Toponogov’s Theorem and Applications
by

Wolfgang Meyer

These notes have been prepared for a series of lectures given at the College on
Differential Geometry at Trieste in the Fall of 1989. The lectures center around To-
ponogov’s triangle comparison theorem, critical point theory and applications. In the
short amount of time available not all the aspects can be covered. We focus on those
applications which seem to be most important and at the same time most suitable
for an exposition. Some basic knowledge in geometry will be assumed. It has been
provided by K. Grove in the first series of these lectures. Nevertheless we try to keep
the lectures selfcontained and independent as much as possible. For the result about
the sum of Betti numbers in section 3.5 a lemma from algebraic topology is needed. A
proof for this result has been provided in the appendix.

I am indebted to U. Abresch for many helpful conversations and also for writing

and typing the appendix.
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1 Review of notation and some tools

1.1 Covariant derivatives

We consider a complete Riemannian manifold M with tangent bundle TM and Rie-
mannian metric (, ) and corresponding covariant derivative V of Levi Civita, which
is the unique torsion free connection for which ( , ) is parallel, i.e. for any vector fields
X,Y,Z on M we have

VxY — WX =[X,Y] (1)

and
XY, Z)=(VxY ,Z)+(Y,VxZ). (2)

The last two equations are equivalent to the Levi Civita equation

2(VxY,Z) = X(Y,2)+Y (Z,X)—Z(X,Y)
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+(Z,[X,Y]) + (¥, [Z, X]) = (X, [, Z]) (3)

If M is an arbitrary manifold and f : M — M a differentiable map, f, : TM —
TM denotes the differential of f. V naturally extends to a covariant derivative for
vector fields along f. For any vector field A on M and any vector field Y along f,
ie. Y : M — TM satisfies ToY = f where 7 : TM — M denotes the projection, the
covariant derivative V4Y is well defined. Due to the fact that (V,Y"), depends only
on A, and the values of Y in a neighbourhood of the point p, this extension is uniquely
determined by requiring the chain rule V,(Xy) = Vj,,X for any tangentvector v eTM
and any vector field X on M.

In a similar way the corresponding covariant derivative for tensor fields carries over
to a covariant derivative for tensorfields along a map. As a consequence one obtains

for example the Cartan structural equations for the Levi Civita connection:
VafiB — VBf*A_f*[A,B]:O (4)

R(f.A, f.B)Y = VaVsY — VsV4Y — ViugY, (5)

where R is the curvature tensor of V, A, B are vector fields on M and Y is a vector
field along the map f.

For a curve ¢ : I — M the parameter vector field on I with respect to the parameter
t will be denoted by 2 or Dy, é(t) = c.2|; is the the tangent vector of c at t. The
covariant derivative Vp,Y for a vector field Y along c is abbreviated by Y’. A parallel
vector field Y along c is characterized by the linear differential equation Y' = 0,
a geodesic curve by the non-linear second order equation ¢’ = 0. For consistency
reasons we avoid the often found notation V¢ resp. V.Y for the expressions Vp,¢é
resp. Vp,Y when Y is a vector field along c. The inconsistency of such notation
becomes apparent when c¢ is a singular curve for example a constant curve and Y a
non-constant vector field along c. If X is a vector field on M, V;X = Vp, X, (chain
rule) is well defined.

The exponential map exp : TM — M is determined by the initial value problem for
geodesics. If veT,M, then exp(v) = ¢(1) where c is the geodesic with initial condition
¢(0) = p and ¢ = v. The restriction of exp to the tangent space T,M at p is denoted
by exp,. Notice that for complete manifolds the exponential map is defined on all of
TM by the Hopf-Rinow theorem.

For a function f: M — IR and a vector field X onM, X f denotes the derivative
of f in direction X. The gradient of f is defined via the equation

(gradf,X)=Xf (6)
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and the Hessian Hessf of f by
Hessf (X) = Vxgradf. (7)

Hessf is a selfadjoint endomorphism field, i.e.(Vxgrad f,Y) = (Vygrad f, X).

Important functions on a Riemannian manifold are distance functions or local dis-
tance functions from some point in M or from a submanifold of M. A local distance
function is a function in an open subset U of M considered as a Riemannian subman-
ifold. If p € U C M and r(q) = distyu(p,q), rv(q) = disty(q,p) then ry(q) > r(q).
ry may be differentiable in points where r fails to be differentiable. A typical example
arises as follows: Let ¢ : [, 8] — M be an injective geodesic segment with initial point
p = ¢(a) and without conjugate points. Then there is a neighborhood U of ¢(]a, 3])
where ry is differentiable. However r is not differentiable in any point of the cut locus
of p. For explicit examples look at geodesics on a cylinder.

On the set of points where a (local) distance function is differentiable it satisfies
lgrad f| = 1. The gradient lines of any function with this property are geodesics
parametrized by arc length, since <Vgradfgradf , X> = (Hessf grad f,X) =
(Hessf X, grad f) = (Vxgrad f ,grad f) = £ X (grad f, grad f) = 0 for any vector field
X on M and hence Vgrad ¥ grad f = 0. Therefore the level surfaces of such a function

are equidistant. They are referred to as a family of parallel surfaces.

1.2 Jacobi fields

Jacobi fields J along a geodesic arise naturally as variational vector fields in one pa-
rameter families of geodesic lines and are characterized by the linear second order

differential equation
J"+ R(J,¢)é = 0. (8)
If V is a geodesic variation of ¢, i.e. V : I X (—e,¢) — M is differentiable and

V(t,0) = c(t) and t — V(¢,s) is a geodesic for all se(—¢,¢), then J(t) = Vi 2|, is a
Jacobi field along c:

J"t) = Vp,Vn,ViDslio = Vio,Vip,ViDy |io + Vi, Vi [Ds, Di] |10
=0
= Vi, Vo, ViDy 1o — Vi, Vo, VaDy |io
N—————

=0

— —R(V.D,,V.D)V.D, |0 = —R(J, &)é .

4



Therefore the Jacobi equation is the linearization of the geodesic equation along c.
Notice that V can be written in the following way: If p is the curve p(s) = V(0,s) and
Y the vector field along p given by Y(s) = Vi.D; o, then V(t,s) = exptY(s). The
initial conditions of the Jacobi field in terms of p and Y are J(0) = p(0), J'(0) = Y'(0).
Y'(0) is the initial vector of the geodesic c¢. Any tangent vector u to TM can be written
as the tangent vector u = Y| of a curve s — Y|, eT'M. Y is a vector field along
the base curve p(s) = moY|[;. If Y and V are defined as above, we find exp, u =
expTY|0 = V.Ds|1p = J(1). Therefore the differential of the exponential map is
completely determined by Jacobi fields.

For example, the Jacobi field with initial conditions J(0) = 0, J'(0) = w along the
geodesic exptv is obtained from the variation V(¢,s) = expt(v + sw). Here p(s) is
the constant curve, Y (s) = v + sw, J(t) = exp, |wtw, J(1) = exp,.|yw. This shows
that the differential of the restriction emp|Tp m is determined by Jacobi fields on M

with these initial conditions.

1.3 Interpretation of curvature in terms of the distance func-
tion

Consider two geodesics ¢y, ¢; emanating from a point p in M, cy(e) = expev, ¢i(e) =
expew, v,w e T,M and the distance L(¢) = dist(c,(€),c1(e)) in a neighborhood of

zero. Then the fourth order Taylor formula for L? is given by

L*(e) = v — w|? — Le* (R(v,w)w,v) + O(£%) . (9)

3
When v # w this implies for € > 0 :

1 (R(v,w)w,v) 4

L(e)=c¢|v—w| — = e* +0(e). (10)
6 fo—w]
For linearly independent vectors v, w satisfying |v| = |w| = 1 this can be rewritten
as
L(e) =¢elv —w| (1 - LK (v,w)(1+ (v,w))e?) + O(e?), (11)

where K (v, w) ist the sectional curvature of the plane spanned by v and w. Therefore
L grows faster than linear if K < 0 and slower than linear if K > 0 in a neighborhood
of 0.

To prove (9) we consider the variation
V(e, t) = exp(t exp;)l(g) oc1(€))
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Figure 1: interpretation of sectional curvature

Figure 2: setup for the proof of (9)

for small values of £ and ¢€[0,1]. The parameter tangent fields along V' are E = V, D,
and T = V,D;. The parameter curves a. : t — V(e,t) are geodesics connecting the
points ¢y(e) and ¢;(g). T is the tangent field of the geodesics and ¢t — E|. ; is a Jacobi
field along a. and E|.o = ¢ (), Elc1 = ¢i(e).

Notice that |a.(¢)| is the length of a. so that

L(e) = lae(t)] = 1T (12)

which is constant in ¢ for ¢ fixed. The derivatives of H = L? up to the fourth order
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are given by

H'(e) = 2(Vp,T,T)|e

H'(e) = 2((V3HT,T)+ (Vp,T,Vp.T))lc,

H"() = 2(v3TT +3(V3.T,Vp.T)) |-

HY(e) = 2((VHT,T)+4(VH.T,Vp,T)+3(VH T,V5T)) |y -

We will now evaluate these derivatives at (0,¢) in order to find the coefficients for the
Taylor formula. The equation Vp T = Vp,E and Vp,T = 0 will be used frequently
during this calculation. Also notice that T'|o+ = 0, since V(0,t) = p. We have

Vp.Elep=0, Vp,E|:1 =0 (13)
since E|.o = é(¢) and E|.; = é(¢) . From the Jacobi property of E we obtain
Vo, Vn,E = —R(E,T)T, (14)

so that
Vb, Vp,E |0t =0. (15)
Hence ¢t — E|o; is a linear vectorfield along the constant curve ag. Since Elpo =
¢(0) =v, Elo1 = ¢:(0) = w it follows
E|(0,t) =v+ t(w - ’U) . (16)
With this information we can already evaluate H'(0) and H"(0):
H'(0) = 2(Vp.T,T)|os=0 (17)
H'(0) = 2(V}T,T)los+2(Vn.T, Vn.T) o,
= 2 <VDtE’ VDtE> |0,t

= 2fv—w’ (18)
from (16). Next we show that
Vp.Eloy = 0 (19)
Vo, Vp.Eloy = 0 (20)
V. Vb, = 0. (21)

(20) is a consequence of (19) and (21) follows from (20) since
Vp, Vp, T = Vp,Vp,E = R(E,T)E + Vp,Vp, E
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In view of the equations (13) above it suffices to show Vp, Vp, Vp. E |o; = 0 for the
proof of (19). For this observe

Vi, Vp, Vp.E = Vp,(R(T, E)E) + R(T, E)Vp,T + Vp,(R(T, E)T) .
The right hand side vanishes at (0,t) since Vp,T' = 0 and T'|o; = 0. This suffices to
find H"(0):
H"(0) = 6(Vp.Vp.T,Vp.T) o4
= 6 <VD5VD,5E, VD5T> |0,t
6 (R(E,T)E,Vp.T) o4+ 6 (Vp,Vp.E, Vp.T) [0,
-0 (22)

from (20). From (21) we get
H™ (0) =8(Vp,Vp, V. T , V. T) oz (23)
Furthermore

Vo.Vo.Vo.Tlot = Vb.Vo.Vp,Elos
= (VDER(E',T)E + VDEVDtVDEE”o,t
= R(E,Vp,E)E|y;+ Vp,Vp,Vp.Elo,; - (24)

Using (16),(23),(24) and the symmetries of R we find
H™(0) = 8 (R(v, w)v,w) + (Vp, Vp,Vp.E , Vp,T) loys -

Since this must also be constant in ¢, the second term on the right hand side is constant

in t. Now

(Vp. VD, VD, E,Vp.T) 04 = D:Dy(Vp.E,Vp,T) oy
= -DtDs <VD5Ea VD5T> |0)t

by using (20) and (21). Therefore

D.(Vp.E,Vp.T) ot =(Vp.Vp.E,Vp.T) ot + (Vp.E, Vp, Vp.T)

0,t

must be linear in t. But VDE VDEE |0,0 == VDE VDEC'()(O) == 0, VDE VDEE 0,1 =
Vp.Vp.€1(0) = 0 and Vp, Vp.T |p: = 0, so that D.(Vp E, Vp.T) |o: = 0 since it

vanishes at ¢t = 0 and at ¢t = 1. This proves

H™(0) = 8 (R(v, w)v,w) . (25)
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Equation (9) now follows from (17), (18), (22) and (25). We leave it to the reader to

verify
HY(0) = 10 {(VysuR) (v, w)v, w) . (26)

If HV(0) = 0 for all choices of v and w, then M must be a locally symmetric space,
since (26) can be used to show that the operator R; = R(..,¢)¢ is parallel for any

geodesic c.

