MAT 1000 / 457 : Real Analysis I Assignment 4, due October 10, 2012

1. (Folland 2.14)

Let f be a nonnegative measurable function on a measure space (X, \mathcal{M}, μ). For $E \in \mathcal{M}$, set $\lambda(E)=\int_{E} f d \mu$. Show that \ldots
(a) ... λ is a measure;
(b) $\ldots \int g d \lambda=\int f g d \mu$ for every nonnegative measurable function g.
2. Let $x \in(0,1)$, and let $\left(x_{i}\right)_{i \geq 1}$ be its decimal expansion. (If x has several decimal expansions, use the one that terminates in 0 .)
(a) Show that

$$
f(x)=\limsup _{n \rightarrow \infty}\left(\frac{1}{n} \#\left\{i=1, \ldots, n: x_{i}=7\right\}\right)
$$

defines a Borel measurable function on the unit interval.
(b) Show that f assumes every value in $[0,1]$ on each nonempty subinterval $(a, b) \subset(0,1)$.
(c) Construct a Borel measurable function that assumes every value in $[-\infty, \infty]$ on each nonempty subinterval of $(0,1)$.
3. Let $\left(f_{n}\right)_{n \geq 1}$ be a sequence of measurable real-valued functions on \mathbb{R}. Prove that there exist constants $c_{n}>0$ such that the series $\sum c_{n} f_{n}(x)$ converges for almost every $x \in \mathbb{R}$.
(Hint: Borel-Cantelli.)
4. (Folland 2.9)

Let f be the Cantor-Lebesgue function (the 'devil's staircase') from Section 1.5, and let $g:[0,1] \rightarrow[0,2]$ be defined by $g(x)=f(x)+x$. Prove the following assertions.
(a) g maps $[0,1]$ bijectively onto $[0,2]$, and $h=g^{-1}$ is continuous.
(b) If C is the Cantor set, then $m(g(C))=1$.
(c) Let $A \subset g(C)$ be a nonmeasurable set. Then $B:=g^{-1}(A)$ is Lebesgue measurable, but not Borel. Hence $\mathcal{X}_{A}=\mathcal{X}_{B} \circ h$ is not Lebesgue measurable.
(Remark: You may take for granted that every set of positive Lebesgue measure contains a nonmeasurable subset, see Folland Problem 1.29).
5. (a) (Inclusion-exclusion)

Let (X, \mathcal{M}, μ) be a measure space. If A_{1}, \ldots, A_{n} are sets of finite measure in \mathcal{M}, prove that

$$
\mu\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{\emptyset \neq F \subset\{1, \ldots, n\}}(-1)^{\# F+1} \mu\left(\bigcap_{i \in F} A_{i}\right)
$$

(Hint: Use characteristic functions.)
(b) (The forgetful secretary)

Let S_{n} be the set of all permutations of $\{1, \ldots, n\}$, and let μ_{n} be the normalized counting measure defined by $\mu_{n}(A)=(\# A) /\left(\# S_{n}\right)$. Find

$$
p_{n}=\mu_{n}\left(\left\{\pi \in S_{n}: \pi(i) \neq i \text { for } i=1, \ldots, n\right\}\right),
$$

and compute $p=\lim p_{n} . \quad$ (Hint: Consider $A_{i}=\left\{\pi \in S_{n}: \pi(i)=i\right\}$.)
6. (Folland 1.33)

Construct a Borel set A such that $0<m(A \cap I)<m(I)$ for every subinterval $I \subset[0,1]$. (Hint: Every interval contains Cantor-type sets of positive measure.)

