Theorem (Limits of measures are measures). Let $\left(\mu_{n}\right)_{n \geq 1}$ be a sequence of measures on a measurable space (X, \mathcal{M}). Suppose that the limit

$$
\mu(A):=\lim _{n \rightarrow \infty} \mu_{n}(A)<\infty
$$

exists for each $A \in \mathcal{M}$. Then μ is a measure.
Remark. This is sometimes called the Vitali-Hahn-Saks theorem. It has many applications in probability. Among its implications are strong compactness properties for spaces of probability measures. A generalization (to projection-valued measures) is useful in the analysis of self-adjoint operators on Hilbert spaces (through the Spectral Mapping Theorem).

Proof. The function μ is clearly nonnegative and finitely additive on \mathcal{M} as a limit of the functions μ_{n}. In particular, μ is monotone under inclusions.

To show that μ is also σ-additive, let $\left(A_{i}\right)_{i \geq 1}$ be a sequence of disjoint sets in \mathcal{M}. It follows from the monotonicity and finite additivity of μ that

$$
\mu\left(\bigcup_{i=1}^{\infty} A_{i}\right) \geq \sup _{n} \mu\left(\bigcup_{i=1}^{n} A_{i}\right)=\sup _{n} \sum_{i=1}^{n} \mu\left(A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)
$$

Using once more that μ is finitely additive, we write the difference between the leftmost and rightmost expressions as $L=\mu\left(\bigcup_{i \geq k} A_{i}\right)-\sum_{i \geq k} \mu\left(A_{i}\right)$, where $k \geq 1$ is arbitrary. Since the first term in this difference is nonincreasing in k by the monotonicity of μ, and the second term is the tail of a convergent series, we can take $k \rightarrow \infty$ to obtain

$$
L=\lim _{k \rightarrow \infty} \mu\left(\bigcup_{i=k}^{\infty} A_{i}\right)
$$

We will take advantage of the fact that $\mu_{n}(A)$ converges to $\mu(A)$ for every $A \in \mathcal{M}$ to show that L cannot be strictly positive. We construct a sequence of sets $\left(B_{n}\right)$ and and a sequence of measures $\left(\nu_{n}\right)$ with the property that $\nu_{m}\left(B_{k}\right)$ is close to close to 0 for all $k>m$ and close to $\mu\left(B_{k}\right)$ for all $k \leq m$. Explicitly, we require that

$$
\begin{equation*}
\left|\nu_{m}\left(B_{k}\right)\right| \leq \frac{1}{m} \text { for } k>m, \quad\left|\nu_{m}\left(B_{k}\right)-\mu\left(B_{k}\right)\right| \leq \frac{1}{m \cdot 2^{k}} \text { for } k \leq m \tag{1}
\end{equation*}
$$

In particular, $\lim \nu_{n}\left(B_{n}\right)=\lim \mu\left(B_{n}\right)=L$.
We define

$$
\begin{equation*}
B_{n}=\bigcup_{i=j_{n}}^{\infty} A_{i}, \quad \nu_{n}=\mu_{\ell_{n}} \tag{2}
\end{equation*}
$$

for a pair of increasing sequences of integers $\left(j_{n}\right)$ and $\left(\ell_{n}\right)$ that we now specify recursively. For $n=1$ we set $j_{1}=1$. Note that the first condition in Eq. (1) is empty for $k=1$. Since $\lim \mu_{n}\left(B_{1}\right)=$ $\mu\left(B_{1}\right)$, we can choose ℓ_{1} large enough such that $\left|\mu_{\ell}\left(B_{1}\right)-\mu\left(B_{1}\right)\right| \leq 2^{-1}$ for $\ell \geq \ell_{1}$, and set $\nu_{1}=\mu_{\ell_{1}}$. The the second condition in Eq. (1) is satisfied for $k, m \leq 1$.

Suppose we have already constructed j_{1}, \ldots, j_{n-1} and $\ell_{1}, \ldots, \ell_{n-1}$ such that Eq. (1) is satisfied for $k, m<n$. Since ν_{n-1} is continuous from above, we can find an integer $j_{n}>j_{n-1}$ such that $\nu_{n-1}\left(B_{n}\right) \leq \frac{1}{n}$, where B_{n} is given by Eq. (2). Using that $B_{k} \subset B_{n}$ for all $k \geq n$ and the inductive assumption, we see that the first condition in Eq. (1) is satisfied for all $m<k=n$. Since the
measures $\left(\mu_{n}\right)$ converge to μ, we can choose $\ell_{n}>\ell_{n-1}$ such that $\left|\mu_{\ell_{n}}\left(B_{k}\right)-\mu\left(B_{k}\right)\right| \leq 1 /\left(n \cdot 2^{k}\right)$ for each $j=1, \ldots, n$ and all $\ell \geq \ell_{n}$. Then the second inequality in Eq. (1) is satisfied also for $k \leq m=n$.

Finally, consider the set

$$
C=\bigcup_{k=1}^{\infty} B_{2 k} \backslash B_{2 k+1}
$$

We estimate with the (reverse) triangle inequality

$$
\begin{aligned}
&\left|\nu_{2 n}(C)-\nu_{2 n-1}(C)\right|=\left|\sum_{k=1}^{\infty}\left(\nu_{2 n}\left(B_{2 k} \backslash B_{2 k+1}\right)-\nu_{2 n-1}\left(B_{2 k} \backslash B_{2 k+1}\right)\right)\right| \\
& \geq\left|\nu_{2 n}\left(B_{2 n} \backslash B_{2 n+1}\right)-\nu_{2 n-1}\left(B_{2 n} \backslash B_{2 n+1}\right)\right| \\
&-\sum_{\ell<2 n}\left|\nu_{2 n}\left(B_{\ell}\right)-\nu_{2 n-1}\left(B_{\ell}\right)\right| \\
&-\nu_{2 n}\left(B_{2 n+2}\right)-\nu_{2 n-1}\left(B_{2 n+2}\right)
\end{aligned}
$$

Here, the first term on the right hand side of the inequality accounts for the summand with $k=$ n. The second term represents the maximal possible difference between the values of the two measures on the ring generated by the sets B_{ℓ} with $\ell<2 n$. For the last pair of terms, we have used that the annuli $B_{2 k} \backslash B_{2 k+1}$ with $k>n$ are disjoint subsets of $B_{2 n+2}$. It follows with Eq. (1) that

$$
\left|\nu_{2 n}(C)-\nu_{2 n-1}(C)\right| \geq \mu\left(B_{2 n}\right)-\frac{4}{n}
$$

We finally take $n \rightarrow \infty$. The left hand side converges to zero, because $\nu_{n}(C)$ converges to $\mu(C)$, and the right hand side converges to L. Therefore $L=0$.

