MAT 1600 : Probability I
 Assignment 4, due October 12, 2016

19. (Durrett 2.2.1) Let X_{1}, X_{2}, \ldots be uncorrelated with $E\left(X_{i}\right)=\mu_{i}$ and $\operatorname{Var}\left(X_{i}\right) / i \rightarrow 0$ as $i \rightarrow \infty$. Let $S_{n}=X_{1}+\cdots+X_{n}$ be the n-th partial sum, and $\nu_{n}=S_{n} / n$ the corresponding sample average. As $n \rightarrow \infty$, show that $\frac{1}{n} S_{n}-\nu_{n} \rightarrow 0$ in L^{2} and in probability.
20. Monte Carlo integration (Durrett 2.2.3) Let f be a Borel measurable, Lebesgue integrable function on the unit interval $[0,1]$. The objective is to construct a probabilistic method for computing the integral

$$
I=\int_{0}^{1} f(x) d x
$$

Let U_{1}, U_{2}, \ldots be independent and uniformly distributed on $[0,1]$, and let

$$
I_{n}=\frac{1}{n}\left(f\left(U_{1}\right)+\cdots+f\left(U_{n}\right)\right)
$$

be average of the first n values.
(a) Show that $I_{n} \rightarrow I$ in probability.
(b) If, moreover, $\int|f(x)|^{2} d x<\infty$, use Chebyshev's inequality to estimate

$$
P\left(\left|I_{n}-I\right|\right)>a n^{1 / 2}, \quad \text { for } a>0
$$

Remark. This method for computing integrals can be adapted (by change of variables) to numerically integrate functions of many variables over complicated regions.
21. (Durrett 2.2.5) Let X_{1}, X_{2}, \ldots be i.i.d. with $P\left(X_{i}>x\right)=\frac{e}{x} \log x$ for $x \geq e$.
(a) Show that $E\left(\left|X_{i}\right|=\infty\right.$.
(b) Construct a sequence of constants $\mu_{n} \rightarrow \infty$ such that $S_{n} / n=\mu_{n} \rightarrow 0$ as $n \rightarrow \infty$.
22. (Durrett 2.2.6) (a) Show that if $X \geq 0$ is integer valued then

$$
E X=\sum_{n \geq 1} P(X \geq n)
$$

(b) Find a similar expression for $E\left(X^{2}\right)$.
23. Binomial distribution (Durrett 2.1.15) A random variable X is said to have a Binomial (n, p) distribution if

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}, \quad \text { for } k=0, \ldots, n
$$

(a) If $X=\operatorname{Binomial}(m, p)$ and $Y=\operatorname{Binomial}(n, p)$ are independent, show that $X+Y=\operatorname{Binomial}(m+n, p)$.
(b) Look a Example 1.6.3 and use induction to conclude that the sum of n independent Bernoulli (p) random variables is $\operatorname{Binomial}(n, p)$.
(c) Use this to compute the mean and variance of the $\operatorname{Binomial}(n, p)$ distribution.
24. Waiting for the next success Consider a sequence of independent tosses of a biased coin that shows Heads with probability p, and Tails with probability $q=1-p$. Let X_{i} be indicator that the i th toss comes up Heads. Let T_{n} be the number of the toss on which Heads appears for the n-th time.
(a) Find the distribution of T_{1}, and compute its expectation and variance.
(b) Show that $Y_{1}=T_{1}$ and $Y_{2}=T_{2}-T_{1}$ are independent and identically distributed. Use this to compute their covariance.
(c) Express the distribution function of T_{2} in terms of suitable $\operatorname{Binomial}(n, p)$ random variables. (Do not try to simplify the formula.)
Remark: We will see later that the random variables $Y_{n}=T_{n}-T_{n-1}$ are all independent and identically distributed. Their distributions are called (n, p)-negative binomial.

