MAT 1000 / 457 : Real Analysis I
 Assignment 8, due November 21, 2012

1. (Folland 6.38) Let f be a nonnegative measurable function on a measure space (X, \mathcal{M}, μ). Prove that

$$
f \in L^{p} \Longleftrightarrow \sum_{k=-\infty}^{\infty} 2^{k p} \mu\left(\left\{x: f(x)>2^{k}\right\}\right)<\infty
$$

2. (Folland 2.61) If f is continuous in $[0, \infty)$, for $\alpha>0$ and $x \geq 0$ let

$$
I_{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{0}^{x}(x-t)^{\alpha-1} f(t) d t
$$

$I_{\alpha} f$ is called the $\alpha^{\text {th }}$ fractional integral of f.
(a) Prove that $I_{\alpha+\beta} f=I_{\alpha}\left(I_{\beta} f\right)$.

Hint: Use Problem 3 from Assignment 7 / Folland 2.60.
(b) If $n \in \mathbb{N}$, then $I_{n} f$ is an n-th order antiderivative of f.
3. (Existence of nowhere monotone continuous functions.)

Prove that there exists a function in $\mathcal{C}([0,1])$ that is not monotone on any subinterval of positive length.
Hint: Given a closed subinterval $I \subset[0,1]$ of positive length, prove that the set

$$
A_{I}=\left\{f \in \mathcal{C}([0,1]):\left.f\right|_{I} \text { is monotone }\right\}
$$

is closed and contains no open balls, and then apply the Baire Category Theorem. ${ }^{1}$ (You may find it useful that the piecewise linear functions form a dense subspace of $\mathcal{C}([0,1])$.)
4. For $1 \leq k \leq n$, compute the spherical integral

$$
\frac{1}{n \omega_{n}} \int_{\mathbb{S}^{n-1}}\left(u_{1}^{2}+\cdots+u_{k}^{2}\right)^{-1 / 2} d \sigma(u)
$$

where σ is the standard rotationally invariant surface measure on \mathbb{S}^{n-1}.
Hint: Rewrite this as a Gaussian integral over \mathbb{R}^{n}. Write your answer either in terms of the Gamma-function or in terms of the measures ω_{d} of the d-dimensional unit balls.

[^0]- A meager subset of a topological space X is the countable union of nowhere dense sets;
- a residual set in X is a subset whose complement is meager;
- we say that "a typical point of X has property φ " if the set of all $x \in X$ with φ is residual.

The Baire Category Theorem states that a residual set in a complete metric space is not empty (i.e., the entire space is not meager). It is a (non-constructive) tool for proving existence theorems.
5. Let $\left\{f_{n}\right\}_{n \geq 1}, f, g$ be functions in $L^{2}[0,1]$, with $f_{n} \rightarrow f$ pointwise a.e.
(a) If $\left|f_{n}(x)\right|<|x|^{-\frac{1}{3}}$, prove that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) g(x) d x=\int_{0}^{1} f(x) g(x) d x
$$

(b) If, instead, $\left\|f_{n}\right\|_{L^{2}} \leq M$ for all n and g is bounded, then the same conclusion holds.
6. (The bathtub principle, Lieb \& Loss Theorem 1.14)

Let (X, \mathcal{M}, μ) be a measure space, and let V be a real-valued measurable function on X such that the sub-level sets $S_{t}:=\{x: V(x)<t\}$ have finite measure for each $t \in \mathbb{R}$. Given $M>0$, consider the problem of minimizing

$$
I(g)=\int V(x) g(x) d \mu
$$

among all functions g with $0 \leq g \leq 1$ and $\int g=M$.
(a) Prove that the minimum is assumed by the characteristic function of some set $A \subset \mathcal{M}$. Hint: Try $A=S_{t}$ for a suitable choice of t. A sketch will help ...
(b) Describe all possible minimizers. Under what conditions on M is the minimizer unique (up to a set of measure zero)?

[^0]: ${ }^{1}$ Just to fix the language:

