MAT 1000 / 457 : Real Analysis I Assignment 6, due October 24, 2012

1. Find a simple (useful) condition that guarantees that

$$\sum_{n=1}^{\infty} \left(\int f_n \, d\mu \right) = \int \left(\sum_{n=1}^{\infty} f_n \right) \, d\mu \, .$$

2. Let $(f_n)_{n\geq 1}$ be a sequence of functions on [0, 1] that is bounded in L^2 (i.e., $\sup_n ||f_n||_2 < \infty$). Assume that there exists a measurable function f such that

$$\int_0^1 |f_n - f| \, dm = 0 \qquad (n \to \infty) \, .$$

Show that $f \in L^2$. Does it follow that $f_n \to f$ in L^2 ?

- 3. (Folland 6.5) Let (X, M, μ) be a measure space, and 1 ≤ p < q < ∞. Show that ...
 (a) ... L^p ⊄ L^q if and only if X contains sets of arbitrarily small measure;
 (b) ... L^q ⊄ L^p if and only if X contains arbitrarily large finite measure.
 (c) What about the case q = ∞?
- 4. (Folland Theorem 6.8) Let (X, M, μ) be a measure space. Prove that ...
 (a) ... L[∞] is complete;
 (b) ... the bounded simple functions are dense in L[∞].
- 5. Are the continuous functions dense in $L^{\infty}(\mathbb{R})$? Is translation $t \mapsto f(\cdot t)$ continuous?

6. (Hausdorff measure and dimension)

Let X be a metric space with distance function d(x, y). For $A \subset X$, the quantity diam $A = \sup_{x,y \in A} d(x, y)$ is called the *diameter* of A. Define, for $s \ge 0$ and $A \subset X$

$$H_s(A) = \lim_{\delta \to 0} \left(\inf \left\{ \sum_{j=1}^{\infty} (\operatorname{diam} B_j)^s : A \subset \bigcup_{j=1}^{\infty} B_j \text{ and } \operatorname{diam} B_j \le \delta \right\} \right) \,.$$

(a) Prove that the limit exists and defines an outer measure on X.

(b) Let $0 \le s < t < \infty$. If $H_s(A) < \infty$ for some $A \subset X$, show that $H_t(A) = 0$. Similarly, if $H_t(C) > 0$ for some $C \subset X$, show that $H_s(C) = \infty$.

(c) The *Hausdorff dimension* of a set $A \subset X$ is defined by $\dim_H(A) = \inf\{s : H_s(A) = 0\}$. Compute the Hausdorff dimension of the standard Cantor set.

Remark: Clearly, $H_s(A \cup B) = H_s(A) + H_s(B)$, if the sets A and B are separated by dist $(A, B) = \inf_{x \in A, y \in B} d(x, y) > 0$. This property implies that Borel sets are measurable for H_s (see Folland Chapter 11.2.) By Carathéodory's theorem, H_s defines a Borel measure, called the s-dimensional Hausdorff measure.