
Theorem (Limits of measures are measures). Let (µn)n≥1 be a sequence of measures on a
measurable space (X,M). Suppose that the limit

µ(A) := lim
n→∞

µn(A) <∞

exists for each A ∈M. Then µ is a measure.

Remark. This is sometimes called the Vitali-Hahn-Saks theorem. It has many applications in
probability. Among its implications are strong compactness properties for spaces of probability
measures. A generalization (to projection-valued measures) is useful in the analysis of self-adjoint
operators on Hilbert spaces (through the Spectral Mapping Theorem).

Proof. The function µ is clearly nonnegative and finitely additive onM as a limit of the functions
µn. In particular, µ is monotone under inclusions.

To show that µ is also σ-additive, let (Ai)i≥1 be a sequence of disjoint sets inM. It follows
from the monotonicity and finite additivity of µ that

µ

(
∞⋃
i=1

Ai

)
≥ sup

n
µ

(
n⋃

i=1

Ai

)
= sup

n

n∑
i=1

µ(Ai) =
∞∑
i=1

µ(Ai) .

Using once more that µ is finitely additive, we write the difference between the leftmost and right-
most expressions as L = µ

(⋃
i≥k Ai

)
−
∑

i≥k µ(Ai), where k ≥ 1 is arbitrary. Since the first term
in this difference is nonincreasing in k by the monotonicity of µ, and the second term is the tail of
a convergent series, we can take k →∞ to obtain

L = lim
k→∞

µ

(
∞⋃
i=k

Ai

)
.

We will take advantage of the fact that µn(A) converges to µ(A) for every A ∈M to show that
L cannot be strictly positive. We construct a sequence of sets (Bn) and and a sequence of measures
(νn) with the property that νm(Bk) is close to close to 0 for all k > m and close to µ(Bk) for all
k ≤ m. Explicitly, we require that

|νm(Bk)| ≤
1

m
for k > m , |νm(Bk)− µ(Bk)| ≤

1

m · 2k
for k ≤ m. (1)

In particular, lim νn(Bn) = limµ(Bn) = L.
We define

Bn =
∞⋃

i=jn

Ai , νn = µ`n (2)

for a pair of increasing sequences of integers (jn) and (`n) that we now specify recursively. For
n = 1 we set j1 = 1. Note that the first condition in Eq. (1) is empty for k = 1. Since limµn(B1) =
µ(B1), we can choose `1 large enough such that |µ`(B1) − µ(B1)| ≤ 2−1 for ` ≥ `1, and set
ν1 = µ`1 . The the second condition in Eq. (1) is satisfied for k,m ≤ 1.

Suppose we have already constructed j1, . . . , jn−1 and `1, . . . , `n−1 such that Eq. (1) is satisfied
for k,m < n. Since νn−1 is continuous from above, we can find an integer jn > jn−1 such that
νn−1(Bn) ≤ 1

n
, where Bn is given by Eq. (2). Using that Bk ⊂ Bn for all k ≥ n and the inductive

assumption, we see that the first condition in Eq. (1) is satisfied for all m < k = n. Since the
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measures (µn) converge to µ, we can choose `n > `n−1 such that |µ`n(Bk)− µ(Bk)| ≤ 1/(n · 2k)
for each j = 1, . . . , n and all ` ≥ `n. Then the second inequality in Eq. (1) is satisfied also for
k ≤ m = n.

Finally, consider the set

C =
∞⋃
k=1

B2k \B2k+1 .

We estimate with the (reverse) triangle inequality

|ν2n(C)− ν2n−1(C)| =

∣∣∣∣∣
∞∑
k=1

(
ν2n(B2k \B2k+1)− ν2n−1(B2k \B2k+1)

)∣∣∣∣∣
≥
∣∣ν2n(B2n \B2n+1)− ν2n−1(B2n \B2n+1)

∣∣
−
∑
`<2n

|ν2n(B`)− ν2n−1(B`)|

− ν2n(B2n+2)− ν2n−1(B2n+2)

Here, the first term on the right hand side of the inequality accounts for the summand with k =
n. The second term represents the maximal possible difference between the values of the two
measures on the ring generated by the sets B` with ` < 2n. For the last pair of terms, we have used
that the annuli B2k \B2k+1 with k > n are disjoint subsets of B2n+2. It follows with Eq. (1) that

|ν2n(C)− ν2n−1(C)| ≥ µ(B2n)−
4

n
.

We finally take n → ∞. The left hand side converges to zero, because νn(C) converges to µ(C),
and the right hand side converges to L. Therefore L = 0.
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