1.4 The levels of a distance function

In this section we will see that Jacobi fields determine the second fundamental tensor
S of the level surfaces of a (local) distance function f. This will be used to establish
the Riccati equation for S and a Riccati inequality.

We have a natural unit normal vector field N = grad f along the level surfaces of
f. The second fundamental tensor S of the levels with respect to IV is the restriction
of the Hessian of f to the tangent spaces of the levels , Su = Hessfu = V,N for
tangent vectors u to the levels. The derivative S’ = V.S in the normal direction is
defined by S'Y = (VnS)Y = Vy(SY) — S(VNY) for any vector field Y tangent to
the levels of f. Notice that S’Y is again tangent to the levels.
Let My be a fixed level, My = f'{0} after changing f by a constant. The other
levels are then given by M; = f~'{t}. For small values of ¢ the levels M, and M,
are diffeomorphic via the diffecomorphism FE;(p) = exp(¢t N(p)). The differential of
Ei|u, can be desribed in terms of Jacobi fields: Let s+ p(s) be a curve in M, with
tangent vector v = p(0). Then E;.v = J(t) where J is the Jacobi field along the
geodesic t — E;(p(0)) of the geodesic variation V' (¢,s) = Eiop(s), J(t) = ViDs|tpo. Its
initial conditions are J(0) = p(0) = v, J'(0) = Vp,(Nop)|o = Vi) N = Sv, compare
section 1.2.
The geodesic y(t) = V(t,s) is an integral curve of N, so that ViDy;s = () =
NoV(t,s). With this information we obtain J'(t) = Vp,ViDs |10 = Vp,ViDy |1 =
Vp,NoV |10 = V.p,N |to = SJ(t). The second fundamental tensor of the levels now

is determined by

ST=J. (27)

Covariant differentiation of this equation leads to the important Riccati equation for
S: Since (27) is an equation along the geodesic c¢(t)=V(t,0) it reads more precisely
S.J = J'. This is useful to remember for the chain rule in Vp, S, = V.S = V.S =
(8"). for the computation of J” = Vp,(S.J) = S'J + SJ = S'J + S%J. Using the
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Jacobi equation J” + R(J, N)N = 0 we obtain the Riccati equation
S'=—-Ry-S5° (28)

where Ry denotes the curvature operator RyX = R(X, N)N in direction N.
If there is a lower bound k for the sectional curvature K of M, then the Riccati
equation leads to a Riccati inequality along the gradient lines ¢ of f. Let Y be a

parallel unit vector field along ¢ tangent to the levels, i.e. (Y,¢) = 0. Then by (28)

(SY,Y)' = —(R(Y,N)N,Y) - (S*V,Y)
= —K(Y,N)—|SY|?.

From the assumption x < K(Y, N) and the Schwarz inequality we obtain the Riccati
inequality
(8Y,Y) < —k — (8Y,Y)? (29)

along c.

1.5 Data in the constant curvature model spaces

Constant curvature model spaces are important in comparison theory because the
geometric quantities in these spaces can be calculated explicitly.

M denotes the n-dimensional hyperbolic space IH of curvature x if k < 0, the
euclidian space IR™ if k = 0 and the standard sphere S} of radius ﬁ if K > 0.
Since (R(v,u)u,v) = k for any pair of orthonormal vectors u,veT, M}, we have R, :=
R(...,u)u = k-1d, on the orthogonal complement of « in T, M. Therefore the Jacobi
equation and the Riccati equation are rather simple.

Jacobi fields along a geodesic ¢ : R — M orthogonal to ¢ are given by f-Y, where
Y is a parallel vector field along ¢ and f : IR — IR is a solution of the 1-dimensional
Jacobi equation

f"+Kkf=0 (30)

Let sn, and cs, be the solutions of (30) with initial conditions sn, (0) = 0, sn,'(0) =1
and cs.(0) =1, cs,'(0) =0, i.e.

sng(t) = ﬁ sin y/kt for K> 0
(

csk(t) = cosy/kt
() = ¢ for k=0 (31)
cse(t) = 1 B
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sng(t) = —=sinh./|&|t
(®) Vsl A for Kk <0

csk(t) = coshy/|k|t

Furthermore let
cty(t) =csk(t)/sng(t)  for sn,(t) #0 (32)
The derivatives of these functions are given by
! ! !

sn,' =cs,, €S,' = —kKsn,, Cty =—Kk—cty>. (33)

Furthermore the following elementary equations hold:

1 = cs,’+msn,’ (34)
sng(a+b) = sng(a)csg(b) + cse(a)sn,(b) (35)
csp(a+b) = csg(a)csk(b) — ksng(a)sng(b). (36)

A basis for the Jacobi fields orthogonal to ¢ is given by {sn, -Y,cs, - Y} where YV
varies over a basis of parallel vector fields orthogonal to ¢.

Notice that the second fundamental tensor of the (local) distance spheres at distance
r from a fixed point p in any manifold is determined by equation (27), where J is a
Jacobi field with initial value J(0) = 0 along a normal geodesic emanating from p, i.e.
in M by

J(r) =sn, (r)Y(r)

with Y parallel along ¢ and (Y,¢) = 0. Hence

_ sn'(r)

S ) = G )

Y(r) =cto(r)Y(r). (37)

Therefore the principal curvatures of distance spheres in M? are equal to ct, (7).
The length of the great circles in the distance spheres is 27 sn, (r). In any manifold
the Hessian of the distance function from a point has a zero eigenvalue in the radial
direction. For Karcher’s new proof of Toponogov’s theorem it is convenient to rescale
the distance function f from the point p in M7 so that all the eigenvalues are equal.

This is achieved by taking md, o f, where

md. () = /Or . ()t { f(1 —csg(r)) for K #0 (38)

=r for k=0

Notice the identity
cs, +kmd, =1. (39)
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From the formula

Hess(mdyo f)v = (md,'o f)Hessf(v) + (md,"s f) (gradf, v) grad f
= (snyof)Hessf(v) + (csyo f) (gradf,v) gradf (40)

it follows that the eigenvalues of Hess(md,o f) at a point ¢ with f(q) = r are equal

to csyo f(q) = sk (r). Using md,, the law of cosines in M becomes
md, (¢) = md,(a —b) + sn, (a)sn, (b)(1 — cosvy) (41)

where a,b,c are the lengths of the edges of a geodesic triangle in M, and < is the
angle opposite to the edge corresponding to ¢. Notice that this is a unified formula for

the three classical cases k =0,k > 0,k < 0:

@ = a’>+b® —2abcosy (42)
cos(vke) = cos(vka)cos(y/kb) + sin(v/k a) sin(v/k b) cos y (43)
cosh(y/|k|c) = cosh(y/|x|a) cosh(\/m b) — sinh(4y/|k| a) sinh(\/m b) cosy (44)

1.6 The Riccati comparison argument

A lower curvature bound x in M leads to an important estimate for the principal
curvatures in distance spheres and hence for the tangential eigenvalues of the Hessian
of the distance function f from a point. For the modified distance function md o f
this yields an estimate for all the eigenvalues. This estimate is the key for Karchers
proof of Toponogov’s theorem and the main reason for introducing md,. The basic
comparison argument is contained in (i) of the following elementary Lemma and its
Corollary, cf. [K].

Lemma 1.1 Suppose g, G are differentiable functions on some interval satisfying the

Riccati inequalities

/

o< —nmg (15
G' > —k-G2. (46)

IN

i) If g(ro) > G(ro), then g(r) > G(r) for r <ro.
ii) If g(ro) < G(ro), then g(r) < G(r) for v > ro.
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Proof. From the two Riccati inequalities (45) and (46) we get
(9 G)-e/ ) <0

from which i) and ii) follow immediately. O

The statement ii) is useful for estimates involving upper curvature bounds [K]. We

are interested mainly in i).

Corollary 1.2 If g : (0,a) — IR (suppose a < % if k> 0) satisfies ¢ < —k — g2
and lim,_,¢ g(r) = 0o, then
g(r) < cte(r).

Proof. If there is a point rye(0,a) for which g(rg) > ct, (7o), we can choose € > 0 so
that g(ry) > cty(ro—e). G(r) = ct, (r—e) satisfies the Riccati equation G' = —k—G?
on (e,ry), so that g(r) > G(r) on (e,ry). Then g(¢) = limm . g(r) > lim~ . G(r) =
+00, contradicting g(e) < co. 0

Consider now a normal geodesic segment ¢ with initial point p which does not
meet the conjugate locus of p. In a neighborhood U of ¢ we may consider the local
distance function f(q) = disty(p,q). The principal curvatures of the local distance
sphere f~!(r) at the point q are denoted by 71(q), ..., 7, 1(q). From the corollary and
(29) we get the estimate

7i(q) < et (f(9)) -

7;(q) are the eigenvalues of Hessf|, corresponding to eigenvectors tangent to the
distance sphere, whereas the radial eigenvalue is zero. The hessean of md, - f satisfies
the corresponding equation (40) and therefore has eigenvalues sn, (f(q)) - 7:(q), ¢ =
1,...,m — 1 in directions tangent to the level r and the eigenvalue cs,(f(q)) for the

radial direction grad f|,. This proves the operator inequality
Hess(md, o f) < (csxo f)-Id . (47)

Along ¢ this estimate remains true up to the first conjugate point of ¢, which in the
case kK > 0 appears at a distance not farther away than % For M = M? equality
holds in (47).

If f is replaced by g = f + n where 7 is a constant, we have Hessg = Hessf so
that the tangential eigenvalues of Hess(md o g)|g according to formula (40) are given

by sn, (g(¢q))7i(¢) and the radial eigenvalue is cs, (g(q)). The estimate for 7;(q) above
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leads to (snkxog)7; < (Sngog)cte(g —1n) = csgog + %. For small values of 7
and 0 <g—n< % in the case x > 0 the Hessian of md, - g satisfies consequently
sn. (1)
Hess(md .o g) < (csxog + ———"—)-1d. (48)
Shl g (g - 77)

In the case k > 0 this estimate along ¢ holds up to the first conjugate point.

