MAT 1000 / 457 : Real Analysis I
 Assignment 10, due Friday, December 7, 2012

1. Stein and Shakarchi, Exercise 3.4) Let f be an integrable function on \mathbb{R}^{d} with $\|f\|_{L^{1}}=1$.
(a) Show that its maximal function satisfies

$$
H f(x) \geq \frac{c}{|x|^{d}} \quad(|x| \geq 1)
$$

for some $c>0$. Conclude that $H f$ is not integrable on \mathbb{R}^{d}.
(Hint: Use that $\int_{B}|f|>0$ for some ball B.)
(b) Show that the weak-type estimate provided by the Hardy-Littlewood Maximal Theorem is best possible in the following sense: If f is supported in the unit ball, then

$$
m(\{x: H f(x)>\alpha\}) \geq \frac{c^{\prime}}{\alpha}
$$

for some $c^{\prime}>0$ and all all sufficiently small $\alpha>0$.
2. (The volume of parallel sets depends continuously on the distance)

Let $K \subset \mathbb{R}^{d}$ be a non-empty compact set, let

$$
K_{t}=\left\{x \in \mathbb{R}^{d}: d(x, K) \leq t\right\} \quad(t>0),
$$

with the convention that $K_{0}=K$, and consider $\rho(t)=m\left(K_{t}\right)$.
(a) Show that ρ is right continuous (appeal to Problem 4 of Assignment 3).
(b) Argue that, for $t>0$, the level set $\{x: d(x, K)=t\}$ has measure zero.

Hint: What can you say about the Lebesgue density of $\{x: d(x, K)<t\}$ at a point a with $d(a, K)=t$?
(c) Conclude that ρ is also left continuous.
3. (Stein and Shakarchi, Problem 3.1) A collection \mathcal{B} of balls is called a Vitali covering of a set E, if for every $x \in E$ and every $\delta>0$ there is a ball $B \in \mathcal{B}$ such that $x \in B$ and $m(B)<\delta$.

If E is a set of finite Lebesgue measure in \mathbb{R}^{n}, prove that for every $\varepsilon>0$ there exists a disjoint collection $\left\{B_{j}\right\}_{j \geq 1}$ in \mathcal{B} such that

$$
m\left(E \backslash \bigcup_{j=1}^{\infty} B_{j}\right)=0 \quad \text { and } \quad \sum_{j=1}^{\infty} m\left(B_{j}\right) \leq(1+\varepsilon) m(E)
$$

(Remark: The estimate remains valid for non-measurable sets, with Lebesgue measure replaced by outer Lebesgue measure.)
4. (Folland 2.13) Let $\left(f_{n}\right)_{n \geq 1}$ be a sequence of nonnegative measurable functions. Assume that $f_{n} \rightarrow f$ pointwise a.e., and that $\int f_{n} \rightarrow \int f$.
(a) If f is integrable, show that $\int_{E} f=\lim \int_{E} f_{n}$ for all measurable sets E.
(b) However, this need not be true if $\int f=\infty$.
5. (Stein and Shakarchi, Exercise 2.18) Let f be a real-valued function on $[0,1]$, and suppose that $|f(x)-f(y)|$ is integrable on $[0,1] \times[0,1]$. Show that f is integrable on $[0,1]$.
6. (Folland 3.41) Let $A \subset[0,1]$ be a Borel set such that $0<m(A \cap I)<m(I)$ for every subinterval $I \subset[0,1]$ of positive length (as constructed in Problem 6 of Assignment 4).
(a) Let $F(x)=m([0, x] \cap A)$. Then F is absolutely continuous and strictly increasing, but F^{\prime} vanishes on a set of positive measure.
(b) Let $G(x)=m([0, x] \cap A)-m([0, x] \backslash A)$. Then G is absolutely continuous, but not monotone on any subinterval $I \subset[0,1]$.
(Remark: Compare with Problem 3 of Assignment 8)

