curve, we denote its tangent vector
by c′(t) = dc(t)/dt = dct.1 ∈ Tc(t)M (where 1 ∈ TtI = IR). If f : M → IR, then
dfp ∈ (TpM)∗. If M is a Riemannian manifold, i.e. there exists a scalar product < , >
on any tangent space of M , this gives an isomorphism between TpM and (TpM)∗; the
vector ∇f(p) corresponding to dfp is called the gradient of f .

Let M be a Riemannian manifold. We denote by < , > the scalar product on M
and we define the norm of a vector by

‖v‖ =
√
< v, v >,

the length of a curve c : I →M by

L(c) =

∫

I

‖c′(t)‖dt,

and the distance between x, y ∈M by

|x, y| = inf {L(c) ; c : x→ y} .

where c : x → y means that c : [a, b] → M with c(a) = x and c(b) = y. If L(c) = |x, y|
for some c : x → y, then c is called shortest. The open and closed metric balls are
denoted by Br(p) and Dr(p), i.e.

Br(p) = {x ∈M ; |x, p| < r}, Dr(p) = {x ∈M ; |x, p| ≤ r}.

Similarly, we define Br(A) for any closed subset A ⊂M .

We denote by X(M) the set of vector fields on M .

Definition 1.1 The Levi-Civita covariant derivative

D : X(M) × X(M) → X(M)

(X,Y ) → DXY,

is determined by the following properties holding for all functions f, g ∈ C∞(M) and
for all vector fields X,X ′, Y, Y ′ ∈ X(M):
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1. D(fX+gX′)Y = fDXY + gDX′Y ;
2. DX(fY + gY ′) = (∂Xf)Y + fDXY + (∂Xg)Y

′ + gDXY
′;

3. DXY −DYX = [X,Y ] = ”Lie bracket”;
4. ∂Z < X, Y >=< DZX,Y > + < X,DZY >.

Definition 1.2 The Riemannian curvature tensor (X,Y, Z) 7→ R(X,Y )Z is defined as
follows:

R(X,Y )Z = DXDY Z −DYDXZ −D[X,Y ]Z

It satisfies certain algebraic identities (”curvature identities”), namely

< R(X,Y )Z,W >= − < R(Y,X)Z,W >= − < R(X,Y )W,Z >=< R(Z,W )X,Y >

and the Bianchi identity

R(X,Y )Z + R(Y, Z)X + R(Z,X)Y = 0

(cf. [29]). In particular,
RV := R(., V )V

is a self adjoint endomorphism of TM for any vector field V on M . Several notions of
curvature are derived from this tensor:

1. Sectional curvature K( , ): For every linearly independent pair of vectors X,Y ∈
TpM ,

K(X,Y ) =
< R(X,Y )Y,X >

‖X‖2‖Y ‖2− < X, Y >2
.

K is defined on the space of two dimensional linear subspaces of TpM (depending
only on span(X,Y )).

2. Ricci curvature
Ric(X,Y ) = trace(Z 7→ R(Z,X)Y ).

By the curvature identities, Ric(X,Y ) = Ric(Y,X). Ricci curvature in direction
X is given by

Ric(X) = Ric(X,X)

where X is a unit vector.

3. Scalar curvature
s = trace(Ric) =

∑

Ric(Ei, Ei)

3



where {Ei}ni=1 is a local orthonormal basis.

There is a close relationship between RV = R(., V )V and the sectional curvature:
Let ‖V ‖ = 1. For X orthogonal to V we have

< RVX,X >=< R(X,V )V,X >= K(V,X)‖X‖2

Hence the highest (”λ+”) and lowest (”λ−”) eigenvalues of RV give a bound toK(V,X),
since

λ−(RV ) ≤ < RVX,X >

< X,X >
≤ λ+(RV ).

Moreover, trace(RV ) = Ric(V, V ).

Let us come back to the covariant derivative. It is easy to see that for any p ∈M ,
(DXY )p depends only on dYp.X(p) where the vector field Y is considered as a smooth
map Y : M → TM . Therefore, the covariant derivative is also defined if the vector
fields X and Y are only partially defined. E.g. if γ : I → M is a smooth regular curve
and Y is a vector field along γ, i.e. a smooth map Y : I → TM with

Y (t) ∈ Tγ(t)M

for all t ∈ I (e.g. γ′ is such a vector field), then

Y ′(t) :=
DY (t)

dt
:= Dγ′(t)Y

is defined (just extend γ′ and Y arbitrarly outside γ). Similar, if γ : I1 × ...× Ik →M
depends on k variables, we have k partial derivatives ∂γ

∂ti
and corresponding covariant

derivatives D
∂ti

(i = 1, ..., k) along γ. (Formally, a vector field along γ is a section of the
pull-back bundle γ∗TM , and D induces a covariant derivative on this bundle.)

Definition 1.3 A vector field Y along a curve γ : I →M is called parallel if Y ′ = 0. A
curve γ is a called a geodesic in M if γ ′ is parallel, i.e. if

(γ′)′ = Dγ′γ′ = 0. (1.1)

(1.1) is a 2nd order ODE. In fact, if x = (x1, ..., xn) : M → IRn is a coordinate
chart with Ei = ∂

∂xi and if we put

DEi
Ej = ΓkijEk
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(summation convention!), then γ ′ = (γi)′Ei where γi := xi ◦ γ, and

D

dt
γ′ = (γi)′′Ei + (γj)′Dγ′Ej

with
Dγ′Ej = γkDEk

Ej = (γk)′ΓikjEi,

hence (1.1) is equivalent to

(γi)′′ + (γj)′(γk)′Γikj = 0

To some extent, Riemannian geometry is the theory of this ODE.

Definition 1.4 For any v ∈ TM let γv denote the unique geodesic with γ ′(0) = v. For
s, t ∈ IR with |s| and |t| small we have γsv(t) = γv(st) by uniqueness for ODE’s. Thus
for v ∈ TM with ‖v‖ small enough,

exp(v) := γv(1)

is defined and gives a smooth map exp : (TM)0 →M where (TM)0 is a neighborhood
of the zero section of TM . This is called the exponential map of M . M is called
(geodesically) complete if exp is defined on all of TM . Fixing p ∈ M , we put expp =
exp |TpM .

Remark 1.5 The map expp is a diffeomorphism near the origin (in fact, d(expp)0 is
the identity on TpM), and it maps all the lines through the origin of TpM onto the
geodesics through the point p ∈ M . Thus, expp : TpM → M can serve a a coordinate
map near p (”exponential coordinates”) which preserves the covariant derivative at p, i.e.
covariant differentiation at p is the same as taking the ordinary derivative at 0 ∈ TpM in
exponential coordinates. To see this, identify M and TpM near p via expp and consider
the ordinary derivative Do = ∂ on TpM . It satisfies the rules (1.),(2.) and (3.) of the
Levi-Civita derivative (but not 4. for the Riemannian metric). Hence the difference
Γ = D − ∂ is a tensor field, i.e. ΓXfY = fΓXY for all functions f (by 2.), further it is
symmetric, i.e. ΓXY = ΓYX (by 3.), and it satisfies Γvv = 0 for all v ∈ TpM , since D
and ∂ have the same geodesics at p. Thus Γ|p = 0.
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2. Jacobi and Riccati equations; equidistant hypersurfaces.

Equation (1.1) is a nonlinear ODE which in general cannot be solved explicitly.
Therefore, we consider its linearization. This is the ODE satisfied by a variation of
solutions of (1.1), i.e. of geodesics. So let γ(s, t) = γs(t) be a smooth one-parameter
family of geodesics γs. Put V = ∂γ

∂t
∈ X(γs) and J = ∂γ

∂s
. Then J is the variation vector

field and V the tangent field of the geodesics γs, hence DV V = O.

Fig. 1.

Then we have

J ′′ =
D

∂t

D

∂t
J =

D

∂t

D

∂t

∂γ

∂s
.

We can interchange the order of differentiation, getting

J ′′ =
D

∂s

D

∂t

∂γ

∂t
+R(V, J)V,

J ′′ +R(J, V )V = 0. (2.1)

Equation (2.1) is called Jacobi equation.

Definition 2.1 A vector field J along a geodesic γ is called a Jacobi field if it satisfies
the Jacobi equation.

Remark 2.2 J is a Jacobi field along γ if and only if

J(t) =
d

ds

∣

∣

∣

∣

0

γs(t) (2.2)
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for some one-parameter family of geodesics γs with γ0 = γ.

Implication ”⇐” was shown above. To prove the opposite implication, we have to
construct the family γs. Let α(s) = expγ(0) sJ(0). Let X be a vector field along α such
that X(0) = γ′(0) and X ′(0) = J ′(0) and put

γs(t) = expα(s) tX(s) (2.3).

If we put

J̃ =
∂

∂s

∣

∣

∣

∣

0

γs,

then, by ”⇐”, J̃ satisfies the Jacobi equation. Since J̃(0) = J(0) and

J̃ ′(0) =
D

∂t

∂

∂s
γ|(0,0) =

D

∂s

∂

∂t
γ|(0,0) =

D

∂s
X(s)|0 = X ′(0) = J ′(0),

we get J = J̃ by uniqueness of the solution.

Next, we want to split this 2nd degree equation in a system of 1st degree equations.
To do this, we embed the 1-parameter family of geodesics describing the Jacobi field
into an (n− 1)-parameter family. I.e. we choose a suitable smooth map

γ : S × I →M

where S is an (n − 1)-dimensional manifold, such that γs(t) = γ(s, t) is a geodesic for
any s ∈ S. If γ is a regular map, then V = dγ( ∂∂t ) can be viewed as a vector field on an
open subset of M with DV V = 0, and the Jacobi fields J arising from variations in S-
directions commute with V , i.e. we have [J, V ] = 0 or

DV J = A · J (2.4)

where A = DV , i.e. A ·X = DXV . This is the first of our equations: Knowing A, we
recieve J by solving a 1st order equation.

It remains to derive an equation for A. Let us consider first an arbitrary vector
field V on M and let A = DV as before. In general, the covariant derivative of a tensor
field A is defined by

(DV A)X = DV (AX) −A ·DV (X).
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Hence we have

(DVA)X = DVDXV − A(DXV + [V,X])

= DXDV V + R(V,X)V +D[V,X]V − A2X − A[V,X]

= DXDV V + RV (X) −A2X

.

Therefore
DV A+A2 +RV = D(DV V ). (2.5)

If we suppose DV V = 0 (i.e. the integral curves γs are geodesic), then we get an ODE
for A, the so called Riccati equation

A′ + A2 + RV = 0.

Thus we have split the Jacobi equation J ′′ = −RV J in two equations as follows:

J ′ = AJ (2.6)

A′ + A2 + RV = 0. (2.7)

We note that the second equation can be solved independently of the first.

Let us consider now the important special case where (DV )∗ = DV , that is

< DXV, Y >=< X,DY V >

for all vector fields X,Y . Then V is locally a gradient, i.e. locally V = ∇f for some
function f : M → IR. Consequently, < V, V > is constant, since

∂X < V, V >= 2 < DXV, V >= 2 < DV V,X >= 0.

Thus we may assume that < V, V >= 1. Now let us consider the level hypersurfaces

St = {x ∈ M : f(x) = t}.

Since V = ∇f 6= 0, the St are regular hypersurfaces and V |St
is the unit normal vector

field on St. Thus in this case, our (n− 1)-parameter family of geodesics γ : S × I →M
is given by

γ(s, t) = exp(t− t0)V (s)
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where S = St0 for some t0 ∈ I, and f(γ(s, t)) = t, or in other words, St = φt(S) where
φt(s) := γ(s, t). Such a family of hypersurfaces St is called equidistant, and the function
f− t0 is called the signed distance function of the hypersurface S = St0 . In fact we have

|f(x) − t0| = |x, S| := infs∈S|x, s| (2.8)

for x in a small neighborhood of S. Namely, if c : [a, b] → γ(S× I) ⊂M is a curve with
c(a) ∈ St0 and c(b) ∈ St1 , then we have c(u) = γ(s(u), t(u)) with t(a) = t0, t(b) = t1,
and

‖c′(u)‖2 = ‖dγ.s′(u)‖2 + t′(u)2 ≥ t′(u)2,

hence its length is

L(c) ≥
∫ b

a

|t′(u)|du ≥ |t(b) − t(a)| ≥ |t0 − t1|.

Fig. 2.

In this case, all the quantities discussed above have geometric meanings. The
Jacobi fields J(t) = dγ(s,t)(x, 0) = dφtx for x ∈ TsS measure the change of the metric of
St = φt(S) when t is changed; in fact, ‖J(t)‖/‖J(t0)‖ is the length distortion between
St and S. Moreover, A = DV , restricted to the hypersurface St, is the shape operator
of St since V |St is a unit normal vector field on St. Its eigenvalues are called principal
curvatures, their average the mean curvature of St. Since Equation (2.7) is nonlinear,
A(s, t) can develop singularities which are called focal points of S. Let us see some
examples.

Example 2.3 Let St = ∂Bt(p), where Bt(p) = {x ∈ M : |x, p| < t} is the Riemannian
ball.
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Then V is radial and

A(t) ∼ 1

t
I as t→ 0 (2.9)

because a Riemannian manifold behaves as a Euclidian space for t→ 0.

Example 2.4 ([9]) Let us suppose that RV = kI, k ∈ IR, that is M has constant
curvature. Moreover let us suppose that A = aI, where a is a real function defined on
M (A is the second fundamental form of a family of umbilical hypersurfaces). In this
case equation (2.7) becomes:

a′ + a2 + k = 0.

If k > 0, then M is a sphere (if it is assumed to be complete and simply connected).
The solutions are given by

a(t) =
√
k cot(

√
k(t− t0)).

This corresponds to the fact that there is (up to congruence) only one equidistant
family of umbilical hypersurfaces in the sphere, namlely concentric Riemannian spheres
(latitude circles).

Fig. 3.

If k = 0, then M is a Euclidean space and the solutions are

a(t) =
1

(t− t0)
, a(t) = 0.
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Fig. 4.

These solutions correspond to the three umbilical parallel hypersurface families in eu-
clidean space: concentric spheres with increasing (t > t0) or decreasing (t < t0) radii
and parallel hyperplanes.
Finally, if k < 0, the space M is hyperbolic. The solutions are given by

a(t) =
√

|k| coth(
√

|k|(t− t0), a(t) =
√

|k| tanh(
√

|k|(t− t0), a(t) = ±
√

|k|.

These solutions correspond to the five families of equidistant hypersurfaces in the hy-
perbolic space: Concentric spheres with increasing (t > t0) or decreasing (t < t0) radii,
hypersurfaces which are parallel to an (n − 1)-dimensional hyperbolic subspace, and
expanding (t > t0) or contracting (t < t0) horospheres.