2 The Toponogov Theorem

The Toponogov comparison theorem appears to be one of the most powerful tools
in Riemannian geometry. It is a global generalization of the first Rauch comparison
theorem. The ideas trace back to A.D. Alexandrow who first proved the theorem for
convex surfaces. Toponogov’s proof of the theorem was technical and contained some
difficulties which were resolved in [GKM]. Since then the proof had been simplified
considerably by various geometers, compare also [CE|. In this lecture series we shall
use an interesting new proof given by Karcher [K]. In contrast to the previous technique
the Rauch comparison theorem is not used at all. It uses the estimate for the Hessian
given in (47) resp.(48) and fits nicely into our discussion of distance functions. This
does not mean, that our approach is necessarily shorter or more geometric than the
other viable arguments given before. We certainly encourage the student also to go
through some alternate proof of Toponogov’s basic result in the literature mentioned

above.

Definition 2.1 A geodesic hinge ¢, cy,a in M consists of two non constant geodesic
segments c,c, with the same initial point making the angle a.. A minimal connection

c1 between the endpoints of ¢ and c, is called a closing edge of the hinge.
The length of a geodesic segment ¢ will be denoted by |c|.

Theorem 2.2 (Toponogov) Let M be a complete Riemannian manifold with sec-

tional curvature K > k.

A) Given points po,p1,q in M satisfying py # q, p1 # q, a non constant geodesic ¢
from pg to p1 and minimal geodesics c;, from p; to q ,i = 0,1, all parametrized by
arc length. Suppose the triangle inequality |c| < |ci[+|co| is satisfied and |c| < 7
in the case k> 0. a;e[0,7] denote the angles at p;, ag = % (¢0(0),¢(0)), a1 =
% (¢1(0), —¢(|c|). Then there exists a corresponding comparison triangle po,p1,q
in the model space M? with corresponding geodesics ¢y, ¢1, ¢ which are all minimal

of lengths |&;| = |cil, || = |c| and
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i) the corresponding angles &; satisfy &; < «;
it) dist(q,c(t)) < dist(q,c(t)) for any tel0,|c|] .

™

Except for the case when k > 0 and one of the geodesics has length equal to IR

the triangle in M? 1is uniquely determined.

B) Let c,c,, 0, be a hinge in M with ¢, minimal and |c| < % i case k > 0 and
c1 a closing edge . Then the closing edge & of any hinge ¢, ¢, o, in M> with
8= lel , |éol = leo| satisfies

&1| > |ei].
Remarks

1. Notice that ¢ need not to be minimal and the case py = p; is not excluded. ¢;

and ¢y have to be minimal, otherwise there are counterexamples.

2. With a little effort statement (ii) can be used to show that the length of secants
between ¢ and c; are not shorter than the corresponding secants between ¢ and

¢i, provided the segment of ¢ in the cut off triangle is minimal:

iii) dist(Go(t),é(s)) < dist(co(t),c(s)) holds as long as ¢l is minimal,

iv) dist(&(t),é(s)) < dist(c1(t),c(s)) holds as long as c|js ¢ is minimal.

In the case when ¢ is minimal now any corresponding secants 0,5 satisfy |5] <
o]
For symmetry reasons only iii) needs to be proved:
By ii)
dist(g, é(s)) < dist(q,c(s)) . (49)

Connect p; = ¢(s) and ¢ by a minimal geodesic 7, and consider the triangle
Po,Ps,q with geodesic edges cg, c|ps,7s and the corresponding comparison tri-

angle Py, ps, G in M?. Using ii) for this triangle we obtain
dist(ps, Go(t)) < dist(c(s),co(t)) - (50)

The monotonicity relation between angle and length of the closing edge of a hinge
in M? and (49) imply

¥ o(t) Poc(s) = X qPo&(s) < ¥ qPops = ¥ Co(t) Po Ps

15



i €
Co(1) co(t)
Po ‘\A Di Do Di
\~ c(s) = p;
Py
Figure 3: sketch for the proof iii)
and then

dist(&(s), Go(t)) < dist(ps, Co(t)) . (51)
Inequality iii) now follows from (50) and (51).

. Statement i) is a consequence of ii). To prove for example oy < «a, consider the
functions hy(t) = dist(co(t), c(t))? and ho(t) = dist((t),é(t))? for small values
of t. By iii) we have Ay < hg. According to (9) of section 1 we have the Taylor

formulas
ho(t) = t*[l¢o(0) — e(0)]1* + O(t)
ho(t) = t*]1c0(0) — E(0)|* + O(t)
so that ||, (0) — ¢(0)|| < ||éo(0) — ¢(0)|| and hence & < ay.
The converse implication i) = ii) is also true but more technical to prove.

. Statement ii) carries over to limits in the sense of Gromov for Riemannian spaces

with curvature K > k, where angles cannot be defined anymore.

. Part B is equivalent to A)i). This follows immediately from the fact that in M?>
the length of a closing edge in a hinge with minimal geodesics and the hinge angle
are in a monotone relation. Note that B is trivial in the case when the tiangle
inequality is not satisfied in M. For this observe that the triangle inequality in

M? is satisfied since all the corresponding geodesics in M? are minimal.

. If ¢ is not minimal in B), the statement is false. For consider in S}, a hinge

with two geodesics of length 7 making a positive angle. The end points have a

16



positive distance for ¢ small. However, in the corresponding hinge in S? the end

points coincide.

7. An anologue of Toponogov’s theorem where the lower curvature bound is replaced
by an upper curvature bound is false. For example on the 3-sphere S there are
homogeneous metrics (Berger metrics) with positive curvature, upper curvature
bound 1 and closed geodesics of length < 27. However, if the sectional curvature
K of M satisfies K < k and c¢y,cq,c is a triangle with minimal geodesics and
lco| + |ea| + || < % which is contained in a ball around p, of radius not greater
than the injectivity radius at po, then there is a triangle &, ¢;, ¢ in M? with
le;l = |é, |e| = |é| and ap < &p. This is an immediate consequence of Rauch’s

first comparison theorem.

8. There are generalisations of Toponogov’s theorem to a version where the model
spaces M? are replaced by surfaces of revolution or surfaces with an S* - action,
cf. [E], [A]. U. Abresch pointed out to me that these generalisations can be

handled with the same technique as used in the proof below.

Proof of Theorem 2.2. By remark 2 above we only have to prove A)ii). Note that
in the case K > 0 we have diam(M) < % by Myers’ theorem. For the case Kk > 0
the proof is organized in three steps. In step 1 we consider the general case for x <0,
but we assume diam(M) < 7= and [c| + |eo| + |1 < % for the case k > 0. In step
2 the case £ > 0, diam(M) < 7= and |[c[ + |eo| + |1 < % is reduced to step 1 by a
simple limit argument. Finally, in step 3 we show that in the case x > 0 there are no
triangles with circumferece |c| + |co| + |c1] > %

Step 1. For the case k > 0 we assume diam(M) < % and also that the circumference
of the triangle satisfies |c| + |co| + |e1] < %, so that the comparison triangles in M2
exists. From the triangle inequality || < |co| + [c1| we get || < = for £ > 0.
Therefore we can choose € > 0 such that diamM < Z= —2¢ and [¢] < J= — 2. We
first look at a simple case: Suppose gec(]0,]|c|[). Then |¢| > |co| + |c1]| since ¢; and
co are minimal. By the triangle inequality we must have |c| = |c| + |c1|. Therefore ¢
divides ¢ into two minimal pieces of length |cy| and |c;|. Consequently equality holds
in ii) since the geodesics from ¢ to c(t) are parts of c¢. If ggc(]0,|c|[) we proceed as
follows:

We consider the distance functions r from ¢q in M, 7 from ¢ in M? and define

h(t) = mdgoroc(t)

md,.io To (~3(t)

>
—~
<~
~—
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The idea is, to show that A cannot have a negative minimum by the use of the Hessian
estimate (48) in section 1.6. Unfortunately h is not differentiable in general since r
is not differentiable beyond the cutlocus of ¢q. This problem is resolved by a local
approximation with a “superdistance function”. The argument is slightly different in
the cases Kk <0, k=0 and k > 0.

In the case x = 0, if A has a negative minimum —2g in ]0, |c|[ also the function A

defined by

Mt) = At) + “LTLE ‘)

has a negative minimum < —gx in |0, [¢|[ .
In the case k > 0 we have |c| < % — 2¢ and define 0.(t) = sn, (t+¢) —sn.(5) on

[0, |c|]. If A has a negative minimum then

iz

O¢

has a negative minimum.

For the point #,€]0, |c|[ where A or ) or X has a negative minimum, we approximate
r by local differentiable functions in a neighborhood of ¢(ty). Let v be a normal
geodesic from ¢ to c(tp). For small values n > 0 we define in some neighborhood U

of v(]n, |y|[) the local superdistance functions
ry(z) = n + disty(y(n), z) > r(z) = dist(q, z) .
ry, is differentiable if U is sufficiently small. Therefore the function
hy, =mdyoryoc (52)
is differentiable in some interval around ¢, and
hy(to) = h(to), hy > h. (53)
Using the estimate (48) for the Hessian we have

hy = (Hess(mdgory)lcé,¢)

s, (1)

< CSgoTpoC+ ——————
sny(rpoc —n)
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for n small. The quantity r,0c(t) —n is bounded away from zero independent of 7
and rypoc(t) —n = dist(y(n), c(t)) < % 2¢ from the diameter assumption. Observing
(39) we get

hy + khy < 14 const - sn, (1)

with a constant independent of 7. Since A" + kh = 1 the difference \, = h, — h

satisfies
Ay + KXy < const - sn (7). (54)
Furthermore
Ap > A, Ay(to) = Ato) (55)
by (53).

Case 1. k<0
If A has a negative minimum —p at ¢y, then A, also has a negative minimum —u at
to, but
A (to) < —kA(to) + const - sn, (1) = @/+const -sng(n).
<0

For n sufficiently small this is a contradiction.

Case 2. k=0
At the point #,¢]0, |c|[ where A has a negative minimum we consider \, and also A,
defined by
t(lel — 1)
e
Then A, > X and \,(ty) = A(tp) by (55). Therefore )\, also has a local negative

minimum at ¢,. But

Ay =g+ 1t

_ 2
V< _|C_M + const - sng (),

which is a contradiction for small 7.

Case 3. k>0
At the point ¢, where )= JA has a negative minimum —u, we also look at 5\,, = ’;—”

Again )\, > X and A(ty) = A, (to) so that ), has a negative minimum —uq at .
Differentiate at t, to obtain

ApOe — Ao,
LKL LY
€

0=\ (t) =

to
g
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and

. 1
Ap(to) = ;(UMZ — !\t
1 " €
= 0_62(()\" + K)o + /@Ansnﬁ(é))|t0
1 Ko €
< const - sn, — sn.(=) <0
< )~ yem()

for n sufficiently small, a contradiction.

Step 2. Assume now k > 0, diam(M) < % and |c| + |co| + |e1| < % We

choose a sequence ki, 0 < ki < Kk and lim; ,oo k; = k. Then diam(M) < ﬁ and

lc|+]col+|e1| < % By step 1 the theorem holds for the sphere S2 CIR® as the com-
parison space. By compactness, the sequence of comparison triangles A; = (&, &, &)
has a subsequence converging to a comparison triangle A in S2. By continuity of the
family of distance functions on the family of spheres S? C R®, & > 0, statement A)ii)

now follows for the limit triangle A.

