MAT 1000 / 457 : Real Analysis I
 Assignment 7, due October 31, 2012

1. (Folland 2.28d) For $a \in \mathbb{R}$, compute

$$
\lim _{n \rightarrow \infty} \int_{a}^{\infty} n\left(1+n^{2} x^{2}\right)^{-1} d x
$$

and justify the calculations. (Remark: The answer depends on the sign of a. How does it accord with the various convergence theorems?)
2. (Folland 2.48) Let $\mu=\nu$ be counting measure on \mathbb{N}. Define $f(m, n)=1$ if $m=n$, $f(m, n)=-1$ if $m=n+1$, and $f(m, n)=0$ otherwise. Then $\iint f d \mu d \nu$ and $\iint f d \nu d \mu$ exist and are unequal, while $\int|f| d(\mu \times \nu)=\infty$.
3. (Folland 2.60: The Beta-integral)

The Gamma-function is defined by $\quad \Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t \quad$ for $x>0$. Show that

$$
\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)}=\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t \quad(x, y>0)
$$

Hint: Write $\Gamma(x) \Gamma(y)$ as double integral and change variables to simplify the exponential.
4. Let M be a positive definite symmetric $n \times n$ matrix. Find the measure of the ellipsoid

$$
E=\left\{x \in \mathbb{R}^{n}: x \cdot M x<1\right\}
$$

in terms of M and the measure of the unit ball. (Hint: Diagonalize M.)
5. (Folland 2.59: The Dirichlet integral) Show that

$$
\lim _{b \rightarrow \infty} \int_{0}^{b} x^{-1} \sin x d x=\frac{\pi}{2}
$$

Hint: Integrate the function $e^{-x y} \sin x$ with respect to x and y, and use that

$$
\int e^{-x y} \sin x d x=-e^{-x y}\left(\frac{1}{1+y^{2}} \cos x+\frac{y}{1+y^{2}} \sin x\right)
$$

Please be careful ... the function $f(x)=x^{-1} \sin x$ is not integrable over $(0, \infty)$!
6. (The Riemann-Lebesgue lemma) If f is integrable on \mathbb{R}, prove that

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f(x) e^{-i n x} d x=0
$$