Fig. 5.
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3. Comparison theory.

We want to derive a comparison theorem for solutions of the Riccati equation
A′ + A2 + RV = 0 (cf. 2.7). Fixing an integral curve γ of V (which is a geodesic) and
identifying all tangent spaces Tγ(t)M by parallel displacement (i.e. via an orthonormal
basis (Ei(t)) of vector fields along γ which are parallel, i.e. E ′

i = 0), we consider A(t)
as a self adjoint endomorphism on a single vector space E = Tγ(0)M . More generally,
let E be a finite-dimensional real vector space with euclidean inner product 〈 , 〉. The
space S(E) of self adjoint endomorphisms inherits the inner product

〈A,B〉 = trace(A ·B) (3.1)

for A,B ∈ S(E). We get a partial ordering ≤ on S(E) by putting A ≤ B if 〈Ax, x〉 ≤
〈Bx, x〉 for every x ∈ E.

Theorem 3.1 (cf. [14], [9]) Let R1, R2 : IR → S(E) be smooth with R1 ≥ R2. For
i ∈ {1, 2} let Ai : [t0, ti) → S(E) be a solution of

A′
i +A2

i +Ri = 0 (3.2)

with maximal ti ∈ (t0,∞]. Assume that A1(t0) ≤ A2(t0). Then t1 ≤ t2 and A1(t) ≤
A2(t) on (t0, t1).

Proof. Let U = A2 − A1; then U(t0) ≥ 0 and

U ′ = A′
2 − A′

1 = A2
1 −A2

2 +R1 − R2. (3.3)

We define S = R1 −R2 ≥ 0 and X = − 1
2
(A1 +A2); the equation (3.3) takes the form

U ′ = XU + UX + S. (3.4)

We solve (3.4) by the variation of constant method (see [14], pag. 211, Remark 1). Let
t′ = min{t1, t2} and g : (t0, t

′) → S(E) be a non-singular solution of the homogeneous
equation

g′ = Xg. (3.5)

Now a solution U of (3.4) is obtained as

U = g · V · gT

where V verifies
V ′ = g−1 · S · (g−1)T . (3.6)

¿From S ≥ 0 we get V ′ ≥ 0; this, combined with V (0) ≥ 0, implies that V ≥ 0 and
hence U ≥ 0. Thus A1 ≤ A2 on (t0, t

′). Since A′
i is bounded from above, a singularity

can only be negative (going to −∞). So A1 ≤ A2 implies t′ = t1 ≤ t2.
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Remark 3.2 Theorem 3.1 still holds if A1, A2 are singular at t0, but U = A2 −A1 has
a continuous extension to 0 with U(0) ≥ 0. See [14] for the proof. A similar argument
also shows that t1 < t2 if A1(t0) < A2(t0); for a different proof of this fact see [11],
Lemma 3.1.

The geometric interpretation of Theorem 3.1 is: principal curvatures (i.e. eigenvalues of
the shape operator) of equidistant hypersurfaces decrease faster on the space of larger
curvature. In particular, this is true for Riemannian spheres, as follows by Remark 3.2).

Now we want to find a comparison theorem for equation (2.6). For A ∈ S(E),
denote by λ−(A) the lowest eigenvalue and by λ+(A) the highest eigenvalue of A.

Theorem 3.3 Let A1, A2 : (t0, t
′) → S(E) such that

λ+(A1(t)) ≤ λ−(A2(t)) everywhere. (3.7)

Let J1, J2 : (t0, t
′) → E be nonzero solutions of J ′

i = Ai · Ji. Then ‖J1‖/‖J2‖ is
monotoneously decreasing.
Moreover, if

lim
t↘t0

‖J1‖
‖J2‖

(t) = 1, (3.8)

then ‖J1‖ ≤ ‖J2‖.
Equality holds at some t ∈ (t0, t

′) iff for i = 1, 2 we have Ji = j · vi on [t0, t] for some
constant vector vi ∈ E with Avi = λ · vi and j′ = λ · j, where λ = λ+(A1) = λ−(A2).

Proof. Since ‖Ji‖ is smooth, we can consider

‖Ji‖′
‖Ji‖

=
< J ′

i , Ji >

‖Ji‖2
=
< AiJi, Ji >

< Ji, Ji >
∈ [λ−(Ai), λ+(Ai)]

so that

log(‖J1‖)′ =
‖J1‖′
‖J1‖

≤ λ+(A1) ≤ λ−(A2) ≤
‖J2‖′
‖J2‖

= log(‖J2‖)′,

hence
(

log
‖J1‖
‖J2‖

)′
≤ 0

which implies that ‖J1‖/‖J2‖ is monotoneously decreasing.
If ‖J1‖/‖J2‖ has the same value 1 at t0 and t, then ‖J1‖ = ‖J2‖ on [t0, t] and we recieve
J ′
i = AiJi = λJi from which the conclusion follows.
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We consider the most important special cases due to Rauch and Berger (called
Rauch I and Rauch II in [5]):

Rauch I

Suppose that Ji for i = 1, 2 are solutions of J ′′
i + RiJi = 0 with λ−(R1) ≥ λ+(R2) and

Ji(0) = 0, ‖J ′
1(0)‖ = ‖J ′

2(0)‖.
Then ‖J1‖ ≤ ‖J2‖ up to the first zero of J1.

Rauch II

Suppose that Ji for i = 1, 2 are solutions of J ′′
i + RiJi = 0 with λ−(R1) ≥ λ+(R2) and

J ′
i(0) = 0, ‖J1(0)‖ = ‖J2(0)‖.

Then ‖J1‖ ≤ ‖J2‖ up to the first zero of J1.

In fact we apply the theorems 3.1 and 3.3 where in the first case, Ai(t) ∼ t−1I as
t→ 0 and in the second case, Ai(0) = 0.

Corollary 3.4 Let M be a complete manifold with K ≥ 0, p0, p1 ∈M and γ : [0, 1] →
M a shortest geodesic segment connecting p0 and p1. Let X⊥γ′ be a parallel vector
field along γ. Put ps(t) = exp tX(s) for all s ∈ [0, 1]. Then

|p0(t), p1(t)| ≤ |p0, p1|
with equality for some t > 0 only if p0, p1, p1(t), p0(t) bound a flat totally geodesic
rectangle.

Proof. We have

|p0(t), p1(t)| ≤
∫ 1

0

‖ ∂
∂s
ps(t)‖dt

and Js(t) = ∂
∂sps(t) is a Jacobi field along the geodesic γs(t) = ps(t) with J ′

s(0) = 0.
Thus comparing with the euclidean case we get from Rauch II that ‖Js(t)‖ ≤ ‖Js(0)‖
which shows the inequality. If we have equality at t1 > 0, the equality discussion of
Theorem 3.3 shows that Js is parallel along γs|[0, t1]. Moreover, the curves s 7→ ps(t) are
shortest geodesics of constant length for 0 ≤ t ≤ t1. Thus the surface p : (s, t) 7→ ps(t)
is a flat rectangle in M with

D

∂s

∂p

∂s
=
D

∂t

∂p

∂s
=
D

∂t

∂p

∂t
= 0,

so it is also totally geodesic, i.e. covariant derivatives of vector fields tangent to p remain
tangent to p.
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4. Average comparison theorems.

Now we consider the trace of the Riccati equation A′ +A2 +RV = 0 for self adjoint
A. Since trace and derivative commute, we get

trace(A)′ + trace(A2) + Ric(V ) = 0. (4.1)

This is unfortunately not a differential equation for trace(A), because of the term
trace(A2). However, put

a =
trace(A)

n− 1
.

(Note that A(V ) = DV V = 0, so we consider A as an endomorphism on the (n − 1)-
dimensional subspace E = V ⊥ of the tangent space.) Then

A = aI + A0,

with trace(A0) = 0, so A0 and I are perpendicular. Hence,

trace(A2) = ‖A‖2 = a2‖I‖2 + ‖A0‖2 = (n− 1)a2 + ‖A0‖2

and we get, from the trace equation (4.1):

a′ + a2 + r = 0 (4.2)

with

r =
1

n− 1

(

‖A0‖2 +Ric(V )
)

≥ 1

n− 1
Ric(V ).

Geometric meaning: a(t) is the mean curvature of St.

Theorem 4.1 Suppose that A : [t0, t1) → S(E) (t1 ≤ +∞ maximal) is a solution of

A′ + A2 + R = 0 (4.3)

where R : IR → S(E) is given; suppose that for some constant k ∈ IR:

(1) trace(R) ≥ (n− 1)k
(2) trace(A(t0)) ≤ (n− 1)a(t0)

where a : [t0, t2) → IR is a solution of

a′ + a2 + k = 0 (4.4)

15



with t2 ≤ +∞ maximal. Let

a =
trace(A)

n− 1
. (4.5)

Then t1 ≤ t2 and a(t) ≤ a(t) for t ∈ [t0, t1).

Proof. Apply theorem 3.1 with (R1, A1, R2, A2) replaced with (r, a, k, a).

Remark 4.2 By Remark 3.2, the theorem remains true if A(t) ∼ 1
t−t0 I and a is the

solution of (4.4) with a pole at t0, i.e. a = s′/s, where s is the solution of

s′′ + ks = 0, s(t0) = 0, s′(t0) = 1.

Next, let J1, . . . , Jn−1 be a basis of solutions of J ′ = A · J , and put

j = det(J1, . . . , Jn−1).

Since

(J1 ∧ . . . ∧ Jn−1)
′ =

n−1
∑

k=1

J1 ∧ . . . ∧A · Jk ∧ . . . ∧ Jn−1,

we get
j′ = (n− 1)a · j. (4.6)

Geometrically, equation (4.6) says how the volume element of St, namely det(dφt) (see
page 9 of chapter 2), changes with t.

Theorem 4.3 Let A : [t0, t1) → S(V ) be given with

a ≤ a,

where a = 1
n−1

trace(A), and let j be as above. Choose j̄ such that

j̄′ = (n− 1)a · j̄.

Then j/j̄ is monotonously decreasing.

Proof. Apply theorem 3.3 with (A1, J1, A2, J2) replaced with ((n− 1)a, j, (n− 1)a, j̄).
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5. Bishop - Gromov inequality

Let M be a complete connected Riemannian manifold. By the theorem of Hopf
and Rinow (cf. [29]), any two points p, q ∈ M can be connected by a shortest geodesic
γ, i.e. L(γ) = |p, q|. Let SpM = {v ∈ TpM : ‖v‖ = 1} be the unit sphere in TpM . For
any v ∈ SpM , we define

cut(v) = max{t : γv|[0,t] is shortest}.

This defines a function cut : SpM → (0,∞], the cut locus distance, which is continuous
(cf [5], p.94). Let

Cp = {tv : v ∈ SpM, t ≤ cut(v)}. (5.1)

This is a closed subset of TpM , and its boundary ∂Cp (sometimes also expp(∂Cp) ⊂M)
is called the cut locus of the point p. It follows from this definition that

Br(p) = expp(Br(0)) = expp(Br(0) ∩ Cp) ∀r > 0. (5.2)

In fact, if we choose q ∈ Br(p), there exists a shortest geodesic γv joining p and q; the
length of γv should be ≤ cut(v), hence v ∈ Cp (theorem of Hopf - Rinow).

Example 5.1 On the unit sphere we have cut(v) = π for every v. In fact, in every
direction, the geodesic is a meridian, hence it is shortest up to the opposite (”antipodal”)
point.

Example 5.2 On the cylinder S1 × IR, we have cut(v) = π/ cosα where α is the angle
between v and the S1-direction.

Fig. 6.
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There are two ways how a geodesic γ = γv : [0,∞) → M (where v ∈ SpM) can
cease to be shortest beyond the parameter t0 = cut(v) (cf. [5], p.93): Either there exists
a nonzero Jacobi field J along γ which vanishes at 0 and t0 - in this case, γ(t0) is called
a conjugate point of p (cf. Example 5.1), or there exists a second geodesic σ 6= γ of
the same length which also connects p and γ(t0) (cf. Example 5.2). Hence q = γ(t0)
is in the cut locus of p = γ(0) iff p is in the cut locus of q. Moreover, there are no
conjugate points on γ|[0, cut(v)). The conjugate points in turn are the singular values
of the exponential map expp; more precisely, we have:

Lemma 5.3 Let J(t) be the Jacobi field along γv defined by J(0) = 0, J ′(0) = w. Then
we have

d(expp)tv.tw = J(t).

In particular, d(expp)tv is singular if and only if expp(tv) is a conjugate point of p.

Proof. Let w ∈ TvTpM ≡ TpM . Then we have

d(expp)v.w =
d

ds

∣

∣

∣

∣

s=0

expp(v + sw) =
d

ds

∣

∣

∣

∣

s=0

γv+sw(1). (5.3)

If we let

J(t) =
∂

∂s

∣

∣

∣

∣

s=0

γv+sw(t), (5.4)

then J is the Jacobi field along γv with initial conditions J(0) = 0 and

J ′(0) =
D

∂t

∣

∣

∣

∣

0

∂

∂s

∣

∣

∣

∣

0

γv+sw(t)

=
D

∂s

∣

∣

∣

∣

0

∂

∂t

∣

∣

∣

∣

0

γv+sw(t)

=
D

∂s

∣

∣

∣

∣

0

(v + sw) = w

.

Therefore we get

d(expp)v · w = J(1), (5.5)

and generally

d(expp)tv · tw = J(t). (5.6)
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Remark 5.4 Consequently, on the interior of Cp, the exponential map expp is injective
and regular, hence a diffeomorphism. Note that Int(Cp) is star-shape, thus it is con-
tractive; hence also its image is contractive. But by Hopf-Rinow, the whole manifold
M is the image of expp : Cp → M , so the topology of M is given by the image of the
boundary ∂Cp.

After these preparations, we come to the main theorem of this section.

Theorem 5.5 Let us consider a manifold Mn with Ricci curvature satisfying

Ric

n− 1
≥ k.

Let M̄ be the complete simply connected n-manifold with constant curvature k (standard
space of constant curvature k) and B̄r ⊂ M̄ the ball of radius r in M̄ . Then, for all
p ∈M , we have that

VolBr(p)

VolB̄r
↘r (5.7)

i.e. this quotient is monotonely decresing with r. Moreover, for r → 0, the quotient
goes to one.

Corollary 5.6 For any two positive real numbers R > r we have

VolBR(p)

VolBr(p)
≤ VolB̄R

VolB̄r
. (5.8)

Remark 5.7 Corollary 5.6 gives an upper bound for the growth of the metric balls in
M . Moreover, if equality holds for some r < R, then BR(p) is isometric to B̄r (this can
be seen from the proof).

