Practice Problems (collected at UVa)

1. Define ...
measure, outer measure, σ-algebra, complete measure; Borel set, Lebesgue measurable set; integrable function; L^{p}-norms and spaces, essential supremum; outer regularity; maximal function, density point of a set, Lebesgue point of a function, Lebesgue-Stieltjes measures on \mathbb{R}; signed measures; BV function, total variation, absolutely continuous, jump discontinuity; mutually singular measures.
2. State ...
the Borel-Cantelli lemma, the monotone class theorem, Carathéodory's extension theorem, the great convergence theorems; Egorov's theorem and Lusin's theorem; the theorems of Fubini and Tonelli; Kolmogorov's extension theorem; the change of variables formula, Hölder's inequality, the Hardy-Littlewood maximal function theorem, Lebesgue's differentiation theorem in \mathbb{R}^{d}, Vitali's covering lemma;the Lebesgue-Radon-Nikodym theorem on a general measure space, on \mathbb{R}^{d}, and on \mathbb{R}^{1}; the Fundamental Theorem of Calculus.
3. Give an example of ...
(a) a closed set of positive measure that has no interior;
(b) a L^{1}-Cauchy sequence of functions which does not converge pointwise anywhere;
(c) a sequence of functions $\left\{f_{n}\right\}$ in $L^{1}(\mathbb{R})$ converging to zero pointwise a.e. but such that

$$
\lim \int_{\mathbb{R}} f_{n}(x) d x \neq 0
$$

(d) a continuous function on $[0,1]$ which is not absolutely continuous.
4. True or False?
(a) If a real-valued function on $(0,1)$ is differentiable, then it is measurable.
(b) If f is a measurable function on $[0,1]$, then the set

$$
C=\{x \in[0,1]: f \text { is continuous at } x\}
$$

is measurable.
(c) Every set of finite Lebesgue measure can be partitioned into two subsets of equal measure.
(d) A subset of full Lebesgue measure in $(0,1)$ is necessarily dense.
(e) A nowhere dense subset of $(0,1)$ has measure zero.
(f) If $E \subset \mathbb{R}$ has Lebesgue measure zero, then $G=\left\{(x, y) \in \mathbb{R}^{2}: x-y \in E\right\}$ has twodimensional Lebesgue measure zero.
5. Let f be a nonnegative measurable function on \mathbb{R}^{d} with

$$
m(\{x: f(x)>\lambda\})=\frac{1}{1+\lambda^{2}}
$$

Compute the L^{1}-norm of f. For what values of p is $f \in L^{p}$?
6. Let $\left\{f_{n}\right\}$ be a sequence of nonnegative measurable functions on $[0,1]$ with

$$
\sum_{n=1}^{\infty} \int_{0}^{1} f_{n}(x) d m(x)<\infty
$$

Show that except for x in a set of measure zero, $f_{n}(x) \geq 1$ occurs only for finitely many n.
7. Let $\left\{f_{n}\right\}_{n \geq 1}$ and f be real-valued measurable functions on \mathbb{R}.
(a) If $f_{n} \rightarrow f$ a.e., show that for any positive number $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} m\left(\left\{x:\left|f(x)-f_{n}(x)\right|>\varepsilon\right\}\right)=0 .
$$

(b) What can you say about the converse?
8. If $\left\{f_{n}\right\}$ is a fast Cauchy sequence in $L^{1}\left(\mathbb{R}^{d}\right)$, in the sense that $\left\|f_{n}-f_{n-1}\right\|_{L^{1}} \leq 2^{-n}$, prove that $\lim f_{n}(x)$ exists for almost every x.
9. For $c>1$, find

$$
\lim _{n \rightarrow \infty} \int_{0}^{n}\left(1+\frac{x}{n}\right)^{n} e^{-c x} d x
$$