Step 3. Suppose £ > 0 and |c|+ |co| + |c1| > Z%=. We can choose § > 0 such that
lc| + |eo| + |e1]| = % Then for the comparison tr1ang1e in M? the geodesics ¢, ¢, ¢

have length < % and therefore form a great circle. The antipodal point ¢ of ¢ has

to be a point of ¢, say 7= ¢(ty). By step 1 we have 7= = dist(g, ¢(to)) < dist(q, c(to))
contradicting dist(g, c(to)) < 7= < 5. This completes the proof. 0
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3 Applications of Toponogov’s Theorem

3.1 An estimate for the number of generators for the fun-

dametal group

As a first application of Toponogov’s theorem we present Gromov’s theorem concerning
the number of generators for the fundamental group m (M). Since any element of the
fundamental group m (M) with base point p of a Riemannian manifold M can be
represented by a geodesic loop of minimal length at the point p, it is clear that the
geometry of M should have strong influence on the structure of m (M). The earliest
result in this direction is Myers’ theorem, cf.[CE], [GKM]: the universal cover of a
compact Riemannian manifold with strictly positive Ricci curvature is compact and the
fundamental group finite. If the sectional curvature K of a compact even dimensional
manifold is strictly positive, then by the Synge Lemma, cf. [CE], [GKM], m (M) =1
or Z, depending on the orientability of M. If M is complete non-compact and K > 0,
then m (M) =1 since M is diffeomorphic to R"™, cf. [GM]. Finally if M is complete
non-compact and K > 0, then by the soul theorem of Cheeger and Gromoll [CG1],

m (M) contains a lattice group of finite index.

Theorem 3.1 (Gromov)

(i) Suppose the sectional curvature of M™ is nonnegative. Then m (M™) can be
generated by N < +/2nmw 2" 2 elements.

(1) If the sectional curvature K of M™ is bounded from below, K > —\? and the
diameter of M"™ is bounded, diamM™ < D, then m (M™) can be generated by
N < %\/2n7r(24—2cosh(2/\D))nT_1 elements.

Proof. Let G = m (M,p,) be the fundamental group with base point poe M. M
denotes the Riemannian universal cover of M. The group of covering transformations
G acts on M by isometries. We choose a point zoe M which covers py and define for
veG the displacement
|| := dist(zg, yxo)

A minimal geodesic ¢ from zy to yzo projects in M to a loop of minimal length |v|
in the homotopy class representing . There are only finitely many elements of G
satisfying |y| < r. (An infinite sequence 7;xy of points would have a limit point in the
compact ball of radius r around zero contradicting the covering property.) Therefore

we can choose an element 7, ¢ G with the property |y;| = min{|y| | yeG}. Inductively
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we can construct generators 7, v, ... of G satisfying |yi| < |72 < ... as follows:
Suppose vy, ..., are constructed already and the subgroup < vi,...,7 > generated
by 71, -..,7% is not equal to G. Then we can choose Yx11€G so that |yx 1| = min{|y| |
veG\ <Y1, ...,V >} . For i < j we have |y;| < |y;| and

¢;; = dist(vizo, viTo) > |4l -

To prove the last inequality, suppose £;; < |v;|. Then Vi = lfyj has displacement
Vil = 4ij < |yl and < 71,095 >= < 71,00, %5-1,7; >, contradicting the choice of
-

For each 7; we choose a minimal geodesic ¢; from zq to ;zo of length ¢; = |v;|. For
¢ < j we choose a minimal geodesic from 7;zy to 7y;zo of length /;;. By Toponogov’s
theorem the angle a;; = ¥(¢;(0),¢;(0)) is bounded below by the angle & of a compar-
ison triangle in M? where x = 0 for (i) and k = —\? for (ii). By the law of cosines
(42), (44) in M?

G+ 03— L

cos & 20,0 for k =0 (56)
. cosh(A¢;) cosh(Al;) — cosh(A;5)
= for K = —)2.
cos e sinh(\Z;) sinh(\Z) orr=—A (57)

The right hand side of (57) is increasing in the variable ¢; (to see this differentiate).

The relation ¢; < {; < /;; now leads to the estimates

G- 1

cosa < e 2 for k =0 (58)
2 . J— . .
cosd < cosh ()\.6])2 cosh(A¢;) _ cosh(A¢;)
sinh®(\¢;) cosh(A¢;) + 1
cosh(2AD)

for k = —\? . (59)

cosh(2AD) + 1

For the last inequality observe that ¢; < 2D by the construction of the generators ~;
of G. To see this, observe that for ¢ > 0 any loop at py in M is homotopic to a
composition of loops with length < 2D 4 ¢: Subdivide the original loop into segments
of length < ¢ and then insert minimal connections from the subdivision points to
po and their inverses. Since in the construction |ygi;| is chosen to be minimal in

G\ < Y1, .e, Yk >, it follows |yx11] < 2D + €, but € was arbitrary. Let

3 for k=0 (60)
o, =
* arccos(%) for k= —\2
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then a;; > & > o«,. To complete the argument consider the initial vectors v; =
¢(0)eTyy M. We have ¥ (v;,v;) > o > 0. In T,y M there can be only a finite number
of distinct unit vectors with this property. A rough explicit estimate for the maximal
number is obtained as follows: The intrinsic balls of radius «,/2 around the points
v; in the unit sphere S™~! in TzOM are disjoint. Therefore the maximal number N,
of points v; is estimated by the volume of S™" ! divided by the volume of a ball of
radius /2 in S"'. The volume of this spherical ball is estimated below by the
volume of a euclidian (n-1) ball of radius sin(a,/2). This estimate, however, can be
improved by a factor % by the following simple observation: The generators satisfy
17i] = |7;"|. Therefore we also have ¥ (v;, —v;) > a,. Hence the volume of the sphere

can be replaced by the volume of the real projective space and we obtain

ol 7 VAL STt 2\
vol B"~1(sin(/2))  T(2)sin™ " (cu/2) =V I'(%) (1—(:0304,)

The logarithmic convexity of T' can be used to find /2* < T(2)/T(%) < /2.
Inserting the appropriate value for «, from (60) into the estimate for N, finishes the

proof. O

The estimates given in the Theorem are never sharp as can be seen by looking at

surfaces.

3.2 Ciritical points of distance functions

Distance functions on a Riemannian manifold M are not differentiable in general.
Despite this fact it is possible to develop a critical point theory similar to the Morse
theory of a differentiable function. The idea was introduced by Grove and Shiohama
[GS] for the proof of their diameter sphere theorem, cf. theorem 3.14. Subsequently it
has been refined by Gromov [G2] in connection with his finiteness result for the sum of
the Betti numbers, cf. theorem 3.19. These applications deal with distance functions
from a point in M. Recently Grove and Petersen have generalized the concept for
distance functions from closed subsets of a manifold, in particular from the diagonal
A in M x M. This leads to an interesting finiteness result concerning the number of

homotopy types of Riemannian manifolds, cf. [GP].

Definition 3.2 Let A be a closed subset of M. Consider the distance function disty
from A defined by dista(q) = dist(A,q). A point qe M is said to be a critical point for
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dists , if for any vector veT, M there is a distance minimizing geodesic ¢ from q to A
satisfying

(v,6(0)) > 0. (61)

A non-critical point is called a regular point.

For points g¢ A this condition is equivalent to & (v, ¢é(0)) <
to a critical or regular point for dist, we also shall say that ¢
A. Notice that any point ge A is critical for A.

In the following examples let A={p}.
Examples

5 - Instead of referring
is

critical or regular for

i) Consider the flat cylinder S* x R C R® and p = (o, ¥o, 20), 2 + y2 = 1. Then

p and ¢ = (—xo, —Yo, 20) are the only critical points for p.

q cut locus of p —

-~a -—

Figure 4: cylinder

ii) Consider the flat torus T = R*/Z @ Z and p = (3, 3). Then the only critical

points for p are p, ¢ = (1,3), @2 = (1,1), g5 = (3,1).

According to the definition a point ¢ is regular for A if the initial vectors for all

minimal geodesic from q to A are contained in an open half space of T, M, i.e. there
is a vector veT,M such that

((0),v) < 0

for any minimal geodesic ¢ from ¢ to A. Of course equivalently we have a vector
w = —v such that

(¢(0),w) > 0

for any minimal geodesic ¢ from ¢ to A.
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9 B 9 cut locus 4>

N
cut locus ——»
q; Ii q;
q> q; q; q;
flat torus torus of revolution

Figure 5: critical points and cut locus for a point p in tori

Lemma 3.3 (local existence of gradient-like vector fields) Let M be complete
and A a closed subset of M. Then for any reqular point q of disty there is a unit
vectorfield X on some open neighborhood U of q such that

(X;,¢(0)) <0 (62)
for any GeU and any minimal geodesic ¢ from ¢ to A.

Definition 3.4 A unit vector field X on U satisfying (62) is called a gradient-like
vector field for disty.

Proof. Since ¢ is a regular point we can choose a unit vector X,eT,M with (X,,¢(0)) <
0 for any minimal geodesic ¢ from ¢ to A. Extend X, to an arbitrary smooth vector
field on some open neighborhood of ¢. Then X satisfies condition (62) on a sufficiently
small ball U around ¢q. Otherwise there would be a sequence of points ¢; converging
to q and minimizing geodesics ¢; from ¢; to A satisfying (X,,,¢;(0)) > 0. A limiting
geodesic ¢ of ¢; would be a minimal geodesic from ¢ to A with (X,,¢(0)) > 0, con-
tradicting the choice of X . O

Corollary 3.5 (existence of global gradient-like vector fields) As above, let M
be complete and A a closed subset of M. Then

a) The set of reqular points of dista is open.

b) On the open set U of reqular points there exists a gradient-like vector field for
d?;StA.
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Proof. a) is obvious from (62). For the proof of b) we point out that local vector fields
of the lemma can be glued together by means of a partition of unity to obtain a vector
field X on U satisfying (62). This is a consequence of the following observation: If
v1,..., Uy are unit vectors in a euclidian vector space satisfying (v;, w) < 0, then any
convex linear combination v = Y7, vy, Ay > 0, Y7, A = 1 satisfies (v,w) < 0.
Now we can take X = X /|| X||. 0

The following lemma, contains an important monotonicity property for gradient-like

vector fields.

Lemma 3.6 Let M be complete, A a closed subset, U an open subset of M and X
a gradient-like vector field for dista on U, ® the flow of —X and ¥ the flow of X.
Then

a) disty is strictly decreasing along any integral curve of —X .

b) On any compact subset C' of U the decreasing rate is controlled by a Lipschitz

constant: There is a constant © > 0 such that

dista®(q,to + 7) < dista®(q,t0) — 7O (63)
as long as ®(q,ty + 0)eC for 0 < o < 7. Equivalently we have

dista¥(q,ty + 1) > dista¥(q,ty) + 7O (64)
as long as ¥(q,ty+ 0)eC for 0 <o <.