Proof of the theorem. By (5.3) we have

VolBr(p) =

∫

Br(0)∩Cp

det
(

d(expp)u
)

du. (5.9)

Passing to polar coordinates and denoting r(v) = min{r, cut(v)}, we get

VolBr(p) =

∫

S

∫ r(v)

0

det
(

d(expp)tv
)

tn−1dt dv (5.10)
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where S := S1(0) ⊂ TpM . If we consider a basis e1, . . . , en−1 of v⊥ ⊂ TpM , then by
Lemma 5.3,

d(expp)tvei =
1

t
d(expp)tvtei =

1

t
Ji(t),

where Ji is the Jacobi field along γv with Ji(0) = 0 and J ′
i(0) = ei. Hence

det
(

d(expp)tv
)

=
1

tn−1
det (J1(t), . . . , Jn−1(t)) , (5.11)

and equation (5.10) becomes

VolBr(p) =

∫

S

∫ r(v)

0

jv(t)dt dv (5.12)

where
jv(t) = det (J1(t), . . . , Jn−1(t)) . (5.13)

If we put jv(t) = 0 for t > cut(v), then by the comparison theorem 4.3 we get

(jv/j̄) ↘

on [0, r] and hence

q :=
1

Vol(S)

∫

S

(jv/j̄)dv

is still monotone. Moreover,

VolB̄r =

∫

S

∫ r

0

j̄(t)dtdv = Vol(S)

∫ r

0

j̄(t)dt. (5.14)

Therefore we have that
VolBr(p)

VolB̄r
=

∫ r

0
q(t)j̄(t)dt

∫ r

0
j̄(t)dt

(5.15)

is a monotone decreasing function in r, because the mean of a monotone function on
growing intervals is still monotone.

If r → 0, both volumes approximate the euclidean ball volume, hence the quotient
goes to one.
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6. Toponogov’s Triangle Comparison Theorem

Let us fix o ∈ M and let ρ = |o, ·|. We already know that near o, precisely in
expo(Int(Co)\{0}), ρ is a C∞ function and

ρ(expo(v)) = ‖v‖. (6.1)

Let us consider the unit radial field V = ∇ρ. Then Sr = ∂Br(o) is a family of equidistant
hypersurfaces, as in chapter 2.

Suppose that the sectional curvature K of M is ≥ k. If M̃ is the standard space of
sectional curvature k, then, by the comparison theorem 3.1, we get

A ≤ Ã =
s′

s
I, (6.2)

where s is a solution of s′′ + ks = 0 with initial dates s(0) = 0, s′(0) = 1, and A =
DV = D∇ρ is the Hessian of ρ. (Recall from Example 2.4 that a = s′/s is the (unique)
solution of the equation a′ + a2 + k = 0 with a pole at t = 0.)

Therefore,

D∇ρ|V ⊥ ≤ s′

s
I, (6.3)

while
D∇ρ|IRV = 0, (6.4)

because ρ grows linearly along the integral curves of V . Analogous relations hold for ρ̃:

D∇ρ̃|V ⊥ =
s′

s
I (6.5)

D∇ρ̃|IRV = 0 (6.6)

Now we want to find a unique estimate for the whole Hessian. To get this we modify ρ
(and analogously ρ̃) suitably: Consider σ = f ◦ ρ, where f : IR → IR is a function yet to
be determined. Then

D∇(f ◦ ρ) = D ((f ′ ◦ ρ)∇ρ) = f ′′(ρ)dρ · ∇ρ+ f ′(ρ)D∇ρ. (6.7)

On V ⊥ we have f ′′(ρ)dρ · ∇ρ = 0 and D∇ρ ≤ (s′/s)I; while f ′′(ρ)dρ · ∇ρ = f ′′(ρ)I and
D∇ρ = 0 on IR · V . If we choose f as a principal function of s, i.e. f ′ = s, then we get

f ′′(ρ) = −kf(ρ) + C,

hence (6.3) and (6.4) give
D∇σ ≤ −kσI + C (6.8)
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where C is some fixed constant. Analogously, for σ̃ = f ◦ ρ̃, we get from (6.5) and (6.6)

D∇σ̃ = −kσ̃I + C. (6.9)

Theorem 6.1 (Toponogov’s triangle comparison theorem) [18], [5], [24]

Let M be a complete Riemannian manifold with sectional curvature K ≥ k. Let M̃ be
the standard space of constant curvature k. Let p0, p1, o ∈M , and choose correspond-
ing points p̃0, p̃1, õ ∈ M̃ . Let γ be a geodesic from p0 to p1, and βi a shortest geodesic
from pi to o, i = 0, 1, all parametrized by arc length, and let γ̃, β̃i be the corresponding
curves in M̃ , with L(γ) = L(γ̃) = L and L(βi) = L(β̃i). Let us suppose that all the
lengths are smaller than π/

√
k, if k > 0. Then we have

|o, γ(t)| ≤ |õ, γ̃(t)| ∀t ∈ [0, L]. (6.10)

Fig. 7.

Remark 6.2 The hypothesis made on lengths (when k > 0) implies that the geodesics
in M̃ are shortest.

Corollary 6.3 Let α0 = 6 (β′
0, γ

′(0)), α1 = 6 (β′
1,−γ′(L)) and let α̃0, α̃1 the corre-

sponding angles in M̃ . Then

αi ≥ α̃i. (6.11)

Proof of the corollary. Let us suppose, by contradiction, that α0 < α̃0. Suppose first
that p0 is not in the cut locus of o. Then expo is invertible near p0 (cf. Lemma 5.3).

22



Let βt be the shortest geodesic joining o to γ(t); the corresponding one β̃t is a shortest
geodesic in M̃ (for t close to 0), hence

L(βt) ≥ |o, γ(t)|,

L(β̃t) = |õ, γ̃(t)|.

We have

L(β̃t) = |o, p0| + t
d

dt

∣

∣

∣

∣

0

L(β̃t) + O(t2) (6.12)

L(βt) = |o, p0| + t
d

dt

∣

∣

∣

∣

0

L(βt) + O(t2) (6.13)

and, by the first variation formula for curves (cf. [5], p.5), we get

d

dt

∣

∣

∣

∣

0

L(βt) = − < γ′(0), β′
0(0) >

d

dt

∣

∣

∣

∣

0

L(β̃t) = − < γ̃′(0), β̃′
0(0) > .

Since we supposed α0 < α̃0, for small t we get L(γt) < L(γ̃t), which implies

|o, γ(t)| ≤ L(γt) < L(γ̃t) = |õ, γ̃(t)|.

Thus, by Toponogov’s theorem, we get a contradiction.
If p0 happens to be a cut locus point of o, we choose oε = β0(ε) on β0 close to

o. Then certainly p0 is not in the cut locus of oε. Now we put βt the broken geodesic
β|[0, ε] ∪ βε,t where βε,t denotes the shortest geodesic from oε to γ(t), and the same
argument holds.

Proof of theorem 6.1

Let us define ρ = |o, ·|, ρ̃ = |õ, ·|, and σ = f ◦ ρ , σ̃ = f ◦ ρ̃. Consider the function

δ = σ ◦ γ − σ̃ ◦ γ̃. (6.14)

Hence we have to prove that

δ ≥ 0 on [0, L]. (6.15)

23



Fig. 8.

We prove (6.15) by contradiction. Suppose that there is t ∈ [0, L] such that δ(t) < 0,
and let m = min[0,L] δ(t) < 0.
We choose k′ > k sufficiently close to k and τ > 0 such that

L <
π√
k′

− τ. (6.16)

It is easy to find a solution a0 of the equation a′′0 + k′a0 = 0, with a0(−τ) = 0 and
a0|[0,L] ≤ m. Then there exists λ > 0 such that a = λa0 satisfies the following proper-
ties:

1. a ≤ δ
2. a(t0) = δ(t0) for some t0 ∈ (0, L).

Case 1: γ(t0) is not a cut locus point of o. Thus δ is of class C∞ in a neighborhood of
t0 and

(σ ◦ γ)′′ =< Dγ′∇σ, γ′ >≤ −k(σ ◦ γ) + C, (6.17)

where the inequality follows from (6.8). By eqution (6.9) we get

(σ̃ ◦ γ̃)′′ =< Dγ̃′∇σ̃, γ̃′ >= −k(σ̃ ◦ γ̃) + C. (6.18)

Hence
δ′′ ≤ −kδ. (6.19)

On the other hand a′′ = −k′a. Moreover, in t0 we have δ(t0) = a(t0) < 0, which implies

(δ − a)′′(t0) ≤ δ(t0)(k
′ − k) < 0. (6.20)

This is a contradiction because δ − a takes a minimum at t0.

24



Case 2: γ(t0) is a cut locus point of o. Let β be a shortest geodesic from o to γ(t0). We
choose oε on β close to o, say |oε, o| = ε. Then we replace ρ by ρε(x) := |x, oε|+ |oε, o|.
By triangle inequality,

ρε(x) ≥ ρ(x), (6.21)

and equality holds at x = γ(t0). In other words, ρε is an upper support function of ρ at
γ(t0). Since β is shortest from o to γ(t0), oε is not a cut point of γ(t0), and therefore,
γ(t0) is not a cut point of oε (cf. Ch.5). Putting σε = f ◦ ρε, we get the same estimates
as in Case 1 for σε in place of σ, up to a small error which goes to zero as ε→ 0:

(σε ◦ γ)′′ ≤ −k(σε ◦ γ) + C + error. (6.22)

Now σε is an upper support function of σ at γ(t0) as f is monotoneously increasing.
Hence δε− a is an upper support function of δ− a at t0 where δε = σε− σ̃. Thus it also
takes a minimum at t0. But this is a contradiction, because (δε− a)′′(t0) < 0 by (6.20).

Remark 6.4 The above proof is essentially due to Karcher ([24]). Recently, M. Kürzel
([27]) extended this proof to the case where curvature bounds are given which depend
radially on the point (rather than being constant).
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7. Number of generators and growth of the fundamental group

Let M be a complete Riemannian manifold and M̂ its universal covering. The
fundamental group π1(M) will be viewed as group of deck transformations acting on M̂ .
In other words, M is the orbit space of a discrete group Γ ∼= π1(M) of isometries of M̂
acting freely on M̂ , i.e. if g ∈ Γ with g(p) = p for some p ∈M , then g = 1.

Remark 7.1 The fundamental group of any compact Riemannian manifold M is finitely
generated.

Proof. There exists a compact fundamental domain F (see definition below) for the
action of Γ on M̂ ; e.g. one may take the so called Dirichlet fundamental domain

F = {x ∈ M̂ ; |x, o| ≤ |x, go| ∀g ∈ Γ}.

We say that g ∈ Γ is small if gF ∩ F 6= ∅, i.e. if the fundamental domains F and
gF are neighbors. If d(F ) denotes the diameter of F , i.e. the largest possible distance
within F , then gF ⊂ B2d(F )(o) for all small g, for some fixed o ∈ F . Since the subsets
g(Int(F )) are all disjoint with equal volume, there can be only finitely many of them
in this ball, hence there exist only finitely many small g. We claim that they form a
set of generators. In fact, let g ∈ Γ arbitrary. Choose a geodesic segment γ from o to
go. Then γ is covered by finitely many fundamental domains g0F, ..., gNF where g0 = 1
and gN = g, and gi−1F , giF are neighbors. Thus g−1

i gi−1 is small, and hence g is a
composition of small group elements.

Definition 7.2 A closed subset F ⊂ M̂ is a fundamental domain for a group Γ acting
on M̂ if
(a.) Int(F ) ∩ Int(gF ) = ∅ ∀g 6= 1;
(b.) Γ · F = M̂ .

For a noncompact manifold M , the fundamental group may have infinitely many
generators. The next theorem shows that this does not happen if M has K ≥ 0; in fact,
there is an a-priori bound on the number of generators, i.e. the cardinality of a suitably
chosen set of generators:

Theorem 7.3 (Gromov 1978, cf [24])
There exists a number c(n) such that:
(a) the number of generators for π1(M) is ≤ c(n) for any n-dimensional complete

manifold M with curvature K ≥ 0.
(b) the number of generators for π1(M) is ≤ c(n)1+kD for any n-dimensional compact

manifold M with curvature K ≥ −k2 and diameter bounded, diam(M) ≤ D.
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Proof. We prove only part a); the second part is similar, but more technical (see Remark
at the end of the proof).
We define a ”norm” in Γ as follows:

|g| = |p, g(p)|

for some fixed p ∈ M̂ . There exists g1 ∈ Γ \ {1} with |g1| minimal (not necessarily
unique). By induction, we can construct a sequence (gj): given g1, . . . , gk, we define

Γk = 〈g1, . . . , gk〉 ⊂ Γ

and choose gk+1 ∈ Γ \ Γk such that |gk+1| has minimum norm in Γ \ Γk. To finish the
proof, we only have to show

Claim: Γk = Γ for some k ≤ c0(n) := 2
√

5
n
.

Proof of the claim: for j > i we have |gj| ≥ |gi|, and moreover

|gi(p), gj(p)| = |p, g−1
i gj(p)| = |g−1

i gj | ≥ |gj|

since g−1
i gj ∈ Γ \ Γj−1 (otherwise g−1

i gj, gi ∈ Γj−1 which would imply that gj ∈ Γj−1

contradicting the choice of gj). Now consider the triangle p, pi = gi(p), pj = gj(p).

Fig. 9.

Let γvi
be a shortest geodesic from p to pi, and αij the angle between vi and vj . The

standard space M̃ of zero curvature is euclidean space IRn. Considering the comparison
triangle p̃, p̃i, p̃j in M̃ , we have α̃ij ≥ 60◦ for the corresponding angle α̃ij in p̃. (Note
that α̃ij is opposite to the largest edge in that triangle.) By Toponogov’s theorem then

αij ≥ 60◦ ∀i 6= j. (7.1)
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Fig. 10.

There are at most 2
√

5
n

vectors that satisfy (7.1). Namely, for any two vectors vi,
vj of this kind, balls of radii 1

2 are disjoint and their inner half balls are contained in
B√

5/2(0), as the figure shows.

Thus, if there are k such vectors, then

Vol B√
5/2(0) ≥ k

2
Vol B 1

2

hence

k ≤ 2
Vol B√

5

2

Vol B 1

2

= 2
√

5
n
.

This finishes the proof of the claim and of the theorem.

Remark 7.4 A much better (but more difficult) estimate was given by U.Abresch (cf.
[1]).

Remark 7.5 In Case (b), we use comparison with a hyperbolic triangle (curvature −k2)
instead of a euclidean one. Since the side lengths are a priori bounded by the diameter
bound D, this is not much difference. To see that such a bound is necessary, let M be a
compact surface of genus g with constant negative curvature. Then π1(Mg) is generated
by 2g elements, hence is not bounded as g → ∞). Nevertheless the theorem holds, since
either the curvature or the diameter are unbounded as g → ∞.

