MAT 1000 / 457 : Real Analysis I Assignment 1, due September 19, 2012

- 1. (Folland 1.1) A family of sets $\mathcal{R} \in \mathcal{P}(X)$ is called a **ring** if it is closed under finite unions and differences (i.e., if $E, F \in \mathcal{R}$, then $E \cup F \in \mathcal{R}$ and $E \setminus F \in \mathcal{R}$). A ring which is closed under countable unions is called a σ -ring.
 - (a) Rings (resp. σ -rings) are closed under finite (resp. countable) intersections.
 - (b) Let \mathcal{R} be a ring. Then \mathcal{R} is an algebra, if and only if $X \in \mathcal{R}$.
 - (c) If \mathcal{R} is a σ -ring, then $\{E \subset X : E \in \mathcal{R} \text{ or } E^c \in \mathcal{R}\}$ is a σ -algebra.
 - (d) If \mathcal{R} is a σ -ring, then $\{E \subset X : E \cap F \in \mathcal{R} \text{ for all } F \in \mathcal{R}\}\}$ is a σ -algebra.
- 2. (Folland 1.3) Let \mathcal{M} be an infinite σ -algebra. Show that ...
 - (a) \mathcal{M} contains an infinite sequence of disjoint non-empty sets;
 - (b) \mathcal{M} is uncountable.
- 3. (Folland 1.4) Let A be an algebra. Suppose that A is closed under countable increasing unions, i.e., U_{j=1}[∞] E_j ∈ A whenever E_j ∈ A and E_j ⊂ E_{j+1} for each j = 1, 2, Prove that A is a σ-algebra.
- 4. (Folland 1.8) Let (X, \mathcal{M}, μ) be a measure space, and consider a sequence $\{E_j\}_{j\geq 1}$ in \mathcal{M} . Define $\infty \ \infty \ \infty$

$$\liminf E_j = \bigcup_{k \ge 1}^{\infty} \bigcap_{j=k}^{\infty} E_i, \qquad \limsup E_j = \bigcap_{k \ge 1}^{\infty} \bigcup_{j=k}^{\infty} E_i.$$

(a) Show that

$$\liminf E_j = \{x : x \in E_j \text{ for all but finitely many } j\},\\ \limsup E_j = \{x : x \in E_j \text{ for infinitely many } j\}.$$

Conclude that $\liminf E_j \subset \limsup E_j$.

(b) Give an example of a sequence $\{E_j\}$ where $\liminf E_j \neq \limsup E_j$.

(c) Show that $\mu(\liminf E_j) \leq \liminf \mu(E_j)$. If $\mu(\bigcup_{j=1}^{\infty} E_j) < \infty$, then also $\mu(\limsup E_j) \geq \limsup \mu(E_j)$.

- 5. Let (X, \mathcal{M}, μ) be a measure space.
 - (a) (Inclusion-Exclusion, Folland 1.9)
 If E, F ∈ M, then μ(E ∪ F) = μ(E) + μ(F) μ(E ∩ F).
 (b) (Restricting a measure to a subset, Folland 1.10)
 Given a set E ∈ M, define μ_E(A) = μ(A ∩ E) for A ∈ M. Prove that μ_E is a measure.
- 6. (summable \Rightarrow countable)

Let Λ be an infinite set. For each $\lambda \in \Lambda$, let x_{λ} be a nonnegative number. Define the value of the series $\sum x_{\lambda}$ as the supremum of its finite partial sums,

$$\sum_{\lambda \in \Lambda} x_{\lambda} := \sup_{n \ge 0} \sup_{\{\lambda_1, \dots, \lambda_n\} \subset \Lambda} \{ x_{\lambda_1} + \dots + x_{\lambda_n} \} .$$

(Note that the supremum is well-defined, even when its value is infinite.)

 $\text{If} \quad \sum_{\lambda \in \Lambda} x_{\lambda} < \infty, \quad \text{prove that } \Lambda' = \{\lambda \in \Lambda : x_{\lambda} > 0\} \text{ is countable}.$