Proof. It suffices to prove b). First notice that X satisfies the inequality (—X,,¢(0)) >
© for some © > 0, any geC and any minimal geodesic ¢ from g to A. Other-
wise there would be sequences ¢;c¢C' and minimal geodesics ¢; from ¢; to A with
lim; 0 (Xy;, ¢:(0)) > 0. By compactness there would be a limit point geC and a
minimal limiting geodesic from ¢ to A with (X,,¢(0)) > 0, contradicting (62). Con-
sider now the function h(t) = dist4®(q,t). We construct an upper support function
h for h as follows: Let pe A with dist(p, ®(g,tp)) = dist4P(q,to) and choose a min-
imal geodesic ¢ : [0,1] — M from ®(q,ty) to p . For a fixed n, 0 < n < 1 let
h(t) = n + dist(c(|c| — n), ®(g,t)). h is differentiable in a neighborhood of t, and sat-
isfies A(t) > dist(p, ®(q,t)) > dist4®(q,t) = h(t) and h(te) = h(ty). The derivative
at to if given by A'(t)) = <grad distc(|c‘,,,)|q>(q,t0),Q*%|q,t0> = (—¢(0),—X o ®(q,t0)),
hence h'(ty) < —O. Such a support function exists at any to, therefore condition (63)
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follows easily. 4

As an immediate consequence we have:

Corollary 3.7 Any local mazimum point q of dists is a critical point for A.

Corollary 3.8 Let M™ be complete and B = B(p,r) a ball of radius r around the
point pe M . Suppose there are no critical points of dist, in 0B.
Then OB is a topological (n-1)-submanifold of M .

Proof. We only have to show that 0B is locally euclidian. Consider a vector field
X on the set of regular points with property (62) and the flow ® of —X. For a
given point gedB let @) be a local (n-1)-dim submanifold through ¢ which is transver-
sal to X, for example the image under the exponential map of a neighborhood V
of the origin in the (n-1)-plane orthogonal to X, in T,M. By the inverse map-
ping theorem we can assume that V and € > 0 are chosen such that ®|gy[ .
is a local diffeomorphism. Since t — dist,®(q,t) is strictly decreasing, we have
dist,®(g,e) < dist,®(q,0) < dist,®(¢, —¢). Therefore by continuity we can assume
that dist,®(g,e) < dist,®(g,0) < dist,®(§, —¢) for GeQ, after shrinking @ if neces-
sary. Now any integral curve of X through a point ¢ of ) meets exactly one point of
OB = dist,, '(r) by the monotonicity property. The map from @ to OB defined by the

projection along the integral curves is a homeomorphism onto its image. O

Corollary 3.9 Let M be a complete non-compact manifold and suppose that for some
point pe M all the critical points of dist, are contained in a ball B = B(p,r)

Then M is homeomorhpic to the interior of a compact manifold with boundary.

Proof. Let X be a gradient-like vector field on the set of regular points with flow .
Then F : OB x [0,00[— M defined by F(q,t) := ¥(gq,t) maps B x [0, 00[ homeo-
morphic onto M \ B. For this the properties (64) and ||X|| = 1 < oo are important.
Hence M is homeomorphic to BUF (0B x [0,00[) ~ BUF(9B x[0,1]) with boundary
F(B x {1}) ~ 9B. 0

Corollary 3.10 Suppose that there is no critical point of dist, in B(p,r) \ {p}.

Then B(p,r) is contractible.

27



Proof. An easy exercise. O

Definition 3.11 An isotopy of M (in the topological category) is a homotopy G :
M x [0,1] - M such that p — G(p,T) is a homeomorphism from M onto a subset of
M for any 7€[0,1] and p— G(p,0) is the identity map of M.

If By and By are subsets of M, we say that the isotopy G moves By into By , provided
G(B; x {1}) C B;.

Corollary 3.12 (Isotopy Lemma) Given a complete manifold M, a point pe M,

0 <r; <ry<oo and an open neighborhood U of the annulus A = B(p,rs) \ B(p,r1).
Assume that there are no critical points of dist, in A.

Then there is an isotopy of M which is the identity on M \U and which moves B(p,rs)
into B(p,r1).

Proof. Using a partition of unity one can construct a vector field X on M which is
gradient-like on some neighborhood W of A with W C U and X|mw = 0.

If ro < oo we can choose © > 0 such that (62) holds on the compact set A. Then
for ty > &(ro —r1) the isotopy G defined by G(q,7) = ®(q,7 - t) moves B(p,rs) into
B(p,r1), where again ® is the flow of —X.

If 7, = oo, we consider F' : 0Bx| — 0o,00[— M, F(q,t) = ®(q,t) and use on the
domain of this homeomorphism onto a subset of M an isotopy induced from a defor-

mation of | — 0o, 0o[ into |0, 0o[, for instance G(¢,7) = In(7 + €*). O

The elementary corollaries above demonstrate that gradient-like vector fields can
be used for deformations in the same way as gradient vector fields in standard Morse
theory. However all these deformation arguments are useless unless one can get addi-
tional information on the set of critical points. In standard Morse theory the Morse
Lemma is an important tool for this purpose. Unfortunately, there is no analogue of
the Morse Lemma available. In fact one cannot say much about the change of topology
of B(p,r) = distgl(r) when r passes a critical level.

In the presence of a lower curvature bound, however, Toponogov’s comparison theo-
rem can be used to obtain additional information about critical points leading to rather
strong conclusions. In contrast to standard Morse theory the information obtained on
the set of critical points is more of a global nature. For the proof of 3.19 one has
to consider not just a single distance function but all the distance functions from the

various points of M .
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3.3 The diameter sphere theorem

One of the famous results in Riemannian geometry is the - pinching sphere theorem

4
cf. [GKM], [CE], which can be stated as follows:

Theorem 3.13 (Rauch, Berger, Klingenberg) Suppose M™ is complete, simply

connected and the sectional curvature K satisfies
1
- <K<1.
1 <
Then M is homeomorphic to the standard sphere.

One of the essential steps in the proof of this theorem is to show that the injectivity
radius of the exponential map and hence the diameter of M is > 7 > 2%/3, where
o > % is the minimum of the sectional curvatures on M. Grove and Shiohama have
generalized the i—pinching sphere theorem to the diameter sphere theorem below by
replacing the upper curvature bound by this lower bound for the diameter. The proof

is a nice application of critical point theory and of Toponogov’s theorem.

Theorem 3.14 (Grove-Shiohama) Let M"™ be a complete manifold with K > § > 0

and diamM > 2%/5' Then M is homeomorphic to S™.

Proof. After rescaling the metric we can assume K > 1 and diamM > 7. Let p, q be
two points of maximal distance in M, dist(p, ¢) = diamM . By corollary 3.7 ¢ is critical
for p. We show that ¢ is uniquely determined by p. Suppose ¢;, g2 are two points
satisfying dist(p, ¢;) = diamM . Choose minimal geodesics ¢ from ¢; to ¢ and ¢; from
q; to p. Since ¢y is critical for p, ¢; can be chosen such that oy = ¥ (¢1(0),¢(0)) < 5.
Then 4, := |c1| = |cz| = diamM > 7 and £ := |c¢| < £;. Consider the corresponding
comparison triangle ¢, ¢; ¢, in the standard sphere with corresponding angle &; and
edge lengths [¢| = £, |¢;| = |é2] = £1. Then by 2.2 &; < oy < 7. By the law of cosines

in S? we have
0 <sin/;sinfcosdy = costy —coslycosl = (1 —cosl)cost; <0

and hence £/ =0, ie. q = q2.

Next we show that p and ¢ are the only critical points for p, more precisely: Let
¢ :=q, @eM, ¢ # g» # p and c¢: [0,1] - M be a minimal geodesic of length ¢ from
¢1 to ¢2. Then for any minimal geodesic ¢y from g» to p we have (¢(1),¢2(0)) >0,
i.e. the vector v := —¢(1)eT, M can be used to define the open half space for the
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regularity of g». To show this, choose a minimal geodesic ¢; from ¢; to p and let
¢y = |ey], e = |ca|. By the uniqueness of ¢ = ¢; we have 0 < £ < ¢; and 0 <
¢y < ¢;. For the geodesic triangle ¢, ¢;, ¢y with angle as = ¥ (é2(0), —¢(1)) we
consider the corresponding comparison triangle inS? with corresponding angle &;.
Then (¢2(0), —¢(1)) = cosay < cosé@y and by the law of cosines

cost; — cost cos ¥ty

COS (g = - - <0
sin £ sin #o

since £ > 7.

Now let € > 0 be sufficiently small such that exp |p(,.) and also exp |p(,) are local
diffeomorphisms. The vector field X; = grad(dist, |p(p,)\(p}) satisfies condition (62)
in section 3.2. The regularity argument above shows that X, = —grad(distq |p(g,)\{q})
satisfies this condition as well. Therefore one can construct a gradient-like vector field
X on M\ {p, q} which coincides with X; on B(p, $)\{p} and with X5 on B(q, 5)\{q}
and ||X|| = 1. The flow ¥ of X satisfies (64) on all of M \ (B(p, ) U B(q,3)). Hence
all the integral curves of X have finite lengths and extend continuously to the end
points p and ¢. For a unit vector veT,M the integral curve ¢,(t) := ¥(exp(5v),t—3)
is defined on an interval |0, 4,[, where £, is the length of ¢,. Since X is differentiable,
the function v +— ¢, is differentiable. Let F(¢,v) = @,(t-4,), F(0,v) =p, F(1,v) =¢
for te]0,1[ and ||v|]| = 1. Then the map G : tv — F(t,v) maps the closed unit ball B
of T,M onto M inducing a homeomorphism from the quotientspace B/0B &~ S™ to
M. O

With a slight modification of the reparametrisation of ¢, in the proof above the
map G can be made smooth in the interior B of B. However there is no information
about the ”twist” of the map near q.

The diameter sphere theorem may also be viewed as a diameter pinching theorem
for manifolds of positive curvature: The quantity

(diamM)?

Op = min(K) 5

™

is invariant under scalings of the metric. By Myers’ theorem we have 0y < 1. Ac-
cording to the diameter sphere theorem M"™ is homeomorphic to S™ if 0y > %. If
Oy =1, M™ is isometric to the sphere S™. This rigidity result was originally obtained
by Toponogov as an application of the triangle comparison theorem, cf. [CE], but it
also follows from the more general theorem of Cheng [Cg|, which has been discussed in

the first part of this lecture series.

30



If one relaxes the assumption in the i—pinching theorem to % < K <1, then there
is the rigidity theorem of Berger, cf. [CE]. In view of this result one also should expect
a rigidity theorem if one assumes K > 1 and diamM = 7. In fact Gromoll and Grove
cf. [GG] have obtained a corresponding result:

Under the given hypothesis either

a) M is homeomorphic to a sphere, or
b) M has the cohomology ring of the Cayley plane, or

c) M is isometric to one of the following spaces with their standard metrics: CP™,
]HPZ, (DP2d_1/{[Zl, ce .Z2d] ~ [Ed—l—la ce 3 22y TR Ly ey —Ed]}, S?/F, where the or-

thogonal representation of I' = m (M) on IR™™! is reducible.

The proof is somewhat technical for our exposition.

3.4 A critical point lemma and a finiteness result

The critical point lemma below was one of the basic observations which lead Gromov
to the finiteness theorem in the next section. Its proof is a simple application of
Toponogov’s theorem (used twice). The given estimate is somewhat stronger than in

Gromov’s original lemma. It was also used by Abresch [A].