Now let us assume that M has Ric ≥ 0 rather than K ≥ 0. If M is complete and
noncompact, it is an open question whether the fundamental group is finitely gener-
ated. However, for any finitely generated subgroup, the growth of this group is only
polynomial:
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Definition 7.6 Let Γ be a finitely generated group and G a finite set of generators of
Γ with G = G−1 and 1 ∈ G. We define the growth function N(k) (depending on Γ and
G) as follows:

N(k) = ]{g ∈ Γ | ∃g1, . . . , gk ∈ G such that g = g1 · . . . · gk}. (7.2)

So N(k) is the number of group elements which can be written as a product of k
elements of G. The dependence of N(k) on G is easy to estimate: If G′ is another such
generating set, then there are numbers p, q such that any element of G can be expressed
by p elements of G′ and each element of G′ by q elements of G. Thus we have

N ′(k) ≥ N(qk), N(k) ≥ N ′(pk).

Theorem 7.7 (Milnor ’68, [30])
Let M be a complete manifold with Ric ≥ 0 and let Γ ⊂ π1(M) any finitely generated
subgroup of the fundamental group. Then the growth of Γ can be estimated by

N(k) < c · kn. (7.3)

where the constant c depends on M̂ and the chosen set of generators of Γ.

Proof. Let G be a set of generators as above; it has N(1) elements. Fix a point o ∈ M̂ .
For all g ∈ Γ, let |g| = |o, go|. Put R′ = max{|g|; g ∈ G}. Choose some r > 0 small
enough, so that

Br(go) ∩ Br(o) = ∅ ∀g ∈ Γ \ {1} (7.4)

Put R = R′ + r. Then the family of balls {Br(go); g ∈ G} is disjoint and its union is
contained in BR(o) so that

Vol
(

BR(o)
)

≥ N(1) · Vol
(

Br(o)
)

. (7.5)

We can iterate this argument as follows: At the second step, we consider

G2 := {g1g2; g1, g2 ∈ G}.

with ](G2) = N(2). Then all balls Br(go) with g ∈ G2 are disjoint and contained in
B2R(o) so that

Vol
(

B2R(o)
)

≥ N(2) · Vol
(

Br(o)
)

. (7.6)

In general, we obtain that

Vol
(

BkR(o)
)

≥ N(k) · Vol
(

Br(o)
)

. (7.7)

29



Recall that we have the Bishop - Gromov inequality (cf. Corollary 5.6),

Vol
(

BkR(o)
)

≤ ωnk
nRn,

where ωn denotes the volume of the euclidean unit ball, hence

N(k) ≤
{

ωnR
n

Vol
(

Br(o)
)

}

kn. (7.8)
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8. Gromov’s estimate of the Betti numbers

Homology is a main tool to measure the complexity of topology. Fix a field F and
let Hq(M) denote the q-th singular homology of M with coefficients in F. Further, let
H∗(M) = ⊕q≥0Hq(M) be the total homology of M . The total Betti number of M is
given by

b(M) = dimFH∗(M). (8.1)

Theorem 8.1 Gromov, 1980 (cf. [15], [1], [28])
There is a constant C(n) such that:
(a.) any complete n-dimensional manifold M with nonnegative curvature K satisfies

b(M) ≤ C(n); (8.2)

(b.) any compact n-dimensional manifold M with curvature K ≥ −k2, and bounded
diameter, diam(M) ≤ D, satisfies

b(M) ≤ C(n)1+kD. (8.3)

We will give the proof of part (a.), following ideas of Abresch [1] and W.Meyer
[28]. (Part (b.) is similar, cf. Remark 7.2.) The proof uses the estimates of Bishop-
Gromov and Toponogov. It can be viewed as an application of some sort of Morse
theory for the distance function ρ(x) = |o, x| where o ∈ M is fixed. In ordinary Morse
theory, one considers a smooth function f : M → IR with isolated critical points with
nondegenerate Hessian (p critical means that ∇f(p) = 0), and one observes how the
topology of M c = {x ∈ M ; f(x) < c} is changed as c grows. There are two main facts
in Morse theory (cf [29]):
(1.) If M b \Ma contains no critical points, then M b and Ma are diffeomorphic.
(2.) If M b \Ma contains exactly one critical point p, then M b is homotopic to Ma with

a k-cell attached, where k is the index of the Hessian of f at p.

The distance function ρ = |o, | : M → IR is no longer smooth, but we still have the
notions of critical and regular points:

Definition 8.2 A point x ∈ M is called a regular point of ρ if there exists v ∈ TxM
such that

〈v, γ′(0)〉 < 0 (8.4)

for any shortest geodesic γ from x to o. Any such vextor v is called gradientlike.
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A point x ∈M is a critical point for ρ if it is non-regular, i.e. if for any v ∈ TxM there
is a shortest geodesic γ from x to o such that

〈v, γ′(0)〉 ≥ 0.

Remark 8.3 These notions make sense also if the point o is replaced by a closed subset
Σ ⊂M . This will be needed in Ch.10.

Fact (1.) is still valid: Since the set of initial vectors of shortest geodesics to o
is closed, the gradientlike vectors form an open subset of TM and moreover a convex
cone at any regular point. Thus we may cover the closure of M b \Ma = Bb(o) \Ba(o)
by finitely many open sets with gradientlike vector fields and past them together using
a partition of unity, thus getting a gradientlike vector field in a neighborhood of the
closure of Bb(o) \ Ba(o). This has the property that ρ is strictly increasing along its
integral curves. Hence, pushing along the integral curves, we may deform the bigger
ball Bb(o) into the smaller one Ba(o). (See Lemma 10.9 for details.) We will use this
in Lemma 8.10 below.

However, Fact (2.) has no meaning and has to be replaced by another idea: Large
balls can be covered by a bounded number of small balls (Bishop-Gromov inequality),
and the jump of the Betti number when passing from a small ball to a large ball can be
controlled using Toponogov’s theorem.

First of all, critical points of ρ are not necessarily isolated, but still in some sense,
we have to take only finitely many into account:

Lemma 8.4 Let M be a complete manifold with nonnegative curvature. For any L > 1
there exists a finite number c(n, L) such that there are at most c(n, L) critical points
{qi} for ρ satisfying

|o, qi+1| ≥ L|o, qi|. (8.5)

E.g. for L = 2 we have c(n, 2) = 2
√

5
n
.

Proof. Let (q1, q2, ...) be a maximal sequence satisfying (8.5). For i < j, let γ be a
shortest geodesic from qi to qj and put v = γ′(0). Since qi is critical, there is a shortest
geodesic c from qi to o with the angle β = 6 (c′(0), v) ≤ 90◦. Applying Toponogov’s
theorem (Corollary 6.3) with the standard space M̃ = IRn, we get β̃ ≤ 90◦.
Consider first the limit case β̃ = 90◦. Let α̃ be the angle in õ. It follows that

cos(α̃) =
|qi, o|
|qj , o|

≤ 1

L
.
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Fig. 11.

Hence, if β̃ ≤ 90◦,

α̃o ≥ arccos(
1

L
) =: α0.

Now we apply Toponogov’s theorem backwards for the angle at o, but this time we
consider an arbitrary shortest geodesic from qi to qj . Then for the angle α at o we have

α ≥ α̃ ≥ α0.

It follows as in Ch.7 that there must be a finite number of such critical points. If L = 2,
we have α0 = 60◦ and hence c(n, 2) = 2

√
5
n

as in the proof of Theorem 7.3.

Corollary 8.5 Given a complete manifold M with nonnegative curvature, all critical
points are contained in a finite ball.

Since we will work with many metric balls in M , we agree on the following conven-
tion: If B = Br(p) be a fixed ball and λ > 0, we put λB := Bλr(p). More generally, for
any q ∈M we let λB(q) := Bλr(q).

Definition 8.6 Let A ⊂ C ⊂ M . We define the content of A in C as the rank of the
inclusion map on the homology level:

cont(A,C) = rk (i∗ : H∗(A) → H∗(C)) (8.6)

Then we define the content of a metric ball B as:

cont(B) = cont(B, 5B). (8.7)
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Essentially, the content measures the total Betti number of a subset. But it is better
than the Betti number since it has a nice monotonicity property: Note that if A ⊂ A′ ⊂
B′ ⊂ B ⊂M then

cont(A,B) ≤ cont(A′, B′)

In the spirit of Morse theory, we will observe how the content of balls grows with
the radius. A measure for the number of critical points which are still outside the ball
and which will eventually increase the content is the corank. This definition involves
also critical points of the distance function ρp = |p, | for points p ∈M different from o,
called critical for p for short.

Definition 8.7 Let B = Br(o) a ball in M , r > 0. For p ∈ M , let k(r, p) be the
maximum number of critical points q1, . . . , qk for p such that

1) |p, q1| ≥ 3Lr
2) |p, qi+1| ≥ L|p, qi|.

By Lemma (8.3), k(r, p) ≤ c(L, n). Then we define the corank of B as follows:

corank(B) = inf{k(r, p) | p ∈ 5B}. (8.8)

Not all balls really contribute to the topology, namely the compressible ones:

Definition 8.8 A ball B ⊂ M is called compressible if there is B̃ = 3
5B(q) for some

q ∈ 2B, and a diffeomorphism ϕ : M →M such that

ϕ|M\5B = id

and
ϕ(B) ⊂ B̃

For short: B is compressible into B̃. Otherwise, the ball B is called incompressible.

Lemma 8.9 Suppose that B is compressible into B̃, with B̃ = 3
5B(p), and p ∈ 2B.

Then
cont(B̃) ≥ cont(B) (8.9)

and
corank(B̃) ≥ corank(B). (8.10)

Proof. Let ϕ be the diffeomorphism which compresses B into B̃. From B ≈ ϕ(B) and

ϕ(B) ⊂ B̃ ⊂ 5B̃ ⊂ 5B, (8.11)
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it follows that cont(B̃) ≥ cont(B).
To show the second relation, put k = corank(B). Let p ⊂ 5B̃ ⊂ 5B. Then there

are m ≥ k critical points q1, ..., qm for p with

|p, q1| ≥ 3Lr ≥ 3L · 3

5
r, |p, qi+1| ≥ L|p, qi|.

Hence k( 3
5r, p) ≥ m ≥ k which shows corank(B̃) ≥ k.

Lemma 8.10 If B is incompressible, for any p ∈ 2B there is a critical point for p in
5B̃ \ B̃, where B̃ = 3

5
B(q).

Proof. Otherwise, we could deform B ⊂ 5B̃ into B̃ while keeping M \ 5B fixed, so B
would be compressible.

Lemma 8.11 Let B be incompressible, and put B̃ = λB(p̃) for some λ ≤ 1
5L and

p̃ ∈ 3
2B. Then

corank(B̃) ≥ corank(B) + 1. (8.12)

Proof. Let p̃ ∈ 3
2
B and p ∈ 5B̃ ⊂ 2B. By the previous lemma, there is a critical point

q0 for p in 3B(p) \ 3
5B(p), so we have

3r ≥ |p, q0| ≥
3

5
r ≥ 3Lλr. (8.13)

Now let k = corank(B). Then there are m ≥ k critical points q1, ..., qm for p with

|p, q1| ≥ 3Lr, |p, qi+1| ≥ L|p, qi|. (8.14)

Thus by (8.13),
|p, q1| ≥ L|p, q0|, |p, q0| ≥ 3Lλr. (8.15)

Now (8.14) and (8.15) show

k(λr, p) ≥ m+ 1 ≥ k + 1.

Since p ∈ 5B̃ was arbitrary, we get

corank(B̃) ≥ k + 1.
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Proof of theorem 8.1

Let K = max{corank(B) | B ball in M}. By Lemma 8.4, K ≤ c(n, L), and by Corollary
8.5, for a large enough ball B , there exists an isotopy of M that carries M into B,
hence

cont(B) = cont(M,M) = b(M). (8.16)

Gromov’s theorem now follows if we prove that the content of any metric ball is bounded
by a constant. This is done in 5 steps:

Step 1. If corank(B) = K then cont(B) = 1.
Proof: Let p0 := p. By Lemma 8.11, B is compressible into B1 = 3

5B(p1) for some
p1 ∈ 2B (otherwise, we could increase the corank). Hence, |p0, p1| < 2r. By Lemma
8.9, corank(B1) = K and cont(B1) ≥ cont(B). Repeating the argument, we compress
B1 (and hence B) into B2 = 3

5B1(p2) = ( 3
5 )2B(p2) for some p2 ∈ 2B1. Hence |p1, p2| <

3
5
· 2r. After N steps, we have compressed B into BN = ( 3

5
)NB(pN ) with |pi, pi+1| <

( 3
5)i · 2r for i = 0, ..., N . So we have for all q ∈ BN :

|p, q| <
N

∑

i=0

(
3

5
)i · 2r < 5r.

Thus BN ⊂ 5B. Since the cut locus distance (injectivity radius) is bounded below
on the closure of B (by compactness), we find some N such that ( 3

5)Nr is smaller
than this bound which implies that BN is diffeormorphic to a euclidean ball and hence
contractible. So, cont(BN ) = 1 since b(BN ) = 1. On the other hand,

cont(BN ) ≥ cont(BN−1) ≥ ... ≥ cont(B)

which proves cont(B) = 1.

Step 2. Each ball B with cont(B) ≥ 2 is either incompressible or it contains an
incompressible ball B̃ with cont(B̃) ≥ cont(B) and corank(B̃) ≥ corank(B).
Proof. Otherwise, we could use the process of Step 1 to show that cont(B) = 1.

Step 3. If B is incompressible, then any ball B̃ = λB(p) with λ ≤ 1
5L and p ∈ 3

2B
satisfies

corank(B̃) ≥ corank(B) + 1. (8.17)

Proof. Cf. Lemma 8.11.

Step 4. There is a number χ ≤ (2L)n(n+1)10n(n+1)(n+2) with the following property:
Suppose that any ball B̃ with corank(B̃) ≥ k has cont(B̃) ≤ ak. Then for any ball B
with corank(B) ≥ k − 1 we have

cont(B) ≤ χ · ak (8.18)
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Proof. By Step 2 we may assume that B is incompressible. Let λ = 1/(5L · 10n+1).
We cover B with balls Bi = λB(pi) with pi ∈ B for i = 1, ..., N such that the balls
1
2
Bi are disjoint and inside B. Let 1

2
B1 = 1

2
λB(p1) the one of smallest volume among

1
2B1, ...,

1
2BN . Since B ⊂ 2B(p1), we have

vol(2B(p1)) ≥ vol(B) ≥
N

∑

i=1

vol(
1

2
B1) ≥ N · vol(

1

2
B1) = N · vol(

1

2
λB(p1)).

