MAT 1600 : Probability I
 Assignment 2, due September 28, 2016

7. The section property for Borel sets

Let A be a Borel set in \mathbb{R}^{2}. Prove that, for every $y \in \mathbb{R}$, the cross section

$$
A(y)=\{x \in \mathbb{R}:(x, y) \in A\}
$$

is a Borel set. (Hint: Consider the collection of sets whose cross sections are Borel.)
8. (Durrett 1.3.8) Let X, Y be random variables, and let $\sigma(X)$ be the σ-field generated by X. Show that Y is measurable with respect to $\sigma(X)$, if and only if $Y=f(X)$ for some measurable function $f: \mathbb{R} \rightarrow \mathbb{R}$. (Hint: First consider the case where Y is a simple function.)
9. (a) Inclusion-exclusion (Durrett 1.6.9)

For any collection of events A_{1}, \ldots, A_{n}, show that

$$
P\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{\emptyset \neq F \subset\{1, \ldots, n\}}(-1)^{|F|+1} P\left(\bigcap_{i \in F} A_{i}\right) .
$$

Here, $|F|$ denotes the number of elements of the set F.
Hint: Expand the indicator function

$$
1_{\cup A_{i}}=1-\prod\left(1-1_{A_{i}}\right)
$$

and take expectations. (Induction over n is a hassle.)
(b) The forgetful secretary

Consider the uniform probability measure on S_{n}, the set of permutations of $\{1, \ldots, n\}$. Find the probability that a random permutation has no fixed point,

$$
p_{n}:=P(\pi(i) \neq i \text { for all } i=1, \ldots, n),
$$

and compute $p=\lim p_{n} . \quad$ (Hint: Take $A_{i}=\left\{\pi \in S_{n}: \pi(i)=i\right\}$.)
10. Chebyshev's inequality is and is not sharp (Durrett 1.6.2)
(a) For fixed $a>0$, find a random variable X such that Eq. (1.6.1) holds with equality,

$$
P(|X| \geq a)=\frac{E\left(X^{2}\right)}{a^{2}}
$$

(b) On the other hand, if X is a random variable with $0<E\left(X^{2}\right)<\infty$, then

$$
\lim _{a \rightarrow \infty} a^{2} P(|X| \geq a)=0
$$

11. Use Jensen's inequality to give an alternative prove of Hölder's inequality: If $1<p, q<\infty$ with $\frac{1}{p}+\frac{1}{q}=1$ are Hölder dual exponents, then

$$
E|X Y| \leq\|X\|_{p}\|Y\|_{q}
$$

in particular, the left hand side is finite whenever the right hand side is.
Hint: In the special case $\|Y\|_{q}=1$, use Y to define a probability measure; then rescale to get the general statement.
12. The Vitali-Hahn-Saks theorem

Let $\left(P_{n}\right)_{n \geq 1}$ be a sequence of probability measures on (Ω, \mathcal{F}). Suppose that

$$
m(A):=\lim _{n \rightarrow \infty} P_{n}(A)
$$

exists for each $A \in \mathcal{F}$. Prove that m is a measure.