10. Let $f(\lambda, x)$ be a continuous function of two variables on the unit square $0<\lambda, x<1$. Suppose that the partial derivative $\frac{\partial f}{\partial \lambda}(\lambda, x)$ exists for all λ and x, and that

$$
h(x)=\sup _{0<\lambda<1}\left|\frac{\partial f}{\partial \lambda}(\lambda, x)\right|
$$

is integrable. Show that the function $F(\lambda)=\int_{0}^{1} f(\lambda, x) d x$ is differentiable and satisfies

$$
F^{\prime}(\lambda)=\int_{0}^{1} \frac{\partial f}{\partial \lambda}(\lambda, x) d x
$$

11. Let A be a positive definite, symmetric $d \times d$ matrix. Compute the Gaussian integrals

$$
\int_{\mathbb{R}^{d}} e^{-x \cdot A x} d m(x) \quad \text { and } \quad \int_{\mathbb{R}^{d}}|x|^{2} e^{-x \cdot A x} d m(x)
$$

12. If $f_{n} \rightarrow f$ in L^{p} and $g_{n} \rightarrow g$ in L^{q}, where $\frac{1}{p}+\frac{1}{q}=1$, show that $f_{n} g_{n} \rightarrow f g$ in L^{1}.
13. (a) Assume that g is integrable on $(-1,1)$, and that

$$
\int_{-1}^{1} x^{n} g(x) d x=0
$$

for $n=0,1,2, \ldots$ Prove that $g=0$ a.e.
(b) Is it true that

$$
\lim _{n \rightarrow \infty} \int_{-1}^{1} x^{n} f(x) d x=0
$$

for every integrable function f ?
(c) Let $\left\{e_{n}\right\}_{n \geq 0}$ be the sequence of Legendre polynomials, obtained by Gram-Schmidt orthonormalization from the sequence $\left\{x^{n}\right\}_{n \geq 0}$ in $L^{2}[-1,1]$. Given $f \in L^{2}[-1,1]$, show that there exist constants $\left\{a_{n}\right\}_{n \geq 0}$ such that

$$
f(x)=\sum_{n=0}^{\infty} a_{n} e_{n}(x)
$$

for a.e. x. How are the constants a_{n} determined? In what sense does the sequence converge?
14. Let α be an increasing function on $[0,1]$ such that $\alpha^{\prime}(x)$ exists a.e. on $[0,1]$. Prove directly that

$$
\alpha(1)-\alpha(0) \geq \int_{0}^{1} \alpha^{\prime}(x) d x
$$

Give an example where the inequality is strict.
15. Let $F: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
F(x)= \begin{cases}0, & x<1 \\ (x-1)^{2}+1, & 1 \leq x<2 \\ 2, & x \geq 2\end{cases}
$$

Define a Borel measure on \mathbb{R} by $\mu((-\infty, x])=F(x)$. Find the Lebesgue decomposition $\mu=$ $\mu_{a}+\mu_{c}$ of μ, where μ_{a} is absolutely continuous with respect to Lebesgue measure, and μ_{s} is singular.
16. Let $f=\sum a_{i} \mathcal{X}_{I}$ be a step function, where $\left\{I_{i}\right\}_{i=1, \ldots, N}$ is a disjoint collection of subintervals of $[0,1]$. Writing $I_{i}=\left(a_{i}, b_{i}\right]$, let

$$
\ell(f)=\sum_{i=1}^{N}\left(\beta_{i}^{\frac{3}{4}}-\alpha_{i}^{\frac{3}{4}}\right)
$$

Show that

$$
|\ell(f)|^{2} \leq 2 \int_{0}^{1}|f(x)|^{2} d x
$$

17. Let f and g be bounded nonnegative measurable functions on $(0,1)$. For $y>0$, set

$$
\phi(y)=\int_{E_{y}} f(x) d x, \quad \text { where } \quad E_{y}=\{x \in(0,1): g(x) \geq y\}
$$

