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January 31, 2021

1. A natural approach to this problem is to apply the chain rule a few times to the both sides of
this ODE. For example, we will get

x′′(t) = f ′(x(t))x′(t) = f ′(x(t))f(x(t))

x′′′(t) = (f ′(x(t))f(x(t)))′ = f ′′(x(t))f(x(t))2 + f ′(x(t))2f(x(t)).

As you are dealing with second and third derivatives, you expect to obtain some convexity info
about solutions. (try f(x) = x3? the notion of an inflection point might be relevant)

2. The characteristic polynomial of this matrix is

0 = λ2 − tr(A)λ+ det(A) = λ2 − 2aλ+ a2 − bc = (λ− a)2 − bc.

Therefore, the roots are λ12 = a±
√
bc. In other words, A has two distinct real roots. Finally. we

can find the eigenvectors, which turn out to be v12 =

(
±
√

b
c

1

)
. Therefore, our general solution

looks like this:
X(t) = C1e

λ1tv1 + C2e
λ2tv2.

3. In all of these case we want to find a solution via undetermined coefficients.

(a) As the hint suggests, try x(t) = at2 + bt+ c. Then our equation turns into

2at+ b = (2a+ 1)t2 + 2bt+ 2c⇔ (2a+ 1)t2 + (2b− 2a)t+ 2c− b = 0.

Therefore, 2a+ 1 = 0, a = b, 2c = b. A quick computation shows that

a = b = −1

2
, c = −1

4
.

(b) Once again, we just try plugging in x(t) = Ce3t. We obtain

3Ce3t = (2C + 1)e3t ⇔ (C − 1)e3t = 0.

Because ex is never zero, we immediately get C = 1.

(c) Now it makes sense to try x(t) = C1e
3t + C2te

3t. By plugging this into the ODE, we get

3C1e
3t + C2e

3t + 3C2te
3t = 2C1e

3t + (2C2 + 1)te3t.

If we collect all terms, we get

(C1 + C2)e
3t + (C2 − 1)te3t = 0.

Using the fact that eat and teat are linearly independent (why?), we reduce our problem to
solving the system {

C1 + C2 = 0

C2 − 1 = 0.

In the end, we obtain C2 = 1, C1 = −1.
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(d) When dealing with sines and cosines, one might want to try a linear combination x(t) =
C1 cos(t) + C2 sin(t). By plugging this, we get

C2 cos(t)− C1 sin(t) = (2C1 + 1) cos(t) + 2C2 sin(t),

which is equivalent to

(2C1 − C2 + 1) cos(t) + (2C2 + C1) sin(t) = 0.

Knowing that cos(t) and sin(t) are linearly independent (why?) we get C1 = 2
5 , C2 = −1

5 .

(e) It might seem like this part can be done exactly like (b), but 2 being in the exponent and
in the ODE itself is no coincidence, plug in x(t) := Ce2t and you’ll get

2Ce2t = (2C + 1)e2t,

and we get 0 = 1, which doesn’t make sense! In such a case the only thing that one can do
is try x(t) = C1e

2t + C2te
2t, you will end up with a nice system which has a solution.

p.s. Suppose going from eat to a linear combination of eat and teat didn’t work out either!
(if you think about why this might happen, you can easily come up with an ODE where
this is precisely the case) How to deal with this?

4. (a) It seems that we can just say that x′(t) = f(x(t)) > 0, and we are done. But we need to
rule out the cases when x(t) = 0 or x(t) = 1. But this is precisely why we need f to be a
C1-function...

(b) It is natural to assume that an asymptote of x(t) should be an equilibrium state, but we
already know that there are none except x(t) = 0 or x(t) = 1. How to prove such a claim?

First of all, because x(t) is increasing and bounded by 1 sue to the existence-uniqueness,
then lim

t→∞
x(t) ∈ [0, 1]. If x(t) 6= 0, then lim

t→∞
x(t) > 0.

Now recall that the Mean Value theorem tells us that for every a > 0 we have

x(a+ 1)− x(a) = x′(c) = f(x(c(a)))

for some c(a) ∈ (a, a+ 1). Now, take lim
a→∞

of both sides:

0 = lim
a→∞

x(a+ 1)− lim
a→∞

x(a) = lim
a→∞

x(a+ 1)− x(a) = lim
a→∞

f(x(c(a))).

However, f is continuous and lima→∞ c(a) =∞, so

lim
a→∞

f(x(c(a))) = f( lim
t→∞

x(t)).

Finally, we get that f(limt→∞ x(t)) = 0, but this can only be true for limt→∞ x(t) = 1. The
argument for limt→−∞ x(t) is very similar.

(c) The superposition principle implies that y − x is a solution which satisfies the conditions
of (a), and we are done.
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