On the other hand, by Bishop-Gromov (cf. Corollary 5.6),

vol(2B(p1))

vol( 1
2
λB(p1)

) ≤ ωn · (2r)n
ωn · ( 1

2
λr)n

= (
4

λ
)n,

thus

N ≤ (
4

λ
)n = (2L · 10n+2)n. (8.19)

By Step 3, all Bmi := 10mBi for m = 0, ..., n+1 have corank ≥ k and thus cont(Bi) ≤ ak.
Since the radii of the Bi = B0

i are very small, we have (by triangle inequality)

B ⊂
⋃

i

Bi ⊂
⋃

i

10n+1Bi ⊂ 5B,

hence
cont(B) ≤ cont(

⋃

i

Bi,
⋃

i

10n+1Bi).

We will see below (cf. Appendix) that we may estimate

cont(
⋃

i

Bi,
⋃

i

10n+1Bi) ≤
n+1
∑

j=1

∑

i1<...<ij

cont(

j
⋂

p=1

Bn−j+1
ip

,

j
⋂

p=1

10Bn−j+1
ip

) (8.20)

where Bmi := 10mBi. Since

j
⋂

p=1

Bmip ⊂ Bmi1 ⊂ 5Bmi1 ⊂
j

⋂

p=1

10Bmip ,

we get

cont(

j
⋂

p=1

Bmip ,

j
⋂

p=1

10Bmip ) ≤ cont(Bmi1 ) ≤ ak.
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There are N balls Bm1 , ..., B
m
N , so there are at most Nn intersections Bmi1 ∩ ... ∩ Bmij

where j = 1, ...n. Thus
cont(B) ≤ Nn+1ak

which finishes the proof by (8.19)

Step 5. Let ak still denote an upper bound for the content of any ball with corank
≥ k. By Step 1 we may choose aK = 1 where K ≤ c := c(L, n) is the biggest possible
corank. Thus by Step 4, aK−1 = χ, hence aK−2 = χ2 and eventually (by induction),
a0 = χK . Hence we get for any ball B

cont(B) ≤ χc

which finishes the proof since b(M) = cont(B) for some big ball (cf. (8.16)).

Remark 8.12 The highest known total Betti number for a manifold with K ≥ 0 is 2n,
the total Betti number of the n-dimensional torus T n = S1 × ...× S1.
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9. Convexity.

Definition 9.1 Let M be a Riemannian manifold. A continuous function f : M → IR
is called convex if f ◦ γ : I → IR is convex for any geodesic γ : I → M , and f is called
concave if −f is convex.

Theorem 9.2 A continuous function f : M → IR is convex if for any x ∈M and ε > 0
there is a smooth lower support function fx,ε = f̃ : Ux → IR (i.e., f̃ ≤ f , f̃(x) = f(x)),

defined in a neighborhood Ux ⊂M , with D∇f̃(x) > −ε.

Proof. Suppose there is a geodesic γ : I → M such that g = f ◦ γ is not convex. Then
there exists a parabola a : IR → IR with:
1) a′′ ≡ −ε
2) a(t1) = g(t1) and a(t2) = g(t2)
3) there exists t ∈ (t1, t2) with a(t) < g(t).

Fig. 12.

Define δ = g − a; then δ takes a maximum at some point t0 ∈ (t1, t2), and we have
δ(t0) > 0. Consider f̃ = fx,ε with x = γ(t0) and ε small enough. Then g̃ = f̃ ◦ γ is
a lower support function for g at t0, hence (g̃ − a) also takes a maximum at t0. But
g′′(t0) > −ε and a′′(t0) = −ε, hence

(g̃ − a)′′(t0) > −ε+ ε = 0

which is impossible at a maximum point.

Remark 9.3 By the theorem, a C2-function f is convex if D∇f ≥ 0. If f is only
continuous but satisfies the assumptions of Theorem 9.2, we say D∇f ≥ 0 in the sense
of support functions.
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Example 9.4 Fix o ∈M and let ρ(x) = |o, x|. Then D∇ρ = A(ρ) > 0 for small ρ > 0 by
example 2.3. However, ρ is not smooth at o, but ρ2 is smooth (since ρ(expo(v))

2 = 〈v, v〉
if ‖v‖ is small, cf. (6.1)), and it satisfies

D∇(ρ2) = 2(dρ · ∇ρ+ ρ ·D∇ρ) > 0,

hence ρ2 is convex near o.

Definition 9.5 A closed subset C ⊂ M is called convex if any geodesic segment γ in
M with end points on C lies entirely in C. Clearly, if f : M → IR is a convex function,
then the sublevel sets Ma = {x ∈M | f(x) ≤ a} are convex subsets for all a ∈ IR. Note
that the notion of convexity depends on the surrounding manifold. For example, in the
cylinder S1 × IR with radius 1, a metric ball of radius r < π is not convex, but it is
convex in a slightly larger ball of radius r + ε < π inside the cylinder.

Definition 9.6 A smooth hypersurface S = ∂B ⊂ M is called convex hypersurface if
for the interior unit normal vector field N ,

DN ≤ 0. (9.1)

Clearly, if f is smooth and convex, then S = ∂Ma is a convex hypersurface unless a is
a minimum of f (note that ∇f can vanish only at a minimum of a convex function f).
Vice versa, if S = ∂B is a strictly convex hypersurface, i.e. DN < 0, then the signed
distance function ρ = ρS = ±| , S| is concave near S since DN is its Hessian along S
(cf. Ch.2, p.9). Consequently, C = Clos(B) is convex in a neighborhood of C since it
is a sublevel set of the convex function −ρ.

Theorem 9.7 Let B be compact and S = ∂B a convex hypersurface. If K ≥ 0 on B,
then ρ = | , S| is concave on all of B.

Proof. Let x ∈ B and γ a shortest geodesic from x to S. Let p ∈ S be its endpoint.
If we were in euclidean space, there would be a support hyperplane for B at p. In M
we have a similar construction: For large R, let S̃ = expp(∂BR(−RNp) ∩ U) where U

is a small neighborhood of −RNp in TpM . We will show that S̃ supports B at p, i.e.

S̃∩B = ∅ and S̃∩∂B = {p}. To this end, we compare the signed distance functions ρ of
S and ρ̃ of S̃ near p. Since Np is a common normal vector for S and S̃, these functions
agree at p up to first derivatives. The second derivatives (Hessian) of ρ and ρ̃ are given
by the shape operators A = (DN)p and Ã = (DÑ)p of S and S̃. By convexity, we have

A ≤ 0. On the other hand, Ã = 1
R
· I > 0. (In fact, this holds for the euclidean sphere

∂BR(−RNp) ⊂ TpM and hence also for S̃ since expp preserves the covariant derivative
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D at p, cf. Remark 1.5.) Thus A < Ã. However, the Hessians of ρ and ρ̃ are both
zero in Np-direction, so we have no strict inequality. This can be repaired by passing
to functions f ◦ ρ and g ◦ ρ̃ which have the same level hypersurfaces as ρ and ρ̃, where
we choose the functions f, g : IR → IR monotone with

f(0) = g(0), f ′(0) = g′(0), f ′′(0) < g′′(0).

Then f ◦ ρ and g ◦ ρ̃ agree at p up to first derivatives with Dd(f ◦ ρ)p < Dd(g ◦ ρ̃)p,
so we get f ◦ ρ ≤ g ◦ ρ̃ near p (in fact, ”<” outside p). In particular, the level set
S̃ = {g ◦ ρ̃ = 0} lies outside B = {f ◦ ρ > 0}.

Fig. 13.

Now we consider the signed distance function ρ̃ of S̃ on its full domain, namely
wherever the mapping

S × IR →M : (s, t) 7→ exp(tN(s))

is invertible, cf. Ch.2, p.8. In particular, ρ is defined and smooth near x: Since γ is a
shortest curve from p to S, there are no focal points for S on γ between p and x. Since
Ã > A at p, the focal distance for S̃ along γ is strictly larger than for S (cf. Remark
3.2), hence x is no focal point for S̃, and ρ̃ is defined and smooth near x.

Since S̃ lies outside B, any curve from B to S̃ meets S = ∂B first, so ρ̃ is an upper
support function for ρ at x. Moreover, by the comparison theorem 3.1 we have

D∇ρ̃(x) ≤ 1

R+ ρ̃(x)
=: ε,

so −ρS is convex on B by theorem 9.1.
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Remark 9.8 The proof shows that S = ∂B need not to be smooth; it is sufficient that
there is a unit vector Np ∈ TpM such that S̃p,R := expp(∂BR(−RNp) ∩ U) supports B
for any p ∈ S, R > 0 and a neighborhood U of −RNp in TpM . For example, this is true
if Clos(B) =: C is convex (with B = Int(C)). To see this, let p ∈ ∂C and consider the
tangent cone

TpC = Clos{v ∈ TpM ; expp(tv) ∈ C for small t > 0}.

By convexity of C, this is a convex cone in TpM (since in exponential coordinates, D-
geodesics and ∂-geodesics, i.e. straight lines, are close to each other near the origin, see
1.5), hence it is contained in some closed half space HN = {v ∈ TpM ; 〈v,N〉 ≥ 0}. Any
such vector N = Np is called an inner normal vector of ∂C at p, and −Np is called an

outer normal vector. By strict convexity of S̃ = S̃p,R, the set D̃ = expp(DR(−RNp)∩U)
is convex in a neighborhood of p, being a sublevel set of the convex function −ρ̃. Thus,
D̃ ∩ C is convex near p. But this shows that D̃ ∩ C = {p}, proving that S̃ supports
C at p. Namely, if q = expp v ∈ D̃ ∩ C, then expp tv ∈ D̃ ∩ C for all t ∈ [0, 1], hence
v ∈ TpC ∩DR(−RNp) = {0}, so q = p.
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10. Open manifolds with nonnegative curvature

Theorem 10.1 (Cheeger - Gromoll 1970 [6])
Let M an open (i.e. complete, noncompact) manifold with K ≥ 0. There exists a
compact convex submanifold (without boundary) Σ ⊂ M called soul such that M is
diffeomorphic to the normal bundle νΣ.

Recall that the normal bundle of a submanifold Σ ⊂ M is νΣ = ∪pνpΣ, where
νpΣ = {v ∈ TpM | v ⊥ TpΣ}. The proof needs some preparations. For the moment,
assume only that M is complete and noncompact.

Definition 10.2 A ray is a geodesic γ defined on [0,∞) which is a shortest geodesic
between any two of its points.

Remark 10.3 For any p ∈ M there exists a ray starting at p: Consider a sequence
of points qi such that |qi, p| → ∞. Consider shortest geodesics γi from p to qi. There
exists a subsequence of the unit tangent vectors converging to some v ∈ SpM . The
geodesic γv in the direction of v is a ray. Moreover, if the points qi lie on some geodesic
ray γ, i.e. qi = γ(ti) with ti → ∞, the geodesic ray γv is called an asymptote of γ. Note
that asymptotes are not necessarily unique.

Definition 10.4 The Busemann function associated to a ray γ is defined as

bγ(x) = lim
t→∞

(|x, γ(t)| − t) (10.1)

In particular, bγ(γ(s)) = lim(|γ(s), γ(t)| − t) = lim(t − s − t) = −s. Further, since
ργ(t) = |·, γ(t)| are Lipschitz-continuous functions with Lipschitz constant L = 1, the
same holds for bγ(x). Its level sets are called horospheres.

Consider an asymptote γx of the ray γ. We define

bx,t(y) = |γx(t), y| − t+ bγ(x). (10.2)

bx,t is smooth in a neighborhood of p since x is not in the cut locus of any point on γx.

Lemma 10.5 bx,t is a support function of bγ at x.

Proof. There is a sequence ti → ∞ such that γx = lim γi where γi is a shortest geodesic
from x to γ(ti). Then by triangle inequality, we have for any y ∈M :

bx,t(y) = |γx(t), y| − t+ bγ(x)

≈ |γi(t), y| − t+ bγ(x)

≥ |γ(ti), y| − si + bγ(x)
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Fig. 14.

where si = |x, γ(ti)|. The sign ”≈” means that the error can be made as small as one
wants (as i→ ∞). From

bγ(x) ≈ |x, γ(ti)| − ti = si − ti

we get
bx,t(y) ≥ |y, γ(ti)| − ti

≈ bγ(y).

Moreover, bx,t(x) = bγ(x). So bx,t is a support function to bγ .

Lemma 10.6 If M is complete, noncompact with K ≥ 0, then each Busemann function
bγ(x) is concave.

Proof. It follows from the comparison theorem 3.1 with k = 0 that

D∇bx,t(x) ≤
1

|x, γx(t)|
→ 0

as t→ ∞. So by Theorem 9.2, bγ is concave.

Corollary 10.7 The superlevel sets

Ct,γ = {x ∈M | bγ(x) ≥ t} (10.3)

are convex sets in M for any t ∈ IR.
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For any point p ∈M we consider

Rp = {rays γ : [0,∞) →M, γ(0) = p}. (10.4)

Define the function
b = min

γ∈Rp

bγ . (10.5)

(The infimum is a minimum since a limit of rays is a ray.) b is concave since it is the
minimum of concave functions, and therefore, its superlevel sets

Ct = {x ∈M | b(x) ≥ t}. (10.6)

are convex.

Lemma 10.8 Ct is compact.

Proof. Assume first t ≤ 0. If Ct were not compact, there whould exist a sequence of
points qi → ∞ in Ct. Since b(p) = 0, we have p ∈ Ct. For any i, choose a shortest
geodesic segment γi from p to qi; since Ct is convex, γi is contained in Ct. Since Ct
is closed, the limit ray γ = limi γi again lies in Ct. But γ is a ray starting at p, so
γ ∈ Rp. But then γ cannot be contained in Ct since b(γ(s)) ≤ bγ(γ(s)) = −s can be
made smaller than t, contradiction!
Since Cs ⊂ Ct for s > t, all superlevel sets of b(x) are compact.

Now let t0 be the maximum value of b (which exists by compactness). Define
C1 = Ct0 . C1 cannot contain interior points. (In fact, if x ∈ C1 and b(x) = bγ(x),
then bγ decreases with speed one along an asymptotic ray γx of γ. Thus b ≤ bγ
cannot stay maximal near x.) Thus C1 is a compact convex set of lower dimension.
In general, a compact convex subset C of a Riemannian manifold is a subset of a (non
complete) submanifold M1, such that C has nonempty interior relative to M 1 (cf. [5]).
If ∂C1 6= ∅, we consider the distance function ρ∂C1

on C1. Since C1 is convex, ∂C1 is a
convex hypersurface. ¿From Theorem 9.7, and Remark 9.8 we see that ρ∂C1

is concave
on C1, thus its superlevel sets

C1
t = {ρ∂C1

≥ t}
are convex again. If t1 is the maximum of ρ∂C1

, the set

C2 = C1
t1

cannot have interior points in M 1, thus is again of lower dimension. In this way we
produce a descending chain

C1 ⊃ C2 ⊃ . . . ⊃ Ck
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of compact convex subsets with lower and lower dimension. This process ends after
a finite number (say: k) of steps; if we put Σ = Ck, then Σ is a compact convex set
without boundary: the soul of M .

