MAT 267: Ordinary DifferentialEquations
 Problem Set 1, due October 22, 2020

1. Chapter 1 \# 13
2. Chapter 2 \# 4
3. By trial and error, find one particular solution of the ODE

$$
x^{\prime}=2 x+f(t)
$$

for each of the following right hand sides:
(a) $f(t)=t^{2} \quad$ (try a quadratic polynomial);
(b) $f(t)=e^{3 t} \quad\left(\right.$ try $x(t)=$ const. $\left.e^{3 t}\right)$;
(c) $f(t)=t e^{3 t}$;
(d) $f(t)=\cos t$;
(e) $f(t)=e^{2 t}$.

Please explain your method! In any case, what is the general solution of the ODE?
4. Consider a single first-order, nonlinear ODE

$$
x^{\prime}=f(x)
$$

where f is continuously differentiable. Suppose that $f(0)=f(1)=0$, and $f(x)>0$ on $(0,1)$. Let $x(t)$ be a solution with initial value $x(0)=a \in(0,1)$. Prove the following statements.
(a) $x^{\prime}(t)>0$ for all t, and hence x is strictly increasing;
(b) $\lim _{t \rightarrow \infty} x(t)=1$ and $\lim _{t \rightarrow-\infty} x(t)=0$. In particular, $\lim _{t \rightarrow \pm \infty} x^{\prime}(t)=0$.
(c) If $y(t)$ is a solution with initial value $y(0)=b>a$, then $y(t)>x(t)$ for all $t \in \mathbb{R}$.

You may assume (without proof) that for each initial value the ODE has a unique solution.