Lemma 3.15 (critical point lemma) Let M be complete and p, 1, go €M, q; # p
and assume q is critical for p. Furthermore let ¢; be minimal geodesics from p to g;
of length £; 4y < 4y and a = % (é1(0),é2(0)).

a) If the sectional curvature satisfies K > 0, then

1
cosa < — .
Ly

b) If K > —X\* (A >0) and diamM < D, then

14
cosa < Z_l)\D coth(AD) .
2
Proof. Let ¢ be a minimal geodesic from ¢; to g» of length £. Since ¢ is critical for p
there is a minimal geodesic ¢; from ¢ to p of length ¢; such that a; = ¥ (¢;(0),¢(0)) <

5. Using Toponovs’s theorem 2.2 , part B for this hinge and the law of cosines we get

4
cosh A\,

G+ 02 for K >0

<
< cosh My coshA  for K > —\2
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Consider now the geodesic triangle c¢;, cs, ¢ and the corresponding triangle ¢;, ¢,
¢ with the same edge length in the comparison space IR? respectively M?,,. Then
the angle comparison theorem 2.2 A (i) leads to & = ¥ (&,¢) < a or egivalently

cosa < cos@. Applying again the law of cosines we can finish the argument:

2 2 2
G+B-0 b

cosax = 20,0, <% for K>0
and
cosd — cosh A\¢; cosh My — cosh M/ - cosh A\/; cosh A\l; — %
sinh A/; sinh A/ - sinh A/; sinh A/
= tanh A¢; coth Aly < ﬁ—:)\@ coth My < %AD coth AD
for K > —\2. O

Corollary 3.16

a) Given a complete manifold M™ with K > 0 and a constant L > 1. Then there
are only finitely many critical points qi,...,q, for the distance function dist,
satisfying

disty(git1) > L - disty(gi) -

If L>3(14+/2)" 1, then k < 2n.

b) For manifolds with K > —)\?> and diamM < D the same statement holds for
L >3(1++v2)"ADcoth AD.

Remark
By reversing the indexing of the points ¢; we also have at most 2n critical points
satisfying
. 1.
dist,(giy1) < zd1stp(qz-)

if L is chosen as specified in the corollary.

Proof of corollary 3.16. We consider the case K > 0 and leave the simple modifi-
cation for b) to the reader. Connect p and ¢; by minimal geodesics ¢; of lengths /;.
Then ¢; > L¢; for i > j. By the critical point lemma the angles a;; = ¥(¢;(0),¢;(0))
satisfy cosa;; < i—f < % or equivalently a;; > arccos% > 0. There are only finitely
many vectors in T, M with this condition, compare also the proof of theorem 3.1. If

L =2 wehave ay; > T and k < v/2mn2" 2. If L > 3(1++/2)"!, then ay; > *

3 2_ana
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1

where a,, = arcsin (Hlﬁ)n_l. By the ball packing argument due to Abresch, cf. [A]

part II, there are at most 2n vectors in IR” making a pairwise angle > 7 — a,. O

Corollary 3.17 Let M™ be a complete non-compact manifold with K > 0, peM.

Then all critical points of dist, are contained in some ball of finite radius around p.
As a consequence we obtain the following

Theorem 3.18 (Gromov) Let M™ be a complete non-compact manifold with K > 0.
Then M is homeomorphic to the interior of a compact manifold with boundary, hence

M s of "finite” topological type.

Proof. Since the critical points of dist, are contained in some ball of finite radius,

corollary 3.9 applies. O

Recent examples of Sha and Yang show that a similar result does not hold for
manifolds with positive Ricci curvature, cf. [SY1]. However if Ric > 0 and in addition
K > —oco and the ”diameter growth” of dB(p,r) is of the order o(r=), then the same
conclusion as in the theorem holds, cf. [AG].

The above theorem 3.18 may be viewed as a weak version of the much more subtle
soul theorem of Cheeger and Gromoll, by which M contains a compact totally geodesic
submanifold S such that M is diffeomorphic to the normal bundle of S in M, cf.
[CG1], [CE] and section 3.6.

3.5 An estimate for the sum of Betti numbers

In this section H,(M) denotes the singular homology of M with coefficients in some
arbitrary field F. The k® Betti number of M with respect to F is given by by (M) =
dimz Hg(M). For a compact n-manifold and by theorem 3.18 also for complete n-
manifolds M of nonnegative curvature we have Y7_, bx(M) = dimz H, (M) < 0.

By an ingeniously designed Morse theory for distance functions Gromov [G2] ob-

tained the following result:

Theorem 3.19 (Gromov)

a) There is a constant C(n) such that any complete n-manifold M of nonnegative

curvature satisfies

dimz H,(M) < C(n).

33



b) Given D > 0 and k < 0 and n, then there is a constant C.(D, k,n) such that any

complete n-manifold with sectional curvature K > Kk and diamM < D satisfies

dimg H,(M) < C.(D,k,n).

In his paper [G2] Gromov indicated that a similar theorem as (a) holds for manifolds
with assymptotically nonnegative curvature. U. Abresch [A] gave the precise definition
of ”assymptotically nonnegative curvature” for which such a theorem can be proved.
He also refined Gromov’s method and developed the necessary tools to obtain the

following result:

c) Let A: IR,y — IR, be a decreasing function satisfying [;°7A(r)dr < co. then
there is a constant Cy(n,\) such that

dimz H, (M) < Cy(n,\)

for any complete Riemannian manifold M™ with sectional curvatures K, > —A(r)

at distance r from a given point pe M.
Remarks

1. The lower bound for the sectional curvature cannot be replaced by a lower bound
for the Ricci curvature: Sha and Yang recently have constructed metrics of pos-
itive Ricci curvature on the connected sum of an arbitrary number of copies of
S™x S™, cf. [SY2]. In [SY1] they also gave complete noncompact examples with

positive Ricci curvature of infinite homology type.

2. Under the hypothesis in the theorem one cannot expect finiteness for the number
of homotopy types. Here the lens spaces and also the simply connected Wallach
examples [AW] should be observed.

However Grove and Petersen have shown that there are only finitely many homo-
topy types of compact manifolds if in addition to the lower curvature bound and

the upper diameter bound one assumes a lower bound for the volume, cf. [GP].

3. The methods for the proof of a) and b) are essentially the same. For the proof
of ¢) Abresch had to develop a more general version of Toponogov’s triangle
comparison theorem, compare remark 8 in section 2. Though the proof of c) is
somewhat more technical, the refined method of Abresch leads to a simplified

proof of a) and b). It also gives a better estimate for the constants C'(n) and
C«(n, K, D) than in [G2].
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For reasons of exposition we concentrate on the proof of a) using the refined version
due to Abresch. So we assume K > 0 for the remainder of this section unless stated

otherwise. We also will fix the constant
L=31+v2)"

as determined in corollary 3.16.

It is convenient to use the the following notation in connection with metric balls:
If B is a ball of radius r around p then pB denotes the concentric ball of radius pr
around p.

In contrast to standard Morse theory one cannot estimate the dimension of the
homology of the sublevels of distance functions (i.e. of metric balls) directly since the
intersection of a ball with the cutlocus can be rather complicated. As a replacement

for this part of the Morse theory Gromov introduces the concept of content:

Definition 3.20 Let Y C X be open subsets of M. The content of Y in X is defined

as the rank of the inclusion map on the homology level
cont(Y, X) := rk(H.(Y) = H.(X)).
The content of a metric ball B in M 1is defined as
cont(B) := cont(B,5B) .

The content of B is a measure for how much of its homology survives after the inclusion
map into 5B. Clearly cont(B) =1 for any contractible ball B. By corollary 3.17 and
the Isotopy Lemma 3.12 for sufficiently large balls B there is an isotopy of M which
moves M into B. Therfore there is a map f : M — M such that the induced map f,
is the identity on H,(M) and f(M) C B C 5B C M. Hence cont(B) = cont(M, M) =
dimzH,(M).

The strategy for the proof now consists in showing that the content of any metric
ball and hence of M is bounded by a constant C(n). For this purpose Gromov in-
troduces the concepts of corank and compressibility for metric balls with the following

properties:

(i) Either a ball of content > 1 is incompressible or it can be deformed into an
incompressible smaller ball of at least the same content and of at least the same

corank.

(ii) The corank is bounded by a constant ko < 2n.
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(iii) If a ball B of radius 7 and of corank & is incompressible, then any ball of radius

< g7 with center in %B has corank at least k + 1.

(iv) A ball with maximal corank has content 1.

Now the proof is based on a reverse induction over the corank: By (i) only incom-
pressible balls need to be considered. Suppose that the content of any ball of corank
> k is bounded by ax(n). Let B be an incompressible ball of radius r and corank k.
Then B is covered by balls B; of radius p = gz5-7 such that the concentric balls
%Bi are disjoint. The maximal number N of these balls can be estimated from above
by the Bishop-Gromov volume comparison argument. It depends only on n. Using
property (iii) and the induction assumption, a topological argument stemming from a
generalized Mayer-Vietoris sequence for nested coverings then is used to show that the
content of B is bounded by ax(n) - N**! completing the induction argument.

We start introducing the concept of compressibility which essentially corresponds

to 7 p — compressibility” used by Abresch with the fixed value p = 5.

Definition 3.21 A ball B of radius v in M is called compressible if there is a ball B
of radius 7 < %r around some point in 2B such that there is an isotopy of M which
is fized outside 5B and which moves B into B. Briefly we say that B is compressible

into B when these conditions hold.

If B is compressible into B, then B C 5B C 5B and the pairs (5B, B) and (5B, B)
are homotopically equivalent. Therefore it is clear that

cont(B) < cont(B).
Consequently for each ball B of content > 1 there is an incompressible ball By C
5By C 5B such that cont(By) > cont(B). For this observe that the injectivity radius
on the compact ball 5B is bounded below by some constant § > 0 and if a ball can

be compressed successively into a final ball of radius < § then it must have content 1

since the d-balls are contractible.

Lemma 3.22 Suppose B is an incompressible ball of radius r. Then for any point
pe2B there must be a critical point q for the distance function dist; in the compact
annulus Az = B(p,3r) \ B(p, ir).

Proof. Suppose for some point pe2B there is no critical point in A;. Let B =
B(p, %r) Then we have inclusions B C B(p,3r) and B(p,3r) C 5B. By the isotopy
lemma 3.12 there is an isotopy of M which is fixed outside 5B moving B(p,3r) and
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hence B into B contradicting the incompressibility of B. 4

Definition 3.23 Given peM, r > 0. Let k.(p) be the mazimal number of critical
points qj, j =1,...,k.(p), for dist, satisfying

disty(q;) > 3Lr and dist,(gj11) < Ldzst (g;) -
The corank of the ball B = B(p,r) is defined as
corank(B) = inf{k,(p) | pe5B}.

Note that k,(p) < 2n and therefore corank(B) < 2n by the choice of L. If B is
compressible into B, then corank(B) < corank(B).

As an immediate consequence of the previous Lemma 3.22 we have
Corollary 3.24 Suppose B = B(p,r) is incompressible and 7 < £
a) If pe2B, then k;(p) > 1+ corank(B).

b) If peiB and B = B(p,#), then corank(B) > 1+ corank(B).

Proof. For a) let ¢;, 1 < j < k.(p) =: k be critical points with dist;(¢;) > 3Lr and
distz(gjt1) < dlst 5(g;). Since B is incompressible, there is a critical point g1 for p
in the annulus Aj as in lemma 3.22. Thus 3L7 < 2r < distz(gr41) < 3r < Fdist;(g;).
Now the k,(p) + 1 points g; satisfy the condition for the definition of k;(p) hence a)
follows.