It remains to show that M is diffeomorphic to νΣ. In fact, we will show that M is
diffeomorphic to a tubular neighborhood of Σ, say Br(Σ), for small r which itself is
diffeomorphic to νΣ via the exponential map exp |νΣ.

Lemma 10.9 For small r > 0, there is a diffeomorphism ϕ : M → B2r(Σ) with ϕ = id
on Br(Σ).

Proof. Let ρΣ = | ,Σ|. We show first that ρΣ has no critical points on M \ Σ, i.e. for
any x ∈M \ Σ there is a gradientlike vector v ∈ TxM for ρΣ.
In fact, since x 6∈ Σ, there is j ∈ {1, . . . , k − 1} such that x ∈ Cj \ Cj+1. In particular,
there is some t such that x ∈ ∂Cjt . Now, since Σ ⊂ Cjt , any geodesic γ from x to Σ has
initial vector γ′(0) pointing to the interior of Cjt . Thus, an outer normal vector for the
convex set Cjt is gradientlike.

Now for any x ∈ M \Br(Σ), we choose a gradientlike vector v ∈ NxCt and enlarge
it to a gradientlike vector field Vx on some neighborhood Ux. By paracompactness, we
may pass to a locally finite subcovering (Uxi

)i=1,2,.... Let Vi = Vxi
. On B2r(Σ) \ Σ, we

put V0 = ∇ρΣ: We have chosen r > 0 so small that ρΣ is smooth on B2r(Σ); this is
possible by compactness of Σ. We may choose a subordinated partition of unity (ϕi)i≥0:
then V =

∑

ϕiVi is a smooth gradientlike vector field defined on M \ Σ which agrees
to ∇ρΣ on Br(Σ) \ Σ.

Let cx be the integral curve of V with cx(0) = x. Since the integral curves intersect
∂Br(Σ) transversally (in fact, orthogonally), there is a smooth function

t : M \ Σ → IR

with
cx(t(x)) ∈ ∂Br(Σ). (10.7)

We reparametrize the integral curves and put

c̃x(t) = cx(r + t(x) − t).

Now let χ : IR+ → [0, 2r) smooth, with χ(t) = t for t ∈ [0, r] and χ′ > 0,
and let ϕ : M → B2r(Σ) with

ϕ(x) =

{

x x ∈ Br(Σ)
c̃x(χ(r + t(x))) otherwise

Then ϕ maps diffeomorphically M onto B2r(Σ).
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Fig. 15.

Theorem 10.10 (Perelman) Let M be an open manifold of K ≥ 0 with soul Σ. For
any p ∈ Σ and any two nonzero vectors a ∈ TpΣ, v ∈ νpΣ, there is a totally geodesic
flat half plane through p tangent to a and v.

The proof uses the contraction of Sharafutdinov ([32],[35]) which is a continuous
mapping φ : M → Σ with

|φ(x), φ(y)| ≤ |x, y|
for all x, y ∈ M . In fact, φ is the limit of an iterated projection onto more and more
smaller and smaller convex sets surrounding Σ, cf. [35] for details.

Proof of Perelman’s theorem: Let

F = φ ◦ exp : νΣ → Σ

and put
f(v) = |π(v), Fv|

for v ∈ νΣ, where π : νΣ → Σ denotes the projection. Consider

mf(t) := max{f(v) ; v ∈ νtΣ}

where νtΣ = {v ∈ νΣ; ‖v‖ = t}. Clearly mf(0) = 0 and mf(t) ≥ 0 for all t ≥ 0. We
claim that mf(t) is monotonely decreasing so that we get mf ≡ 0. Let t > 0 be small
enough such that mf(t) is strictly less than the cut locus distance on Σ. Let v ∈ νtΣ
so that f(v) = mf(t). Let α be the shortest geodesic in Σ from F (v) to p = π(v). By
assumption, the prolongation of α stays shortest beyond p up to some point q ∈ Σ. Let
w ∈ νqΣ be the parallel displacement of v from p to q along α.
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Fig. 16.

Lemma 10.11 We have f(w) = mf(t) and |Fv, Fw| = |p, q|, and p, q, exp v, expw span
a totally geodesic flat rectangle R.

Proof. By the contraction property of φ and Rauch II we have

|Fv, Fw| ≤ | exp v, expw| ≤ |p, q|, (10.8)

and moreover, by the maximality of f(v) = mf(t),

|Fw, q| = f(w) ≤ mf(t). (10.9)

On the other hand, Fv, p and q are lined up on a shortest geodesic, so

|Fv, q| = mf(t) + |p, q|. (10.10)

So the triangle inequality for Fv, Fw, q yields equality in (10.9) and (10.10) and we
have proved the Lemma, using the equality case of Rauch II (cf. Corollary 3.4).

Now we consider the vector w′ = (1− (ε/t))w with length ‖w′‖ = ‖w‖− ε = t− ε.
Clearly

mf(t− ε) ≥ f(w′) = |q, Fw′|.
Since R = (p, exp v, expw, q) is a flat rectangle,

| exp v, expw′|2 ≤ | exp v, expw|2 + ε2 = |p, q|2(1 + (
ε

|p, q|)
2),

hence
|Fv, Fw′| ≤ | exp v, expw′| ≤ |p, q|+ Cε2 (10.11)
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Fig. 17.

with C = (2|p, q|)−1. Using (10.10),(10.11) and the triangle inequality for Fv, q, Fw′

we get
mf(t− ε) ≥ |q, Fw′| ≥ |Fv, q| − |Fv, Fw′| ≥ mf(t) − Cε2.

This implies that mf is monotonely decreasing and hence zero. Thus f ≡ 0 and
φ(exp v) = π(v) for any v ∈ νΣ. (Note that the condition for t = ‖v‖ made at the
beginning now is void.) In particular, | exp v, expw| = |πv, πw| for any two normal
vectors v, w on Σ which are parallel along a shortest geodesic on Σ. So the proof is
finished by the equality case of Rauch II (Corollary 3.4).

Remark 10.12 The above theorem also proves a conjecture of Cheeger and Gromoll
saying that the soul must be a point (and hence M must be diffeomorphic to IRn)
provided that there is a point q ∈M where all sectional curvatures are strictly positive.
In fact, we can connect q to Σ by a shortest geodesic γ (which is perpendicular to Σ). If
Σ has positive dimension, i.e. if there is a nonzero tangent vector a of the soul where it
meets γ, then by Perelman’s theorem, there is a flat totally geodesic half plane spanned
by a and γ. Thus not all curvatures at q = γ(0) are positive. - We are indepted to V.
Schroeder for communicating Perelman’s proof.

Remark 10.13 By a previous result of Strake and Walshap [33], Perelman’s theorem
implies that on a small tubular neighborhood of the soul, the projection π : Br(Σ) → Σ
is a Riemannian submersion, i.e. dπx is an orthogonal projection up to isometric linear
isomorphisms, for any x ∈ Br(Σ). We conjecture that the Sharafutdinov contraction
φ : M → Σ is smooth and also a Riemannian submersion.
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11. The sphere theorem.

One of the most celebrated results in Riemannian geometry is the ”sphere theorem”;
cf. [2], [5], [11], [18], [25], [28].

Theorem 11.1 (Rauch, Berger, Klingenberg)
Let Mn be a compact, simply connected manifold, with K > 0. Assume that

maxK

minK
< 4. (11.1)

Then M is homeomorphic to Sn.

Remark 11.2 The estimate 4 is sharp. There are simply connected manifolds with

maxK

minK
= 4

which are not homeomorphic to Sn, namely the projective spaces over the fields IC and
IH (called ICPm and IHPm), and the Cayley projective plane.

Remark 11.3 Another type of sphere theorem using a diameter estimate instead of
the upper curvature bound was given by Grove and Shiohama ([21], [28]).

Proof. We may assume (rescaling the metric) that

1

4
< K < 1 (11.2)

so the comparison spaces are the spheres S2 and S1 with radii 2 and 1 respectively. We
fix p ∈M , and consider geodesics of length π on the three manifolds.

Fig. 18.
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By the upper curvature bound, the first conjugate point comes later than on S1, hence
the exponential map expp |Bπ(0) is an immersion (local diffeomorphism).
By the lower curvature bound, the immersed hypersurface f := expp |∂Bπ(0) is strictly
concave, i.e. DN < 0 for the exterior unit normal field N (cf. Theorem 3.1)

Now we need Theorem 11.4 (see below) to finish the proof. Take two copies D+,
D− of the unit disk Dn and identify D+ with Dπ(0) = Bπ(0) and put S = ∂Bπ(0).
By Theorem 11.4, there exists an immersion F : D− → M and a local diffeomorphism
ϕ : S = ∂D+ → ∂D− such that f = F ◦ ϕ. Let

Σϕ = D+ ∪ϕ D− = (D+ qD−)/ ∼, (11.3)

where the equivalence relation is given as follows: x ∈ ∂D+ and y ∈ ∂D− are equivalent
(x ∼ y) iff y = ϕ(x).

Fig. 19.

This is a smooth manifold which is homeomorphic to Sn (see figure). It is diffeomorphic
if and only if ϕ extends to a diffeomorphism φ : D+ → D−. Now we define F̂ : Σϕ →M
by putting

F̂ |D+ = expp , F̂ |D− = F. (11.4)

Then F̂ is a local diffeomorphism. It is onto because the image is open and closed and
it is injective, since M is simply connected. Hence F̂ is a diffeomorphism.

Remark 11.4 In dimension n = 2 we cannot apply the above proof. However, the
theorem follows from the Gauss-Bonnet formula: Since K > 0, it follows that

0 <

∫

M

K = 2πχ(M), (11.5)
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thus χ(M) = (2 − 2g) > 0, which implies that g = 0 where g is the genus of M . Hence
M is a sphere.

Theorem 11.5 (Gromov, Eschenburg [11])
Let Mn, n ≥ 3, be a complete manifold with K ≥ 0. Let S be a compact (n − 1)-
dimensional manifold, and f : S → M an ε-convex immersion, i.e. we suppose that a
unit normal vector field N along f satisfies DN < −ε. Then f bounds an immersed
convex disk, i.e. there exists an immersion

F : Dn →M (11.6)

(where Dn is the unit n-disk) and a diffeomophism

ϕ : S → ∂Dn (11.7)

such that f = ϕ ◦ F and N ◦ ϕ−1 becomes the interior normal field.

If M = IRn, we get the following stronger theorem which is due to Hadamard [22]:

Theorem 11.6 (Hadamard)
Let S be a compact (n− 1)-manifold, and f : S → IRn an ε-convex immersion. Then f
is an embedding and f(S) bounds a convex n-disk.

Proof. Let N be the unit normal field, considered as Gauss map N : S → Sn−1.
Since S is strictly convex, dN has only positive eigenvalues (note that DN = dN
where D is the Levi-Civita derivative on IRn, i.e the ordinary derivative D = ∂), so
N is a local diffeomorphism. But Sn−1 is simply connected for n ≥ 3, hence N is a
diffeomorphism. So any vector v ∈ Sn−1 arises exactly twice as a normal vector for f ,
namely v = N(x) = −N(y) for exactly two points x, y ∈ S. Thus, any height function
〈f, v〉 has exactly two critical points: one maximum and one minimum. From this we see
that f is injective: Since the height function 〈f, v〉 for v = N(x) attains its maximum
at x, there is no other point y ∈ S with 〈f(y), v〉 = 〈f(x), v〉 (otherwise there would be
a second maximum). Moreover, we see that f(S) bounds the convex set

C =
⋂

x∈S
H(x)

where H(x) is the half space

H(x) = f(x) + {v ∈ IRn ; 〈v,N(x)〉 ≤ 0}.
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Remark 11.7 If M 6= IRn, it is possible to construct an ε−convex immersion that is
not injective. For example, take the cylinder S1 × IR with radius 1, and consider the
immersion expp |∂Br(0) for r > π (for arbitrary p ∈M).

Fig. 20.

Remark 11.8 Theorems 11.4 and 11.5 are false for n = 2: a counterexample is given
by any locally strongly convex closed curve with winding number ≥ 2 in euclidean plane
M = IR2. However, Theorem 11.5 holds for n = 2 (with the same proof) provided that
the winding number of the curve is ±1.

Remark 11.9 Theorem 11.4 is also false if the curvature can be negative. E.g. let S be
the boundary of a small tubular neighborhood around a closed geodesic in a manifold
M with K < 0. This is ε-convex (by the comparison theorem 3.1), but diffeomorphic
to S1 × Sn−2, not to Sn−1.

Proof of Theorem 11.4. We are using the principle that in spaces with K ≥ 0, we
do not loose convexity by passing to interior parallel hypersurfaces (cf. Theorem 9.7).

Let S′ be an embedded piece of f(S). Then by 9.7, S ′ bounds (partially) some
open set B on which ρ = ρS′ is concave. However, ρ is not strictly concave since it
grows linearly along geodesics which are normal to S ′. This can be improved similarly
as in the proof of Toponogov’s theorem (Ch.6): Instead of ρ consider

σ =
1

2
(R− ρ)2. (11.8)

where R := 1/ε. We compare with S̃′ = ∂BR(0) ⊂ IRn; there we have

σ̃(x) =
1

2
(R− ρ̃(x))2 =

1

2
< x, x >,
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hence D∇σ̃ = I. Therefore we get from the comparison theory (cf. 3.1)

D∇σ ≥ I (11.9)

in the sense of support functions (cf. Ch.9). Using convolution, we make σ smooth: Let

σδ(x) =

∫

TxM

σ(expx(u))ϕδ(‖u‖)du (11.10)

where ϕδ is a mollifier with support in Bδ(0), i.e. ϕδ : IR+ → IR+ is smooth with
ϕδ = const near 0, further ϕδ = 0 on [δ,∞) and

∫

ϕδ(‖x‖)dnx = 1. Now σδ is a smooth
function with

|σδ(x) − σ(x)| ≤ δ, ‖∇σδ‖ ≤ R, D∇σδ ≥ 1 (11.11)

where an arbitrary small error (which goes to zero as δ → 0) is allowed in these estimates.
(The second estimate comes from the Lipschitz constant of σ which is the maximum of
d
dρ (

1
2 (R − ρ)2) for ρ > 0.) Thus we have lost no convexity. In fact, we do not use σδ

itself but a combination χ(ρ)σ + (1 − χ(ρ))σδ for a suitable function χ; this agress to
σ close to S′ (for small ρ, smaller than the focal radius) and it agrees to σδ if ρ is big
enough. This has the same good properties as σδ and additionally, it has S′ as the level
hypersurface with value 1

2R
2. Let us keep the name σδ for this modified function.

If S were embedded, we could thus contract S (using the level sets of σδ) to a
small ε-convex hypersurface lying in a small neighborhood of the origin of some expo-
nential coordinate chart. Since D ≈ ∂ near the origin for exponential coordinates (cf.
Ch.1), this hypersurface is still ε-convex with respect to the euclidean geometry of the
coordinate chart (for some smaller ε). So it bounds a disk (by 11.5).

However, σ and σδ are defined only in a small neighborhood of S ′. But we may
cover S with open subsets Si such that S′

i = f |Si are embedded. Thus we recieve
corresponding functions (σδ)i defined near S′

i which we may past together along the
immersed hypersurface f(S): Note that the constant δ can be chosen independent of i,
by compactness of S, and therefore (σδ)i and (σδ)j agree near f(Si ∩Sj). Now we may
pass to the level hypersurfaces {(σδ)i = 1

2 (R − a)2} for some a > 0 independent of i
which can be pasted together to an immersion f1 : S →M . This new immersion f1 has
roughly distance a from f and is still ε-convex; in fact it is ε1-convex with ε1 = 1/R1

and R1 ≈ R− a. Moreover, the gradient lines of the local σδ’s define a diffeomorphism
between the hypersurfaces f and f1 which is length decreasing by a factor ≤ e−a/R,
due to the estimates (11.11). We will show that we can iterate the process with the
same number a. Then, after N steps, RN ≈ R − Na becomes arbitrarily small, so
our immersion fN gets arbitrarily small. So it is still ε-convex in some exponential
coordinates and hence by Hadamard’s theorem (Theorem 11.6), fN is an embedding
bounding a convex disk. Note that the whole process takes place in the relatively
compact subset M ′ = BR(f(S)).
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However, in dimension n = 2, if we started with an ε-convex closed curve of winding
number ≥ 2, we would get cusps and could not finish the contraction. The problem
is that the embedded pieces Si become smaller and smaller as we approach the cusp,
and thus the values a must be chosen smaller and smaller. But we can exclude this
behaviour in dimension n ≥ 3.

Fig. 21.

Lemma 11.10 Let Mn, n ≥ 3, be a complete manifold with K ≥ 0 and M ′ ⊂ M
a relatively compact open subset. There exists a constant r > 0 depending only on ε
and on the geometry of M ′ such that, for any compact (n− 1)-dimensional manifold S,
for any ε-convex immersion f : S → M ′, and for any s ∈ S, the connected component
containing s of the set f−1(Br(f(s)) is embedded.

Proof. Let f : S → M ′ as above and fix s ∈ S. Using exponential coordinates around
f(s), we find some δ > 0 (depending on ε and the geometry of M ′) such that f |S′ is
still (say) (ε/2)-convex with respect to the euclidean metric on B2δ(f(s)) (in exponen-
tial coordinates), where S ′ denotes the connected component of s in the open subset
f−1(B2δ(f(s)) ⊂ S. Replacing ε/2 by ε again, we have to consider now an ε-convex
immersion f : S′ → IRn with f(s) = 0 such that f−1(Bδ(0)) ⊂ S′ is compact. We may
assume that the unit normal vector at s is the n-th coordinate vector, N(s) = en. Now
we intersect f(S′) by horizontal hyperplanes (parallel to the tangent plane at f(s) = 0),
i.e. we look at the height function h = xn ◦ f : S′ → IR.

By ε−convexity, the only critical points of xn ◦ f are local maxima or minima, and
s is a local maximum with h(s) = 0. Consider the flow lines of −∇h (with respect to
the induced metric on S) starting at s. Either, they reach the boundary ∂Bδ(0), or they
end at a local minimum. If no flow line reaches the boundary, they end all at the same
minimum since S′ \{s} is connected (here we need the dimension restriction n−1 ≥ 2).
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Fig. 22.

In this case S′ is compact (without boundary), so S ′ = S, and f is an embedding by
Hadamard’s theorem (cf. 11.5), and we are done.

So assume that some flow line of −∇h reaches ∂Bδ(0). At which height is this
possible? Along any of the flow lines, the heigth h decreases. So let −r < 0 be the
highest h-value where some flow line reaches ∂Bδ(0). Then no flow line starting at s ends
at a minimum of height > −r: otherwise, by connectedness of S ′, all flow lines would
end at this minimum (they cannot reach the boundary before height −r) which we have
excluded. Consider the connected component S ′′ of {h > −r} which passes through
s. Then still by Hadamard’s theorem, f |S ′′ is an embedding, since the intersections
of f(S′′) with the hyperplanes {xn = t} ∼= IRn−1 for 0 > t > −r are closed ε-convex
hypersurfaces in IRn−1 (which have winding number ±1 if n− 1 = 2 since they contract
to a point as t→ 0). To conclude the proof, we only have to find a good estimate for r.

Claim.
f(S′′) ⊂ Bδ(0) ∩ BR(−Ren) (11.12)

where R = 1/ε, and consequently,

r ≥ r̄ =
1

2
δ2ε. (11.13)

Proof. To see (11.13) from (11.12), note that f(S ′′) cannot reach ∂Bδ(0) before
∂BR(−Ren). So let −r̄ denote the height where ∂BR(−Ren) meets ∂Bδ(0). Then

δ2 − r̄2 = R2 − (R− r̄)2 = 2r̄R− r̄2,

hence r̄ = δ2/(2R) = 1
2δ

2ε.
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Fig. 23.

Now we show (11.12). Put S = f(S ′′) ⊂ IRn. (There is no danger of confusion with
the previous S.) Note that S̄ is a manifold with boundary ∂S = S̄ ∩ {xn = −r}. Let
ρ be the signed distance function from S (continued negatively at the other side of S),
defined on the open set V ⊂ IRn containing all points x where a shortest line segment
from x to S exists, i.e. which are closer to S than to ∂S.

Fig. 24

As above, we put σ = 1
2(R− ρ)2. Then we have (cf. 11.9)

D∇σ ≥ I

in the sense of support functions. (This holds also on the other side of S since we are
now in euclidean space.) On the other hand, we consider also σ̃ = 1

2
(R− ρ̃)2 where ρ̃ is

the signed distance function from S̃ := ∂BR(−Ren). Hence σ̃(x) = ‖x−Ren‖2 and

D∇σ̃ = I.
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Therefore D∇(σ − σ̃) ≥ 0 which shows that σ − σ̃ is a convex function. Since σ = σ̃
and ∇σ = ∇σ̃ along IR+ · en, there are critical points (hence minima) for σ − σ̃ along
IR+ · en. Thus we may conclude (σ− σ̃)(x) ≥ 0 for all x ∈ V which can be connected to
IR+ · en by a straight line segment inside V . We must show that this holds in particular
for all x ∈ S.

Let S1 ⊂ S be the set of points x ∈ S where the vertical ray x+ IR+ · en meets S a
second time and let S2 = S \ S1. All the points above S1 are in V since they are closer
to S1 than to {xn = −r}. Moreover, all points above S2 are in V for the same reason.

Fig. 25.

Thus we may connect any point of S to some point in IR+ · en within the shaded region
(cf. fig. 26 below); we just have to avoid the cylinder of height r above ∂S if we start
from S2. This finishes the proof of the claim, of the lemma and of the theorem.

Fig. 26.
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12. Lower Ricci curvature bounds and the Maximum Principle.

In this chapter, we want to discuss the following two theorems:

Theorem 12.1 (Myers-Cheng [31], [8])
Let M be complete with

Ric(M) ≥ n− 1 = Ric(Sn).

Then diam(M) ≤ π, and equality holds if and only if M is isometric to Sn.

Theorem 12.2 (Cheeger-Gromoll Splitting Theorem, [7], [13])
Let M be complete with

Ric(M) ≥ 0.

Then there exists a line in M , i.e. a complete geodesic which is shortest on any finite
segment, if and only if M is isometric to a Riemannian product M ′ × IR for some
complete (n− 1)-manifold M ′ with Ric(M ′) ≥ 0.

By definition, the Riemannian product M = M1×M2 of two Riemannian manifolds
is the cartesian product with the metric

‖(v1, v2)‖2 = ‖v1‖2 + ‖v2‖2

for any tangent vector (v1, v2) of M1 ×M2.

Let us first discuss the inequality of Theorem 12.1. This follows from our average
comparison theorem 4.1: We saw that the first conjugate point on a geodesic γ on M ,
i.e. the first singularity t1 for a Riccati solution A along γ with A(t) ∼ 1

t I near t = 0,
comes not later than on the comparison space Sn, i.e. at a distance ≤ π. Beyond the
first conjugate point, no geodesic can be shortest (cf. Ch.5), hence there are no shortest
geodesics with length > π and therefore the diameter is ≤ π.

Corollary 12.3 A complete Riemannian manifold M with Ric ≥ n− 1 is compact and
has finite fundamental group.

Proof. Since diam(M) ≤ π, M is the image of the compact set Bπ(0) ⊂ TpM under
the map expp (for any p ∈ M), hence it is compact. By the same reason, the universal

cover M̂ is compact. Since a covering map of compact spaces has only finitely many
preimages (otherwise, the preimages would accumulate), the covering M̂ →M is finite,
hence π1(M) is finite.
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Remark 12.4 Under the same hypothesis, we also have

Vol(M) ≤ Vol(Sn).

with equality if and only if M is isometric to Sn. This follows immediately from the
Bishop-Gromov inequality and its equality discussion.

Now let us come to the equality part of Theorem 12.1 and 12.2. These are rigidity
theorems: the assumptions are so strong that we get a characterization up to isometries.
The main ingredience is the Hopf-Calabi Maximum Principle for subharmonic functions:

Definition 12.5 Let M be any Riemannian manifold and f : M → IR a continuous
function. Let a ∈ IR. We say

∆f ≥ a

(in the sense of support functions) if for any p ∈ M and any ε > 0 there is a smooth
lower support function f̃ = fp,ε (i.e. f̃ ≤ f, f̃(p) = f(p)) defined in a neighborhood of
p with

∆f̃(p) ≥ a− ε

where ∆f̃ = traceD∇f̃ = div∇f̃ is the Riemannian Laplace operator (Laplace- Beltrami
operator. Similarly we define ∆f ≤ a using smooth upper support functions. Clearly,
∆f ≤ a iff ∆(−f) ≥ −a. A continuous function f with ∆f ≥ 0 is called subharmonic,
and if ∆f ≤ 0, f is called superharmonic.

Theorem 12.6 (Hopf-Calabi Maximum Principle, [23], [4], [13])
Let M be a connected Riemannian manifold and f : M → IR a continuous subharmonic
function. Then f attains no maximum unless it is constant.

Proof. If f attains a maximum at p ∈ M and is not constant on any neighborhood of
p, we may choose a small coordinate ball U around p such that

∂′U := {x ∈ ∂U ; f(x) = f(p)}

is a proper subset of ∂U . Now pick a smooth function with
(a) h(p) = 0,
(b) h < 0 on U ,
(c) ∆h ≥ 0 on U .
In fact, h can be constructed easily in the form

h = eαφ − 1
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for some function φ and a sufficiently large constant α > 0 since

∆(eαφ − 1) = (α2‖∇φ‖2 + α∆φ)eαφ.

If η > 0 is sufficiently small, we have f + ηh < f(p) on ∂U while (f + ηh)(p) = f(p).
This shows that f +ηh attains a maximum on U , say at q. Then also the lower support
function fq,ε + ηh of f + ηh at q takes a maximum at q, but

∆(fq,ε + ηh)(q) ≥ −ε+ η∆h(q) > 0

if we choose ε sufficiently small. This is a contradiction since the Hessian of a function
at a maximum point is negative semidefinite, so its trace is ≤ 0.
Thus, the set of points where f attains a maximum is open and closed and by hypothesis
not empty, hence it is the whole manifold.

Proof of Theorem 12.1, equality part:

Let p, q ∈M with |p, q| = π. Let ρp(x) = |x, p|, ρq(x) = |x, q|, and f = ρp + ρq − π. By
triangle inequality we have f ≥ 0, and f = 0 on any shortest geodesic γ from p to q.

Fig. 27.

Moreover, due to Ric ≥ n − 1 and the average comparison theorem 4.1, we have on
M \ {p, q}:

∆ρp ≤ (n− 1) cot ρp, ∆ρq ≤ (n− 1) cotρq

in the sense of support functions. In fact, to prove the first inequality at some point
x ∈ M \ {p, q}, we choose a shortest geodesic segment β from x to p and replace p by
some point p′ on β close to p; then the distance function ρp′ from p′ is smooth near
x and satisfies the above inequality with an arbitrary small error (by Theorem 4.1),
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and by trangle inequality, ρp′ + |p′, p| is an upper support function for ρp. (A similar
argument was used in the proof of Toponogov’s Theorem 6.1, Case 2.)

Since ρq ≥ π − ρq, we have

cot ρq ≤ cot(π − ρp) = − cot ρp.

Thus
∆f ≤ (n− 1)(cot ρp + cot ρq) ≤ 0

(in the sense of support functions) on M \ {p, q}. Since f attains the maximum 0 on γ,
the maximum principle applied to −f gives f ≡ 0. Consequently, ρq = π− ρp, and any
geodesic starting from p meets q at the distance π. Now the equality discussion of the
average comparison theorem 4.1 shows RV = I where V is the radial vector field from
p, and hence M is isometric to Sn (where the isometry is via expp).

Fig. 28.

The proof of Theorem 3 is quite similar. We first show the superharmonicity of
the Busemann functions which corresponds to the concavity in the case of K ≥ 0 (cf.
Lemma 10.6):

Lemma 12.7 Let M be complete with Ric ≥ 0 and γ : [0,∞) → M be any ray in M .
Then the corresponding Busemann function bγ is superharmonic, i.e. ∆bγ ≤ 0 in the
sense of support functions.

Proof. Recall that for any x ∈M , we have a smooth upper support function

bx,t(y) := |γx(t), y| − t+ bγ(x)
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of bγ at x, where γx is an asymptotic ray starting at x (cf. Ch.10). By the avarage
comparison theorem 4.1 we have

∆bx,t(x) ≤
n− 1

t
,

thus ∆bγ ≤ 0 in the sense of support functions.

