MAT 1000 / 457 : Real Analysis I Assignment 2, due September 26, 2012

(a) If μ : P(ℝ) → {0,1} is a measure that takes only the values 0 and 1, prove that either μ = 0, or else μ = δ_a for some a ∈ ℝ.
Hint: Recall the proof of the Bolzano-Weierstrass theorem.

(b) What can you say if μ is only finitely additive?

2. (*Limits of measures are measures*) Let $(\mu_n)_{n\geq 1}$ be a sequence of measures on a measurable space (X, \mathcal{M}) . Suppose that

$$\mu(A) := \lim_{n \to \infty} \mu_n(A) < \infty$$

exists for each $A \in \mathcal{M}$. Prove that μ is a measure.

3. (The Borel-Cantelli lemma)

Let (X, \mathcal{M}, μ) be a measure space. Suppose $E_j)_{j \ge 1}$ is a sequence of measurable sets with the property that

$$\sum_{j=1}^{\infty} \mu(E_j) < \infty$$

and let $\limsup E_j = \{x : x \in E_j \text{ for infinitely many } k\}$, as in Assignment 1. Show that $\mu(\limsup E_j) = 0$.

4. (Intermediate value theorem for measures).

Let (X, \mathcal{M}, μ) be a measure space with the property that for every set $A \in \mathcal{M}$ of positive measure there exists a subset $B \subset A$ with $0 < \mu(B) < \mu(A)$. Prove that $\mu(\mathcal{M}) = [0, \mu(X)]$, i.e., μ takes on all possible values up to to $\mu(X)$.

5. (Unions over chains of closed sets)

Let $C \subset \mathcal{P}(\mathbb{R})$ be a collection of closed subsets of the real line, with the property that for each pair of sets $A, B \in C$, either $A \subset B$ or $B \subset A$. Prove that $\bigcup_{A \in C} A$ is a Borel set. (*Hint:* Rewrite the union as a countable union.)

6. (*The section property of Borel sets*)

Let A be a Borel set in \mathbb{R}^2 . Prove that, for every $y \in \mathbb{R}$, the cross section

$$A(y) = \{x \in \mathbb{R} : (x, y) \in A\}$$

is a Borel set. (Hint: Try using the Monotone Class Theorem.)