MAT 1600 : Probability I Assignment 1, due September 21, 2016

1. (a) Inclusion-exclusion

Show that $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ for any pair of events A, B. (b) Conditional probability

Given an event E with $P(E) \neq 0$, define

$$P(A|E) = \frac{P(A \cap E)}{P(E)}$$

Show that $P(\cdot|E)$ defines a probability measure (on which probability space?)

2. (Durrett 1.1.6) A set $A \subset \{1, 2, ...\}$ is said to have asymptotic density θ if

$$\lim_{n \to \infty} \frac{1}{n} |A \cap \{1, 2, \dots, n\}| = \theta.$$

Let \mathcal{A} be the collection of sets for which the asymptotic density exists.

- (a) Is \mathcal{A} a σ -algebra? an algebra?
- (b) Is θ additive? σ -additive on \mathcal{A} ?
- 3. Monotone limits

Let \mathcal{A} be an algebra. Suppose that \mathcal{A} is closed under countable increasing unions, i.e., $\bigcup_{i=1}^{\infty} E_j \in \mathcal{A}$ whenever $E_j \in \mathcal{A}$ and $E_j \subset E_{j+1}$ for each $j = 1, 2, \ldots$.

Prove that A is a σ -algebra, i.e., A is in fact closed under general countable unions.

- 4. (Durrett 1.2.3) Show that a distribution function $F(x) = P(X \le x)$ has at most countably many discontinuities.
- 5. (a) Change of variables (Durrett 1.2.5) Suppose X has continuous density f, that $P(\alpha \le X \le \beta) = 1$, and that g is a strictly increasing, differentiable function on (α, β) . Show that Y = g(X) has density

$$\left\{ \begin{array}{ll} \frac{f(g^{-1}(y))}{g'(g^{-1}(y))} \,, & \quad \text{if } g(\alpha) < y < g(\beta) \,, \\ 0 \,, & \quad \text{otherwise} \,. \end{array} \right.$$

In particular, when g(x) = ax + b with a > 0, then the density of Y is $\frac{1}{a}f\left(\frac{y-b}{a}\right)$.

(b) Log-normal distribution (Durrett 1.2.6) Find the density of $\exp(X)$ when X has a standard normal distribution.

6. (a) (Durrett 1.2.7) Suppose X has density function f. Compute the distribution function of $Y = X^2$ and then differentiate it to find its density function.

(b) *Chi-square distribution* Find the density of X^2 when X has a standard normal distribution.