Proof of Theorem 12.2. (cf. [13])

Devide the line γ in M into the two rays γ+, γ− : [0,∞) →M by putting γ±(t) = γ(±t),
t ≥ 0. Let b± be the Busemann function associated to γ±. Then b+ +b− ≥ 0 by triangle
inequality, with equality along γ. Moreover, by the previous lemma we have

∆(b+ + b−) ≤ 0

in the sense of support functions. Thus b+ + b− ≡ 0 by the maximum principle. More-
over, for any x ∈M ,

b+x,t ≥ b+ = −b− ≥ −b−x,t. (12.1)

Thus, b := b+ is once differentiable at x, and the asymptotic rays γ+
x , γ−x fit together to

a complete geodesic γx perpendicular to the level hypersurface {y ∈ M ; b(y) = b(x)}.
Further, let

A±
t (u) = D∇b±x,t(γx(u)).

For fixed u, A±
t (u) is monotonely decreasing with t, and bounded below since A+

t (u) ≥
−A−

t (u) by (12.1). Thus A±
t converges to some solution A± of the Riccati equation

along γx. Moreover, A+ ≤ −A− and traceA± ≤ 0 which implies A+ = −A− =: A with
traceA = 0. The Riccati equation gives

‖A‖2 = traceA2 = −Ric(γ′x) ≤ 0,

thus A ≡ 0. Hence D∇b±x,t(x) → 0 as t→ ∞, and therefore, b± is concave (cf. Ch.10).
Since b+ = −b−, b is also convex and hence affine, i.e. b ◦ β = 0 for any geodesic β.
Thus b is smooth with D∇b = 0, i.e. ∇b is a parallel vector field. Let M ′ denote the
level hypersurface {b = 0} and φt be the flow of ∇b. Then the map Φ : M ′ × IR → M
with

Φ(x, t) = φt(x) = γx(t)

is an isometry.
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There are interesting applications of Theorem 12.2 since sometimes, we get a line
for free:

Corollary 12.8 Let M be a complete non-compact irreducible manifold (i.e. not a
Riemannian product) such that Ric ≥ 0. Then M has only one end, for any compact
subset C ⊂M , the complement M \C has only one unbounded connected component.

(By definition, an end of a non-compact manifold M is a function E : K → M, where
K is the set of all compact subsets of M and M the open ones, such that E(C) is a
connected component of M \ C with E(D) ⊂ E(C) whenever D ⊃ C.)

Proof. If we had two different unbounded connected components of M \ C, we would
take diverging sequences (pi), (qi) in each component and join pi to qi by a shortest
geodesic segment γi. These geodesics have to pass through C, so they accumulate, and
a limit geodesic is a line (since |pi, qi| → ∞) which is excluded by irreducibility and
Theorem 12.2.

Corollary 12.9 Let M be a compact manifold with Ric ≥ 0. Let us suppose that the
universal cover M̂ is irreducible. Then π1(M) is finite.

Proof. Assume M̂ non-compact (otherwise we are done). Then there is a compact
fundamental domain F related to Γ ∼= π1(M) (acting isometrically on M̂). Fix o ∈ F .
Choose a sequence pi → ∞ in M and join o to pi by a shortest geodesic segment γi.
Let qi be the midpoints of γi. Since F is a fundamental domain, there exist gi ∈ Γ such
that giqi ∈ F . Thus, as in the proof of Corollary 12.8, the shortest geodesic segments
giγi accumulate to a line γ. This is impossible by Theorem 12.2 and the irreducibility
of M̂ .
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13. The Bochner technique.

Let M be a Riemannian manifold and consider a vector field V on M. In Ch.2, we
considered the derivative A = DV and derived the equation

DVA+ A2 + RV = DW

with W = DV V (cf. (2.5)). Taking the trace, we get

∂V div(V ) + trace(A2) +Ric(V ) = div(W ), (13.1)

(Recall that the divergence of a vector field X is given by div(X) = traceDX.) Suppose
now M is compact with no boundary, then

∫

M

(∂V div(V ) + trace(A2) +Ric(V )) = 0. (13.2)

by the Divergence Theorem (since ∂M = ∅).

Theorem 13.1 (Bochner)
Let M be a compact manifold without boundary.
a) If A is symmetric, div(V ) = 0 and Ric(V ) ≥ 0, then

DV = 0 and Ric(V ) = 0.

b) If A is antisymmetric (in particular, div(V ) = 0) and Ric(V ) ≤ 0, then

DV = 0 and Ric(V ) = 0.

Proof. This is clear by (13.2): Since the first term vanishes by hypothesis, the integrand
does not change sign, so it must vanish pointwise.

Corollary 13.2 Let M be compact with Ric(V ) > 0. Then the first Betti number
b1(M) vanishes.

Proof. Since the first de-Rham cohmomology of M is

H1(M) = {local gradients}/{gradients},

we only have to show that each local gradient vector field V (i.e. DV = (DV )∗, cf. Ch.2)
is the gradient of some function. Put Ṽ = V − ∇f where f : M → IR is a solution of
the equation ∆f = div(V ). Then Ṽ is still a local gradient, and moreover, div(Ṽ ) = 0.
Thus Theorem 13.1 a) applies to Ṽ , and now we get the contradiction Ric(Ṽ ) = 0,
unless Ṽ = 0, i.e. V = ∇f , so V is a gradient.
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Corollary 13.3 Let M be compact with Ric < 0. Then the group of isometries of M
is finite.

Proof. It is known (cf. [26]) that I(M), the group of isometries of M , is a compact Lie
group. Any one-parameter subgroup (gt)t∈IR of I(M) gives rise to a vector field V on
M , defined by

V (x) =
d

dt
gt(x)|t=0

which is the Killing field corresponding to (gt). Since gt is an isometry,

〈(dgt)x.a, (dgt)x.b〉 = 〈a, b〉

for all a, b ∈ TxM . Differentiating with respect to t we see that 〈DaV, b〉+ 〈a,DbV 〉 = 0,
i.e. A = DV is skew symmetric. (In fact, this property characterizes Killing fields.)
Now from Theorem 13.1 b) we get Ric(V ) = 0 which is a contradiction to Ric < 0
unless V = 0. So there are no nontrivial one parameter subgroups in I(M). Hence
I(M) is discrete; since it is also compact, it must be finite.

Remark 13.4 Corollaries 13.2 and 13.3 can be easily extended to the case where Ric ≥ 0
or Ric ≤ 0. Then applying 13.1 to a divergence-free local gradient field (Case (a)) or
to a Killing field (Case (b)) V , we recieve DV = 0. In Case (a) we recieve that the
first Betti number is the number of linear independent parallel vector fields on M , so in
particular, b1(M) ≤ n, and in Case (b) we get that any Killing field is parallel, so the
connected component of I(M) acts only on a flat factor of M .

Remark 13.5 It is interesting to compare the proofs of Corollaries 13.1 (Bochner) and
12.2 (Myers) which both show that a compact manifold M with Ric > 0 has b1(M) = 0.
(Recall that by Hurewitz, b1(M) = 0 if π1(M) is finite, but the converse does not hold.)
In both proofs we have used the equation

∂V trace(A) + trace(A2) + Ric(V ) = div(W )

for a local gradient vector field V , where A = DV and W = DV V . However, in
Myers’ theorem, we have assumed W = 0 and estimated traceA (as a solution of the
Riccati equation) while in Bochner’s theorem, we have assumed traceA = 0 and allowed
arbitrary W . Myers’ result is stronger for Ric > 0, however, Bochner’s technique gives
a result also for Ric ≥ 0.
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Appendix: Nested Coverings

In this appendix, we want to prove the topological result on coverings which we
have used in Ch.8, cf. (8.20). The following exposition is essentially due to U. Abresch
(cf. [28]). Let us first recall the Mayer-Vietoris principle (cf [3]). Let X = X1∪ ...∪XN

be a topological space. Let SX denote the complex of singular chains c =
∑

i αiσi
where σi : ∆q → X are singular (q-)simplices and αi coefficients in the chosen field F.
The homology of X can be computed from the subcomplex S̃X of small chains where a
chain c is called small if all the σi take values in some Xj. For N = 2 we get the usual
Mayer-Vietoris exact sequence of chain complexes:

0 → S(X1 ∩X2) → SX1 ⊕ SX2 → S̃X → 0

(c1, c2) 7→ c1 + c2

c 7→ (c,− c)

For arbitrary N , we put

Xi1,...,ik := Xi1 ∩ ... ∩Xik ,

and putting C0 = S̃X, C1 =
∑

i SXi, C2 =
∑

i,j Xij etc., we get an exact sequence

→ C3 → C2 → C1 → C0 → 0

where the maps δk : Ck → Ck−1 are defined by their ”matrix elements”

δk(i1, ..., ik; j1, ..., jk−1) : SXi1,...,ik → SXj1,...,jk−1

as follows: the only nonzero matrix elements are

δk(i1, ..., ik; i1, ...îj..., ik) = (−1)j−1 · inc

where inc denotes the natural inclusion map. Put

Ak = imδk = kerδk−1 ⊂ Ck−1.

In particular, we have

A1 = C0 = S̃X.

The above exact sequence of chain complexes can be split into short exact sequences as
follows:

0 −→ Ak+1 −→ Ck
δk−→ Ak −→ 0.
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As usual, a short exact sequence of chain complexes gives rise to a long exact sequence
of the homologies:

→ HpAk+1 → HpCk → HpAk → Hp−1Ak+1 → ...

We will use only the segment

HpCk → HpAk → Hp−1Ak+1

in order to estimate the middle term. If we had only to compute the Betti numbers, we
would get

dimHpAk ≤ dimHpCk + dimHp−1Ak+1 (A1)

for all k, and in particular

bp(X) = dimHpA1 ≤ dimHpC1 + dimHp−1A2,

and further
dimHp−1A2 ≤ dimHp−1C2 + dimHp−2A3

and so on, hence by induction

bp(X) ≤ dimHpC1 + dimHp−1C1 + ...+ dimH0Cp+1

since Hp−qAq+1 = 0 for q > p. However, these Betti numbers are not available in our
application; instead, we have to compute the content which is the rank of certain inclu-
sion maps. Unfortunately, the analogue of (A1) for the rank in place of the dimension
is not true: If we have a commutative diagram of exact sequences,

A
φ−→B

ψ−→ C

↓ α ↓ β ↓ γ

A′ φ′

−→B′ ψ′

−→ C ′

we have not rk(β) ≤ rk(α) + rk(γ); e.g. we could choose α = 0 and γ = 0, and β maps
im(φ) onto 0 while a complement of imφ is mapped into ker(ψ′). However, if we have
three such sequences,

A
φ−→B

ψ−→ C

↓ α ↓ β ↓ γ

A′ φ′

−→B′ ψ′

−→ C ′

↓ α′ ↓ β′ ↓ γ′

A′′ φ′′

−→B′′ ψ′′

−→ C ′′
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then we get
rk(β′ ◦ β) ≤ rk(α′) + rk(γ).

Proof. Consider a decomposition

im(β) = (imβ)1 ⊕ (imβ)2

where
(imβ)1 = im(β) ∩ ker(ψ′).

Then (imβ)1 ⊂ im(φ′), hence

β′(imβ)1 ⊂ φ′′(α′(A′)).

Moreover, ψ′ is injective on (imβ)2, and

ψ′(imβ)2 ⊂ γ(ψ(B)).

Therefore,
rk(β′ ◦ β) ≤ dim(β′(imβ)1) + dim(β′(imβ)2)

≤ rk(α′) + rk(γ)

We apply this to

HpC
0
k −→HpA

0
k −→ Hp−1A

0
k+1

↓ ↓ ↓
HpC

p
k −→HpA

p
k −→ Hp−1A

p
k+1

↓ ↓ ↓
HpC

p+1
k −→HpA

p+1
k −→ Hp−1A

p+1
k+1

where Cpk and Apk are the above defined complexes, but now for p+2 different coverings
{Xq

1 , ..., X
q
N} of X (q = 1, ..., p+ 2) with the property that

Xq−1
i ⊂ Xq

i

for q = 1, ..., p+ 1 (nested coverings). Thus we get

rk(HpA
0
k → HpA

p+1
k )

≤ rk(HpC
p
k → HpC

p+1
k ) + rk(Hp−1A

0
k+1 → Hp−1A

p
k+1)
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for all k and in particular

rk(HpA
0
1 → HpA

p+1
1 )

≤ rk(HpC
p
1 → HpC

p+1
1 ) + rk(Hp−1A

0
2 → Hp−1A

p
2)

and further

rk(Hp−1A
0
2 → Hp−1A

p+1
2 )

≤ rk(Hp−1C
p−1
2 → Hp−1C

p
2 ) + rk(Hp−2A

0
3 → Hp−2A

p−1
3 )

and so on. Thus we get by induction

rk(HpA
0
1 → HpA

p+1
1 )

≤
p

∑

j=0

rk(Hp−jC
p−j
j+1 → Hp−jC

p+1−j
j+1 ) (A2)

Recall that

HqC
q
K → HqC

q+1
k

=
⊕

i1<...<ik

(Hq(X
q
i1
∩ ... ∩Xq

ik
) → Hq(X

q+1
i1

∩ ... ∩Xq+1
ik

).

We apply this to our coverings of balls Bj
i = 10jBi for j = 0, ..., n+ 1 and recieve

cont(
⋃

i

Bi,
⋃

i

10n+1Bi)

=
n

∑

p=0

rk(Hp(
⋃

i

B0
i ) → Hp(

⋃

i

Bn+1
i ))

≤
n

∑

p=0

rk(Hp(
⋃

i

Bn−pi ) → Hp(
⋃

i

Bn+1
i ))

We estimate each term individually by (A2): For given p we put

X =
⋃

i

Bn−pi , Xq
i = Bn−p+qi

and sum over p. Putting now

Cqk =
∑

i1<...<ik

S(Bqi1 ∩ ... ∩B
q
ik

)
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and

γqp,k : HpC
q
k → HpC

q+1
k ,

we get from (A2)

cont(
⋃

i

Bi,
⋃

i

10n+1Bi)

≤ rk γnn,1 + rk γn−1
n−1,2 + ... + rk γ1

1,n + rk γ0
0,n+1

+ rk γnn−1,1 + rk γn−1
n−2,2 + ... + rk γ1

0,n

+ ...
+ rk γn1,1 + rk γn−1

0,2

+ rk γn0,1
≤ rk γn∗,1 + rk γn−1

∗,2 + ... + rk γ1
∗,n + rk γ0

∗,n+1

Hence
cont(

⋃

i

Bi,
⋃

i

10n+1Bi)

≤
n+1
∑

k=1

rk γn+1−k
∗,k

=

n+1
∑

k=1

∑

i1<...<ik

cont(

k
⋂

j=1

Bn+1−k
ij

,

k
⋂

j=1

Bn+2−k
ij

)

which proves Equation (8.20).
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