MAT 1000 / 457 : Real Analysis I
 Final Exam, December 14, 2011

(Six problems; 20 points each. Time: $\mathbf{3}$ hours. No aids allowed)

Please be brief but justify your answers, citing relevant theorems. Sometimes a sketch can help!

1. Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on $[0,1]$ such that $\int_{0}^{1}\left|f_{n}\right|^{2} d m \leq M$ for all n. Assume that there exists a measurable function f such that

$$
\int_{0}^{1}\left|f_{n}-f\right| d m \rightarrow 0 \quad(n \rightarrow \infty)
$$

(a) Show that $\int_{0}^{1}|f|^{2} d m \leq M$.
(b) Does it follow that

$$
\int_{0}^{1}\left|f_{n}-f\right|^{2} d m \rightarrow 0 \quad(n \rightarrow \infty) ?
$$

2. Let $\left\{A_{n}\right\}$ be an increasing sequence of (not necessarily measurable) sets in \mathbb{R}^{d}, i.e., $A_{n} \subset A_{n+1}$ for all n, and let A denote their union. Prove that their outer measure satisfies

$$
m_{*}\left(A_{n}\right) \rightarrow m_{*}(A) \quad(n \rightarrow \infty) .
$$

Hint: Construct an increasing sequence of measurable sets $G_{n} \supset A_{n}$ with $m\left(G_{n}\right)=m_{*}\left(A_{n}\right)$.
3. State ...
(a) ... the Brunn-Minkowski inequality;
(b) ... the Change of Variables formula for integrals in d dimensions;
(c) ... the Hardy-Littlewood maximal function theorem.
4. Let $K(x, y)$ be a measurable complex-valued function on \mathbb{R}^{2} with

$$
\int_{\mathbb{R}} \int_{\mathbb{R}}|K(x, y)|^{2} d x d y<\infty
$$

(a) Prove that if $f \in L^{2}(\mathbb{R})$, then the integral

$$
T f(x)=\int_{\mathbb{R}} K(x, y) f(y) d y
$$

converges for a.e. $x \in \mathbb{R}$.
(b) Show that $f \mapsto T f$ defines a bounded linear transformation from $L^{2}(\mathbb{R})$ to itself.
(c) What is the adjoint of T ?
5. True or False? Why? (Try to find one-line answers.)
(a) If $\left\{e_{n}\right\}_{n \geq 1}$ is an orthonormal sequence in a Hilbert space \mathcal{H}, then

$$
\left\langle f, e_{n}\right\rangle \rightarrow 0 \quad(n \rightarrow \infty)
$$

for every $f \in \mathcal{H}$.
(b) If a measurable set $E \subset[0,1]$ satisfies

$$
m(E \cap I) \geq \frac{1}{2} m(I)
$$

for every $I \subset[0,1]$, then $m(E)=1$.
6. Let F be a convex function of a single variable, i.e.,

$$
F((1-s) x+s y) \leq(1-s) F(x)+s F(y), \quad \text { for all } x, y \in \mathbb{R}, s \in[0,1]
$$

Prove that F is absolutely continuous on finite intervals.
Hint: Argue that the difference quotient

$$
Q(a, b)=\frac{F(b)-F(a)}{b-a}, \quad(a<b)
$$

is increasing in both a and b, and consider the one-sided derivatives $D_{+} F$ and $D_{-} F$. What can you say about the integrals $\int_{a}^{x} D_{ \pm} F(t) d t$?