For b) observe the inclusions 5B C (3 + 7)B C 2B. Now k:(p) > 1 + corank(B) for

any pe5B. O

As a consequence a ball of maximal corank must have content 1: If B has maximal

corank, then because of b) in the lemma, B must be compressible into a ball of radius

31 with the same maximal corank and at least the same content. This procedure can

5
be repeated k times until one reaches a ball B of radius (2)¥r which is smaller than the

injectivity radius on the compact ball 5B. Then cont(B) = 1 and hence cont(B) = 1.
These are the basic ingredients from critical point theory. We now turn to the

covering arguments.

Lemma 3.25 Given an n-dim Riemannian manifold M of nonnegative Ricci curva-

ture, a ball B of radius r and a covering of B by balls By,...,By of radius ¢ < r
with center in B such that the corresponding balls %Bl, cen %BN are disjoint. Then
r
N < (6-)".
< (62)
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Proof. Choose iy such that the ball %Bio with center py has the smallest volume

among all the given balls. The ball B around p, of radius 3r contains all the B;.

Therefore R "
N < vollB < ( ? )
VOIEBZ'O 58

where the last inequality is the Bishop-Gromov estimate for the volume of concentric
balls, which has been discussed in the first series of these lectures given by K. Grove,

compare also [K] for a proof. O

Since the proof of theorem 3.19 will be based on reverse induction over the corank,
we introduce the following notation:
Let kg < 2n be the maximal corank of metric balls. For 0 < k < ky we denote by B;
the set of balls having corank > k.

The topological information for the induction step is contained in the next lemma:

Lemma 3.26 Suppose cont(B) is bounded by a constant aj, for any BeBy. Further-

more let BeBy_1 be incompressible. Then
cont(B) < ap - N™*!
where N < (3L -10™+%)™.

Proof. Choose a covering of B by balls By, ..., By of radius €(r) = gz{5sr such that
%Bl, e %BN are disjoint. Then by lemma 3.25 N < (3L-10""2)". For 0 < j <n+1
we also consider the coverings B!,..., By, where B! = 107 - B;. The radii of all
these balls are < Zz. By corollary 3.24 we have corank(B?) > 1 + corank(B) > k,
hence cont(B!) < a;. Using the result on the nested coverings in corollary 4.2 of the

appendix, we obtain

n
cont(JBYL B <Y Y cont(BEUn...n BB N0 BT,
i i

=0 zo<<zg

By the choice of the radii and the triangle inequality we have inclusions 5BZ C 5B,
5Bf1 C Bf;’l and therefore

Bcl|JB} c UB}* c 5B

and
¢ —¢ —¢ —¢ 1-¢ 1-¢
By *n...nBy " Cc By C 5B ¢ Bt tn..nBLTC
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The first chain of inclusions implies cont(B) < cont(UU; BY,U; B?*'), and from
the second we conclude that the content of any of the intersections is bounded by
cont(BZ)_e) < ag. Since the number of terms in the sum on the right hand side is

bounded by N™*! compare (81) in the appendix, the proof is complete. O

Proof of Theorem 3.19 a): Reverse induction over the corank: For Be By, we have
cont(B) = 1. Assume now that cont(B) < ax(n) for any BeBy. Let BeBj_; If B
is compressible and cont(B) > 1, then B can be compressed into a ball of at least
the same content and of at least the same corank. Therefore we can assume that B
is incompressible. Now lemma 3.26 applies and we get cont(B) < aj(n) - N**™. Since

ko < 2n we get recursively
dimz H, (M) = cont(M) < N2+

where N = (3L -10"*%)", L = 3(1 + +/2)"!. Using L < 3"*!, an explicit rough

estimate for C(n) is given by

C(TL) < 103n4+9n3+6n2 )

Remarks

1. Note that the exponent in the estimate for C(n) is a polynomial of order 4 in n.
Gromov’s original constant depended double exponentially on n. The reason for
this improvement due to Abresch is the choice of L, the modification of corank
and compressibility to eliminate one of Gromov’s critical point lemmas which
all together gave a better estimate for the corank, and finally the improvement
of the estimate in the inductive lemma 3.26 where Gromov uses the estimate
cont(B) < ay - 2V.

2. The estimate for the constant C'(n) still seems to be far away from reality. Known
examples of n-manifolds with nonnegative curvature all have a sum of Betti num-
bers < 27,

3.6 The soul theorem

This final section is devoted to the soul theorem, cf. [GM1], [CG1].

Theorem 3.27 (Cheeger, Gromoll) Let M™ be a complete noncompact manifold of

nonnegative curvature K. Then there is a compact totally geodesic submanifold S in
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M such that M is diffeomorphic to the normal bundle v(S) of S. If K > 0, then M
is diffeomorphic to IR".

We first introduce a few basic concepts which are needed for the proof.

Definition 3.28 A nonempty subset C' of M 1is called totally convex if for arbitrary

points p,qeC any geodesic with endpoints p and q is contained in C'.

Definition 3.29 A ray in M is a normal geodesic c : [0,00[— M for which any finite
segment is minimal. For a ray c: [0,00[— M we define the halfspaces B, respectively
H. by

B, = U B(e(),1)

t>0

H, = M\B,
where B(c(t),t) is the open metric ball of radius t around c(t).

Note that in a complete noncompact manifold M for any pe M there exists a ray
¢ : [0,00[— M with initial point ¢(0) = p. For a sequence ¢;e M with ilirg(p, ¢) =
oo and normal minimal geodesics ¢; from p to ¢; any limiting geodesic ¢ obtained
from a convergent subsequence of ¢; will be a ray emanating from p. (¢;(0) has an
accumulation point in the compact unit sphere in T,M).

The basic observation about the halfspaces H, is the following.

Lemma 3.30 If M is complete, noncompact of nonnegative sectional curvature, then

H, is totally convex for any ray in M.

Proof. Suppose H, is not totally convex, i.e. there is a geodesic ¢ : [0,1] — M with
endpoints ¢g(0), co(1)e H, but ¢o(s)e B, for some s€]0,1[. Then ¢ := co(s)eB(c(to), to)
for some to > 0 and hence geB(c(t),t) for any ¢ > t; by the triangle inequality: In
fact setting

to — e = dist(q, c(tp)), € >0

we have

dist(g, c(t)) < dist(q,c(to)) + dist(c(t,), c(t))
= (to—e)+(t—ty) =t—¢

for t > t,.
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Let co(s¢) be a point on ¢y which is closest to ¢(t). Further consider the restriction
cb := (coljo,5,)) ' and a minimal geodesic ¢} from co(s;) to c(t). Since cf(0) = co(sy)
is the closest point to c¢(t) on ¢o we have ¥ (¢4(0),¢5(0)) = 5. Furthermore |cf| =
dist(ch(0), c(t)) = dist(co(st), c(t)) < dist(g,c(t)) < (t —e) and |ch| < |co|. Consider
now the hinge ¢}, ¢, 5. Using Toponogov’s theorem 2.2 part B with comparison space

IR? and the law of cosines we obtain
dist2(cf](st), c(t)) = dist2(cg(0), c(t)) < e + | < |eol® + (t —€)?

Furthermore dist(cy(0),c(t)) > t since c¢o(0)e H, = M \ B.. Therefore t* < |co|? + (t —

g)?, which for large values of ¢ is a contradiction. O

We now fix a point pe M. For aray c: [0, 00[— M we also consider the restriction
¢t := C|[t,00- Let
Ct = m Hct
Cc

where the intersection is taken over all the rays ¢ emanating from p.

Lemma 3.31 C} is a compact totally convex set for all t > 0, moreover

a) Cy, D Cy, for ta >t and
Ct1 = {qut2 | diSt(% 80152 Z t2 - tl};
i particular

0C;, = {qeCy, | dist(q,0C4,) = ta — t1}
b) U0 Ct = M

¢) pedCy

Proof. Clearly C; is totally convex and closed and peC}. If some C; were not compact
it would contain a ray c : [0, co[— C} starting from p (use the same argument as for the
existence of rays in a noncompact manifold). Now ¢(t')¢C; for ¢’ > ¢, contradicting
the definition of C;. Statement c) is obvious from the construction of C;. The proof of
a) and b) now is an exercise using only the definiton of C; and the triangle inequality,
cf. [CE]. O

Note that the interior of C; is nonempty for ¢ > 0. This is not true for Cy in
general as can be seen on the paraboloid of revolution in IR?: If p is the umbilic point
of the paraboloid then Cp = {p}.
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Figure 6: paraboloid

The C} provide an expanding filtration of M by compact totally convex sets. Our next
goal is to construct minimal totally convex sets by a contraction procedure which will
be used to find a soul S. For this important part of the proof we also need the local

concept of convexity:

Definition 3.32 A subset A of M is called strongly convex if for any q,q'c A there

s a unique minimal geodesic from q to q' which is contained in A.

Recall that there is a continuous function r : M —|0, o], the convezity radius such
that for any pe M, any open metric ball B which is contained in B(p,r(p)) is strongly
convex, cf [GKM].

Definition 3.33 We say that a subset C' of M is convex if for any peC there is a
number 0 < e(p) < r(p) such that C N B(p,e(p)) is strongly convez.

Note that a totally convex set is convex and connected. Also the closure of a convex
set is again convex.

Let C be a connected nonempty convex subset of M. For 0 < [ < n we may
consider the collection {N!} of smooth [—dim submanifolds of M such that N} C C.
Let k denote the largest integer such that {N*} is nonempty and N := U, N* C C.

Lemma 3.34 N is a smooth connected totally geodesic submanifold of M and C C N.
Moreover N = C is a topological manifold with possibly empty bounary 8N = N\ N.

Proof (outline). The full details are technical, therefore we only give the main
idea, [CG1], [CE]. Let peN and e(p) as in the definition above. Then pe N* for
some «. Therefore we can choose a neighborhood U C N, N B(p,3¢(p)) of p in
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N and 0 < 6§ < 1e(p) such that exp |, is a diffeomorphism onto a neighborhood
Ts of p in M, where vs(U) = {ve(TU)* | ||v|| < 6} € TM is the §-tube in the
normal bundle v(U) of U. To prove that N is a submanifold it suffices to show
that NN Ts = U. Suppose ge(NNTs)\U C (CNTs)\U. Let ¢ be the closest
point to ¢ in U. Then ¢'cU, otherwise we get a contradiction to the invertibility
of exp |,sw) close to g. The minimal geodesic from ¢ to ¢’ then is orthogonal to U.
By the choice of § < %s(p) the exponential map in the ball of radius § around ¢’ is
invertible. Therefore all the unique minimal geodesics from ¢ to ¢” for ¢"” in some
neighborhood U’ of ¢' are transversal to U and are contained in C'. The conical set
{exptu | ue My, ||ul| < e(g), exp(u)eU’, 0 < t < 1} then is a (k + 1)-dimensional
submanifold in C' which contradicts the definition of £. From the existence of T and
the convexity of C' it follows that NV is totally geodesic. For the remaining statements
we refer to [CG1] and [CE]. 0

Definition 3.35 Let C' be a convex subset of M. The tangent cone to C' at a point
peC' s by definition the set

T,C = {veT,M | exp(tﬁ)eN for some 0 <t <r(p)}U{0}.

Clearly if pe N =int (C), then T,C = T,N. The following lemma contains all the

technical information about 7,C we need.
Lemma 3.36 (tangent cone lemma) Let C C M be convex and pcdC'.

a) Then T,C \ {0} is contained in an open halfspace of T,M .

b) Suppose that there exists qeintC and a minimal normal geodesic ¢ : [0,d] — C
from q to p such that |c| = dist(q,0C). Then

~ . T
L,C\A{0} = {velyC | & (v, —¢(d)) < 5},
where TpC is the subspace of T,M spanned by T,C'.

