MAT 1000 / 457 : Real Analysis I Assignment 8, due November 21, 2012

1. (Folland 6.38) Let f be a nonnegative measurable function on a measure space (X, \mathcal{M}, μ) . Prove that

$$f \in L^p \iff \sum_{k=-\infty}^{\infty} 2^{kp} \mu(\{x : f(x) > 2^k\}) < \infty.$$

2. (Folland 2.61) If f is continuous in $[0, \infty)$, for $\alpha > 0$ and $x \ge 0$ let

$$I_{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_0^x (x-t)^{\alpha-1} f(t) dt.$$

I_αf is called the αth fractional integral of f.
(a) Prove that I_{α+β}f = I_α(I_βf). *Hint:* Use Problem 3 from Assignment 7 / Folland 2.60.
(b) If n ∈ N, then I_nf is an n-th order antiderivative of f.

3. (Existence of nowhere monotone continuous functions.) Prove that there exists a function in C([0, 1]) that is not monotone on any subinterval of positive length.

Hint: Given a closed subinterval $I \subset [0, 1]$ of positive length, prove that the set

$$A_I = \left\{ f \in \mathcal{C}([0,1]) : f \big|_I \text{ is monotone} \right\}$$

is closed and contains no open balls, and then apply the Baire Category Theorem. ¹ (You may find it useful that the piecewise linear functions form a dense subspace of C([0, 1]).)

4. For $1 \le k \le n$, compute the spherical integral

$$\frac{1}{n\omega_n} \int_{\mathbb{S}^{n-1}} (u_1^2 + \dots + u_k^2)^{-1/2} \, d\sigma(u) \, ,$$

where σ is the standard rotationally invariant surface measure on \mathbb{S}^{n-1} .

Hint: Rewrite this as a Gaussian integral over \mathbb{R}^n . Write your answer either in terms of the Gamma-function or in terms of the measures ω_d of the *d*-dimensional unit balls.

- A meager subset of a topological space X is the countable union of nowhere dense sets;
- a **residual** set in X is a subset whose complement is meager;
- we say that "a typical point of X has property φ " if the set of all $x \in X$ with φ is residual.

¹Just to fix the language:

The Baire Category Theorem states that a residual set in a complete metric space is not empty (i.e., the entire space is not meager). It is a (non-constructive) tool for proving existence theorems.

5. Let {f_n}_{n≥1}, f, g be functions in L²[0, 1], with f_n → f pointwise a.e.
(a) If |f_n(x)| < |x|^{-1/3}, prove that

$$\lim_{n \to \infty} \int_0^1 f_n(x) g(x) \, dx = \int_0^1 f(x) g(x) \, dx \, .$$

(b) If, instead, $||f_n||_{L^2} \leq M$ for all n and g is bounded, then the same conclusion holds.

6. (The bathtub principle, Lieb & Loss Theorem 1.14)

Let (X, \mathcal{M}, μ) be a measure space, and let V be a real-valued measurable function on X such that the sub-level sets $S_t := \{x : V(x) < t\}$ have finite measure for each $t \in \mathbb{R}$. Given M > 0, consider the problem of minimizing

$$I(g) = \int V(x)g(x) \, d\mu$$

among all functions g with $0 \le g \le 1$ and $\int g = M$.

(a) Prove that the minimum is assumed by the characteristic function of some set $A \subset \mathcal{M}$. *Hint:* Try $A = S_t$ for a suitable choice of t. A sketch will help ...

(b) Describe all possible minimizers. Under what conditions on M is the minimizer unique (up to a set of measure zero)?