MAT 1000 / 457 : Real Analysis I Assignment 4, due October 10, 2012

1. (Folland 2.14)

Let f be a nonnegative measurable function on a measure space (X, \mathcal{M}, μ) . For $E \in \mathcal{M}$, set $\lambda(E) = \int_E f \, d\mu$. Show that ...

(a) ... λ is a measure;

(b) ... $\int g d\lambda = \int f g d\mu$ for every nonnegative measurable function g.

2. Let $x \in (0, 1)$, and let $(x_i)_{i \ge 1}$ be its decimal expansion.

(If x has several decimal expansions, use the one that terminates in 0.)

(a) Show that

$$f(x) = \limsup_{n \to \infty} \left(\frac{1}{n} \# \{ i = 1, \dots, n : x_i = 7 \} \right)$$

defines a Borel measurable function on the unit interval.

(b) Show that f assumes every value in [0, 1] on each nonempty subinterval $(a, b) \subset (0, 1)$.

(c) Construct a Borel measurable function that assumes every value in $[-\infty, \infty]$ on each nonempty subinterval of (0, 1).

- Let (f_n)_{n≥1} be a sequence of measurable real-valued functions on ℝ. Prove that there exist constants c_n > 0 such that the series ∑ c_nf_n(x) converges for almost every x ∈ ℝ. (*Hint:* Borel-Cantelli.)
- 4. (Folland 2.9)

Let f be the Cantor-Lebesgue function (the 'devil's staircase') from Section 1.5, and let $g: [0,1] \rightarrow [0,2]$ be defined by g(x) = f(x) + x. Prove the following assertions.

(a) g maps [0, 1] bijectively onto [0, 2], and $h = g^{-1}$ is continuous.

(b) If C is the Cantor set, then m(g(C)) = 1.

(c) Let $A \subset g(C)$ be a nonmeasurable set. Then $B := g^{-1}(A)$ is Lebesgue measurable, but not Borel. Hence $\mathcal{X}_A = \mathcal{X}_B \circ h$ is not Lebesgue measurable.

(*Remark:* You may take for granted that every set of positive Lebesgue measure contains a nonmeasurable subset, see Folland Problem 1.29).

5. (a) (Inclusion-exclusion)

Let (X, \mathcal{M}, μ) be a measure space. If A_1, \ldots, A_n are sets of finite measure in \mathcal{M} , prove that

$$\mu\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{\emptyset \neq F \subset \{1,\dots,n\}} (-1)^{\#F+1} \mu\left(\bigcap_{i \in F} A_{i}\right) \,.$$

(Hint: Use characteristic functions.)

(b) (*The forgetful secretary*)

Let S_n be the set of all permutations of $\{1, \ldots, n\}$, and let μ_n be the normalized counting measure defined by $\mu_n(A) = (\#A)/(\#S_n)$. Find

 $p_n = \mu_n(\{\pi \in S_n : \pi(i) \neq i \text{ for } i = 1, \dots, n\}),$

and compute $p = \lim p_n$. (*Hint:* Consider $A_i = \{\pi \in S_n : \pi(i) = i\}$.)

6. (Folland 1.33)

Construct a Borel set A such that $0 < m(A \cap I) < m(I)$ for every subinterval $I \subset [0, 1]$. (*Hint:* Every interval contains Cantor-type sets of positive measure.)