Prove that ϕ is decreasing and

$$
\int_{0}^{\infty} \phi(y) d y=\int_{0}^{1} f(x) g(x) d x
$$

18. Let

$$
f(x)=x^{\alpha} \sin x^{-1}, \quad f(0)=0
$$

For what values of $\alpha>0$ is f of bounded variation on $[0,1]$?
19. If $r>1$, for what values of $p \in[1, \infty]$ does $x^{-\frac{1}{r}}(1+|\log x|)^{-1}$ belong to $L^{p}(0, \infty)$?
20. Let $f_{n}(x)$ be a sequence of increasing functions on $[0,1]$ that converges pointwise to a function f. Prove that if f is continuous, then f_{n} converges uniformly.
21. Assume that $f \in L^{p}[0, \infty)$ for some $p \in[1, \infty)$, and that f is uniformly continuous on $[0, \infty)$. Prove that

$$
\lim _{x \rightarrow \infty} f(x)=0
$$

22. Let $\left\{a_{k}\right\}$ be a sequence such that the series $\sum a_{k} x_{k}$ converges whenever $\sum\left|x_{k}\right|^{2}<\infty$. Show that $\sum\left|a_{k}\right|^{2}<\infty$.
23. (a) Show that $\frac{\sin x}{(1+x)^{2}}$ is integrable on $(0, \infty)$ but $\frac{\cos x}{1+x}$ is not.
(b) Prove that

$$
\lim _{R \rightarrow \infty} \int_{0}^{R} \frac{\cos x}{1+x} d x=\int_{0}^{\infty} \frac{\sin x}{(1+x)^{2}} d x
$$

24. Let f be a integrable function on $[0,1]$, and consider $S=\{x \in[0,1]: f(x)$ is an integer $\}$. Evaluate

$$
\lim _{n \rightarrow \infty} \int_{0}^{1}|\cos \pi f(x)|^{n} d x
$$

25. Let $f(x, t)$ be a function on the unit square such that $\partial_{t} f(x, t)$ exists for all x, t and satisfies

$$
\left|f\left(x, t_{1}\right)-f\left(x, t_{2}\right)\right| \leq g(x)\left|t_{1}-t_{2}\right|
$$

with some integrable function g. Prove that $f(\cdot, t)$ is integrable for each $t \in(0,1)$, that $\partial_{t}(\cdot, t)$ is integrable for each t, and that

$$
\frac{d}{d t} \int_{0}^{1} f(x, t) d x=\int_{0}^{1} \partial_{t} f(x, t) d x
$$

26. Give examples of sequences of measurable functions $\left\{f_{n}\right\},\left\{g_{n}\right\}$ such that
(a) f_{n} converges to zero a.e., but not in L^{1};
(b) g_{n} converges to zero in L^{1}, but $g_{n}(x)$ converges for no x.
27. Give examples of two increasing function F and G such that $F^{\prime}(x)=G^{\prime}(x)=0$ a.e., F has discontinuities on a countable set x_{i} and $\sum\left(F\left(x_{i}^{+}\right)-F\left(x_{i}^{-}\right)=1\right.$ while G is continuous.
28. For which positive real number p does the integral

$$
\int_{0}^{1} \int_{0}^{1} \frac{1}{\left(x^{2}+y^{2}\right)^{p}} d x d y
$$

converge?
29. Let A be a Borel subset of the unit square $[0,1] \times[0,1]$. For $t \in[0,1]$, define the vertical and horizontal cross sections of A at t by

$$
A_{t}=\{y \in[0,1]:(t, y) \in A\}, \quad A^{t}=\{x \in[0,1]:(x, t) \in A\}
$$

(a) Show that $A_{\frac{1}{2}}$ is a Borel set.
(b) If A_{x} is countable for each $x \in[0,1]$, show that $m\left(A^{y}\right)=0$ for almost all y.
30. Let $Q=[0,1] \times[0,1]$ be the unit square. Show that

$$
\int_{Q} \frac{1}{1-x y} d m=\sum_{n \geq 1} \frac{1}{n^{2}}
$$

31. Let f be an integrable function such that

$$
\int_{0}^{\infty} x|f(x)| d x<\infty
$$

Prove that

$$
\frac{d}{d t} \int_{0}^{\infty} \sin (x t) f(x) d x=\int_{0}^{\infty} x \cos (x t) f(x) d x
$$

