MAT 1000 / 457 : Real Analysis I Assignment 10, due Friday, December 7, 2012

- 1. *Stein and Shakarchi, Exercise 3.4*) Let f be an integrable function on \mathbb{R}^d with $||f||_{L^1} = 1$.
 - (a) Show that its maximal function satisfies

$$Hf(x) \ge \frac{c}{|x|^d} \quad (|x| \ge 1)$$

for some c > 0. Conclude that Hf is not integrable on \mathbb{R}^d . (*Hint:* Use that $\int_B |f| > 0$ for some ball B.)

(b) Show that the weak-type estimate provided by the Hardy-Littlewood Maximal Theorem is best possible in the following sense: If f is supported in the unit ball, then

$$m(\{x: Hf(x) > \alpha\}) \ge \frac{c'}{\alpha}$$

for some c' > 0 and all all sufficiently small $\alpha > 0$.

2. (The volume of parallel sets depends continuously on the distance) Let $K \subset \mathbb{R}^d$ be a non-empty compact set, let

$$K_t = \{x \in \mathbb{R}^d : d(x, K) \le t\} \quad (t > 0),$$

with the convention that $K_0 = K$, and consider $\rho(t) = m(K_t)$.

(a) Show that ρ is right continuous (appeal to Problem 4 of Assignment 3).

(b) Argue that, for t > 0, the level set $\{x : d(x, K) = t\}$ has measure zero.

Hint: What can you say about the Lebesgue density of $\{x : d(x, K) < t\}$ at a point a with d(a, K) = t?

- (c) Conclude that ρ is also left continuous.
- 3. (Stein and Shakarchi, Problem 3.1) A collection \mathcal{B} of balls is called a Vitali covering of a set E, if for every $x \in E$ and every $\delta > 0$ there is a ball $B \in \mathcal{B}$ such that $x \in B$ and $m(B) < \delta$.

If E is a set of finite Lebesgue measure in \mathbb{R}^n , prove that for every $\varepsilon > 0$ there exists a disjoint collection $\{B_i\}_{i>1}$ in \mathcal{B} such that

$$m\left(E\setminus \bigcup_{j=1}^{\infty}B_j\right)=0$$
 and $\sum_{j=1}^{\infty}m(B_j)\leq (1+\varepsilon)m(E)$.

(*Remark:* The estimate remains valid for non-measurable sets, with Lebesgue measure replaced by outer Lebesgue measure.)

- 4. (Folland 2.13) Let (f_n)_{n≥1} be a sequence of nonnegative measurable functions. Assume that f_n → f pointwise a.e., and that ∫ f_n → ∫ f.
 (a) If f is integrable, show that ∫_E f = lim ∫_E f_n for all measurable sets E.
 - (b) However, this need not be true if $\int f = \infty$.
- 5. (Stein and Shakarchi, Exercise 2.18) Let f be a real-valued function on [0, 1], and suppose that |f(x) f(y)| is integrable on $[0, 1] \times [0, 1]$. Show that f is integrable on [0, 1].
- 6. (Folland 3.41) Let $A \subset [0,1]$ be a Borel set such that $0 < m(A \cap I) < m(I)$ for every subinterval $I \subset [0,1]$ of positive length (as constructed in Problem 6 of Assignment 4).

(a) Let $F(x) = m([0, x] \cap A)$. Then F is absolutely continuous and strictly increasing, but F' vanishes on a set of positive measure.

(b) Let $G(x) = m([0, x] \cap A) - m([0, x] \setminus A)$. Then G is absolutely continuous, but not monotone on any subinterval $I \subset [0, 1]$.

(*Remark:* Compare with Problem 3 of Assignment 8)