MAT 1000 / 457 : Real Analysis I Assignment 3, due October 3, 2012

1. Let μ^* be an outer measure on X induced from a premeasure μ_0 , and let μ be the restriction of μ^* to the σ -algebra \mathcal{M} of μ^* -measurable sets.

(a) (Folland 1.18) Prove that $\mu^*(A) = \inf_{E \in \mathcal{M}: E \supset A} \mu(E)$ for all $A \subset X$.

(b) (Folland 1.19) If $\mu_0(X) < \infty$, define the *inner measure* of a set $A \subset X$ by $\mu_*(A) = \mu_0(X) - \mu^*(A^c)$. Prove that A is measurable, if and only if $\mu^*(A) = \mu_*(A)$.

2. Let $E \subset \mathbb{R}$ be a Lebesgue measurable set of positive measure.

(a) (Folland 1.30)
Prove thay for every α < 1 there is an open interval I such that m(E ∩ I) ≥ αm(I).
(b) (Folland 1.31)
Conclude that the set E - E := {x - y : x, y ∈ E} contains an interval centered at 0. (*Hint:* Use (a) with α > 3/4.)

- 3. Let N ⊂ R be a set of Lebesgue measure zero. Prove that there exists c ∈ R such that the translated set c + N := {c + x : x ∈ N} contains no rational point. *Hint:* Consider the union U_{q∈0} {c ∈ R : q ∈ c + N}.
- 4. (Stein & Shakarchi 1.5) Given a set $E \subset \mathbb{R}^n$, consider the open sets

$$U_n = \left\{ x \in \mathbb{R}^n : d(x, E) < \frac{1}{n} \right\} \,.$$

- (a) If E is compact, prove that $m(E) = \lim m(U_n)$.
- (b) Give an example of a bounded open set where the conclusion fails.
- 5. Let $(f_n)_{n\geq 1}$ be a sequence of continuous real-valued functions on an interval [a, b]. Prove that

$$E = \left\{ x : \sum_{n \ge 1} f_n(x) \text{ converges} \right\}$$

is a Borel set. (*Hint*: Use the Cauchy criterion to show that E is an $F_{\sigma\delta}$ -set.)

6. Does there exist a dense subset of \mathbb{R}^2 such that no three points are collinear?