Proof. a) T,C is convex in T,M since C is convex. If T,,C'\ {0} is not contained in
an open halfspace of T,M, then T,,C' must be a linear subspace of T, M of dimension
dim(int C')) and hence p is an interior point of C'. For b) and the details of the the

analysis of convex sets we refer to [CG1]. 0

The following lemma is the key for constructing the soul of M via a contraction

procedure.

43



Lemma 3.37 (contraction lemma) Suppose M has nonnegative sectional curva-
ture and C C M 1is a closed totally convex subset with OC # (. We set

C* = {peC | dist(p,0C) > a}, C™* = () C°.
Cazd

Then
a) C® is closed and totally conver.
b) dimC™* < dimC'.
¢) If K >0 then C™* is a point.
This is a corollary of the following more general lemma:

Lemma 3.38 Under the assumptions of lemma 3.37, o := distsc : M — IR is a

concave function, i.e. for any normal geodesic ¢ which is contained in C we have
P(e(Atr + (1= Nt2)) > Mp(e(ts)) + (1 = M)(e(tz)) - (65)
If the sectional cuvature satisfies K > 0 then the strict inequality holds in (65).

Proof. It is sufficient to show that for any point ¢(sg) of ¢ there is a number § > 0
such that 1 (c(s)) is bounded above by a linear function h(s) on |so—d, so+4[ satisfying
h(so) = ¥(c(sp)) =: d. Let ¢y, be a distance minimizing normal geodesic of length d
from ¢(sp) to OC and a := ¥ (¢5,(0),¢(s0)). Then we can take

h(s) =d— (s — sg)cos .

To show h(s) > v(c(s)) we consider the three cases o = 7, a >

MIE]

, a < 7. Note that
we only have to consider points s > sq.

Case a = 7 : Let E denote the parallel unit vector field along c,, with E(0) = ¢(so).
By the second comparison theorem of Rauch, there is a number § > 0 such that the
length of the curve c,(t) = exp(s—so)E(t) has length |cs| < d = |cg,| for 0 < s—sp < 6.
The geodesic ¢ : s — exp(s — s9)E(d) is orthogonal to c¢s, at q := ¢;,(d)edC, hence
¢(0)¢T,C by lemma 3.36, so that ¢(t)¢int C for 0 < ¢t < £(q). Therefore 1 (c(s)) <
lcs| <d=d—(s—sg)cos .

Case a > 7: Let E(0)Lé,,(0) be the unique unit vector in the convex cone spanned
by ¢(so) and ¢,,(0) and extend it to the parallel vector field E along cq,. Define ¢, as
in the first case to obtain

les| < d . (66)
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Applying the hinge version of Toponogov’s theorem (or just Rauch I) to the hinge with
geodesics ¢t — exptE(0), 0 <t < (s — sg)cos(a — §) and t — c(sp + t) with angle
a — 3, one obtains

dist (c(s), exp((s — so) cos(a — — ) < —(s—sg)cosa . (67)

Combining (66) and (67), the inequality ¥ (c(s)) < d — (s — so) cos a follows.

Case o < 7 : Choose the point c,(t;) on cs, such that dist(c(s),cs,([0,d])) =
dist(c(s), ¢s,(ts)) and a normal minimal geodesic as from ¢y, (ts) to c(s).
Then ¥ (a4(0),c¢sy(ts)) = 5. Further E denotes the parallel vector field along cs, |1, ,q
with E(ts) = as(0). The curve c¢s(t) = exp(|as| E(t)), ts < t < d, is of length
les| < (d—tg) for s — sg < § if § is sufficiently small. As before dist(c(s),dC) < |eql,
thus

dist(c(s),0C) < (d — t4) (68)

Applying the hinge version of Toponogov’s theorem (or just Rauch I) to the hinges

(C|[so,8]’ Cso

2t,(s — sq) cos a respectively (s — 89)% < |ag|*> + t2, hence

0,4, @) respectively (¢, o), @s, 5), we obtain |a,|® < (s — s9)% +t2 —
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—ts < —(s5 — $9) cos . (69)

From (68) and (69) the estimate 1¥(c(s)) < h(s) follows.
The discussion of the strict inequality in the case k > 0 is left to the reader. O

Proof of the soul theorem. Let pc M and consider the filtration of M by compact
totally convex sets C; as in lemma 3.31. If 8Cy = 0 let S = Cy. If 0Cy # 0, appli-
cation of the contraction lemma 3.37 to the compact totally convex set Cy gives us a
compact totally convex set C7*** of dimension < dim Cj. Repeating this procedure
leads us in a finite number (< n) of steps to a compact totally convex set S C Cy with
dimS < n and 8S = (). In particular S is a compact totally geodesic submanifold of
M.

We now show that M is diffeomorphic to the normalbundle v(S). The diffeomorphism
is constructed by means of the flow of a gradient-like vector field of dists. Let ge M\ S.
Then qedC; for some ¢t > 0 or geint Cy. By the contraction lemma 3.37 we have either
qe0Cy for some a > 0 or geint CJ"**. Repeating this argument a finite number of
times, we find a compact totally convex set C such that qedC and S C intC'. Any

geodesic from ¢ to S has its initial tangent vector in the tangent cone T;C'. Hence all
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such initial vectors are contained in an open half space of T; M, compare lemma 3.36.

Therefore dists has no critical points on M\ S. Choose £ > 0 such that exp ve(S) 18 @
diffeomorphism onto the e-tube around S. Here v.(S) = {veTS* | ||v|]| < €}. Then
X, = grad distg is a gradient-like vector field on exp(v.(S))\ S such that (X|,, é,(0))
= —1 for the unique minimal normal geodesic ¢, from ¢ to S. Therefore one can
construct a global gradient-like vector field X on M \ S such that (X,,¢(0)) < 0 for
any distance minimizing geodesic from ¢ to S and X, = X;|, for ge exp(v./2(S)). Let
¥ be the flow of X. Define F : v(S) — M as follows: F(v) := exp(v) for [|v]| < %
and F(tv) := ¥(exp(3v),t — 7) for ver,(S) and t > §. Then F is a diffeomorphism
as follows easily by using (64). O

Remarks

1. A soul of M is not uniquely determined in general as can be seen by looking at

cylinders. However any two souls of M are isometric, cf. [S] and [Y].

2. If codim(S) = 1, then exp|,(s) is an is an isometry between v(S) with its
standard (flat) bundle metric and M, cf. [CG1].

3. In general the normal bundle v(S) need not to be trivial. Furthermore M is not
locally isometric to a product S x IR¥ in general. By the Toponogov splitting
theorem, cf. [CG1], however any line in M splits off isometrically, so that M is
isometric to M x IR¥, where IR* carries the standard flat metric and M does not
contain any lines. This even holds for manifolds of nonnegative Ricci curvature,
cf. [CG2], [EH]. More generally Strake [St] has shown the following: Suppose
the holonomy group of v(S) is trivial, then M is isometric to S x IR¥ where R*
carries a metric of nonnegative curvature. For further results in this context we
also refer to [ESS].

4. For a discussion on the structure of the fundamental group see [CG1].

5. There is no analogue of the soul theorem for complete open manifolds of positive
Ricci curvature, cf. the examples in [GM2], [SY1] and [B], but compare also the
result in [AG].
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4 Appendix: A topological Lemma

Theorem 4.1 (Nested Coverings) Let B) C B C...C B ,1<i< N, bea
family of nested open subsets in a topological space X, and let X7 = U, B{ for
0<j3<m+1. Then

rk(Hy(X°) — Hy(X"™))

p
< SN (HaBL 0B o B0 BL)

k=0 i0<...<ip

for 0 < p <m ; here H,(...) stands for singular homology with coefficients in some

arbitrary field F .

Proof. Let
Clyi= @ S,(BLn..nBI;F) and Aly:=SY(X/;F) (70)
i0<...<iq

stand for the the groups of singular simplices which are fine w.r.t. the covering of X’
by the B{ . Whenever ¢ > 0, homomorphisms 5{;,(1 : .ng — Cf;,q—1 which commute
with the differentials of the singular chain complexes C] , := @, C; , can be defined in
the manner of Cech homology: one adds up the inclusions Sp(B{O N...N B{q ; ]-') —

sp(BZ}, N...nBLN...nBiL;F ) with sign (—1)* . Defining similarly maps 4, :

Cf,,o — AZ,O , one obtains on each level j separately a long exact sequence of chain

complexes — the generalized Mayer-Vietoris sequence [BT, pp. 186-188] :
j &g j ‘51,1 j 51,0 j
—Cl, —Cli1— ... = Clp AL, —0 (71)
This sequence is natural w.r.t. the inclusion maps (j; < j2):

71,14]2 : Cifq — qu (72)
ol o Al — ATy (73)
For ¢ > 1 we set A} :=im(6} ) and define af\2 as the restriction of 7/, . With
this shorthand the generalized Mayer-Vietoris sequence splits naturally into short exact

sequences of chain complexes:
0— A, —Cl, — Al —0 (74)
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Taking the corresponding long exact homology sequences leads in particular to both

the commutative diagrams with exact rows:

H,(C.,) Hy(Ay,) —— Hpa(AL )
0y a1 g1
Hy(CZo) Hp(AL)) ——— Hpa(Alg) (75)
Vi o
H,y(C7,) Hp(AL)) ——— H, (f;piil)

when 1 <p <m, and

Ho(CY,) Ho(AY,) —— H.i(Al,) = 0
Tolg @1 (76)
Ho(ci,q) Hy (Ai,q) - (Ai q+1) =0

else. Here the vanishing occurs already on the chain level: A7 1941 C C’;l,q = 0.
When applying standard diagram chasing techniques, (75) and (76) yield the following
estimates respectively:

rk(apPtt) = rk(abPt o aph)
< k(P + rk(apPy 441) for1<p<m (77)
tk (ag,) < rk(Foy) (78)
By induction we conclude that
P
k,k k, k
J“<Zkk£k = 3 k(i) (79)

for 0 < p < m. Setting ¢ to 0, this inequality specializes — in the presence of formulae
(70), (72) , and (73) — precisely to the claim in Theorem 4.1. O.

Corollary 4.2 (Nested Coverings) Let B) C B C...C B! [1<i< N, bea

family of nested open subsets in an n-dimensional topological manifold M". Then

rk(H*(U B > H.( Bgﬂ))
Z > rk(HJ(BE*n...nBL*) = H(BL™F ... BLTTR)) (80)
k=0 20<...<ip

where H,(...) is again singular homology with coefficients in some arbitrary field F .
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Remark: The number of terms on the r.h.s. of (80) is

n n Nk
< N- < N7t (81)
Z(k+1> kZ::O(k-i—l)!
Proof of the Corollary. Since we are dealing with open subsets in an n-dimensional

manifold M", H, vanishes unless 0 < p < n. Therefore

k (H*<g ) - .( 5

n

= S (B0 - )

p=0

< S (mUB) - wUB)

p=0 7 7

Each term on the r.h.s. can be estimated separately by applying Theorem 4.1 to the
nested open sets B} P C ... C B 1< i < N. With this shift in the indexing in

mind [ m+1=(n+1) — (n —p) |, one gets — slightly sharper than (80) —
(rU B > mU B

> X Zrk( (BE*n...n B *) —» Hu (B ™ 0.0 B )

k=0 ip<...<ip p=0

thus proving the Corollary.
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