32. If f is an integrable function on \mathbb{R}^{d} such that

$$
\int_{E} f(x) d x=0
$$

for every measurable set E, prove that $f=0$ a.e.
33. Is it true that
(a) $\lim _{n \rightarrow \infty} \int_{0}^{2 \pi} \frac{e^{i n x}}{1+x} d x=0$.
(b) $\lim _{\varepsilon \rightarrow 0^{+}} \int_{0}^{\infty} \frac{e^{-x}}{1+\varepsilon^{2} x} d x=1$.
34. Let f be a 2π-periodic continuously differentiable function. Use the Cauchy criterion to prove that its Fourier series converges uniformly. Argue that the limit is f.
35. Prove that

$$
\lim _{n \rightarrow \infty} n \int_{0}^{\infty} e^{-x^{2}}\left(e^{\frac{x}{n}}-1\right) d x=\int_{0}^{\infty} x e^{-x^{2}} d x=\frac{1}{2}
$$

36. Let f be an integrable function on $[0,1]$. Show that

$$
\int_{0}^{1}|s-t|^{-\frac{1}{2}} f(t) d m(t)
$$

exists and is finite for almost every $s \in \mathbb{R}$.
37. Let f be absolutely continuous with derivative $f^{\prime} \in L^{p}(\mathbb{R})$ for some $p>1$. Find constants L, α such that

$$
|f(x)-f(y)| \leq L|x-y|^{\alpha}, \quad x, y \in \mathbb{R}
$$

38. Evaluate

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}}\left(1-e^{-\frac{t^{2}}{n}}\right) e^{-|t|} \cos t d t
$$

39. Let μ and ν be two finite Borel measures on the half-fine $(0, \infty)$. Show that there exists a unique finite measure ω which satisfies

$$
\int_{0}^{\infty} f(z) d \omega(z)=\int_{0}^{\infty}\left\{\int_{0}^{\infty} f(s t) d \mu(t)\right\} d \nu(s)
$$

Find an explicit formula for ω.
40. Assume that $E \subset \mathbb{R}$ has Lebesgue measure zero. Can the set

$$
G=\left\{(x, y) \in \mathbb{R}^{2}: x-y \in E\right\}
$$

have positive Lebesgue measure?
41. Let f be a measurable function on $[0, \infty)$, and define

$$
F(s)=\int_{0}^{\infty} \frac{f(x)}{(1+s x)^{2}} d x
$$

(a) If $\frac{f(x)}{x}$ is integrable prove that $F(s)$ is finite a.e., and that F is integrable over $[0, \infty)$.
(b) If $f(x) \geq 0$ and $F(s)$ is bounded, then f itself must be integrable.
(c) Assume that f is continuous, and that $a:=\lim _{x \rightarrow \infty} f(x)$ exists. Find

$$
\lim _{s \rightarrow 0} s F(s), \quad \lim _{s \rightarrow \infty} s F(s) .
$$

42. Let $f(x, t)$ be a real-valued function on \mathbb{R}^{2} such that $f(\cdot, t)$ is continuous for every $t \in \mathbb{R}$. Suppose there exists an integrable function g such that

$$
|f(x, t)| \leq g(t), \quad \text { for all } x, t \in \mathbb{R}
$$

Prove that

$$
F(x)=\int_{\mathbb{R}} f(x, t) \cos t d t
$$

is bounded and continuous.
43. If $f \in L^{1}(0,1)$ and $\int_{0}^{x} f(t) d t=x$ for every $x \in(0,1)$, prove that $f(x)=1$ a.e. on $(0,1)$.
44. A function $f:(0, \infty) \rightarrow \mathbb{R}$ is improperly Riemann integrable if the Riemann integral

$$
I(t)=\int_{0}^{t} f(x) d x
$$

exists for every $t>0$ and converges to some finite limit I as $t \rightarrow \infty$. If both f and $|f|$ are improperly Riemann integrable, prove that f is Lebesgue integrable and

$$
I=\int_{(0, \infty)} f d m
$$

