MAT 267: Ordinary Differential Equations Problem Set 4

1. Exact equations. Consider a differential equation of the form

$$
\begin{equation*}
a(x, t) x^{\prime}+b(x, t)=0, \tag{1}
\end{equation*}
$$

where a, b are given smooth functions. Such an equation is called exact, if

$$
\begin{equation*}
\binom{a(x, t)}{b(x, t)}=\nabla V(x, t) \tag{2}
\end{equation*}
$$

for some smooth function V, defined on a domain $D \subset \mathbb{R}^{2}$. The function V is called a potential for Eq. (1).

It is customary to write Eq. (1) in the form $a(x, t) d x+b(x, t) d t=0$. The equation is exact if the 1 -form $\omega:=a d x+b d t$ is exact, i.e., if $\omega=d V$.
(a) Suppose Eq. (1) is exact, with potential V, and let $x(t)$ be a continuously differentiable real-valued function defined on an interval I, such that $(x(t), t) \in D$ for all $t \in I$. Prove that $x(t)$ solves Eq. (1), if and only if $V(x(t), t)$ is constant on I.
(b) Existence of a potential. Under what conditions on a, b is Eq. (1) exact? Please explain how to construct a potential.
(c) Suppose Eq. (1) is exact, with potential V. Given a point $\left(x_{0}, t_{0}\right) \in D$, under what conditions does there exist a solution $x(t)$ of Eq. (1) with initial value $x\left(t_{0}\right)=x_{0}$? What determines its maximal interval of existence?
(d) Verify that the differential equation

$$
\left(2 x t^{2}+2\right) x^{\prime}+\left(2 x^{2} t-2\right)=0
$$

is exact, and find the solution with initial value $x(0)=1$.
2. Coupled mass-spring systems. Chapter 6, Problem 7
3. The mass-spring system. The second-order ODE

$$
m x^{\prime \prime}+r x^{\prime}+k x=0,
$$

describes the motion of an elastic spring with mass $m>0$, spring constant $k>0$, and friction coefficient and $r \geq 0$, centered at its equilibrium position.
(a) Energy. Define a function

$$
E(x, v):=\frac{m}{2} v^{2}+\frac{k}{2} x^{2}, \quad x, v \in \mathbb{R} .
$$

Assuming $x(t)$ is a solution of the system, compute $\frac{d}{d t} E\left(x(t), x^{\prime}(t)\right)$.
(b) Non-dimensionalization. Set $\omega_{0}:=\sqrt{k / m}$. (What is the role of ω_{0} at $r=0$?)

Change the time variable by setting $s=t \omega_{0}$, so that $d / d t=\omega d / d s$ to transform the equation to

$$
\begin{equation*}
x^{\prime \prime}+\rho x^{\prime}+x=0, \tag{3}
\end{equation*}
$$

where $\rho:=\frac{r}{\sqrt{m k}} \geq 0$.
(c) Find the general solution of Eq. (3) for $\rho \geq 0$. (There are four cases.)

For each of the four cases, sketch the phase portrait in the $x-x^{\prime}$ plane, and briefly describe the dynamics and stability in a few words.

Remark on non-dimensionalization. In this context, 'dimension' refers to the physical units associated with variables and parameters. In the mass-spring system,

- the parameter m has units of mass (kg);
- the friction coefficient r has units of force per velocity $\left(\right.$ Newton $\left.(\mathrm{m} / \mathrm{sec})^{-1}=\mathrm{kg} / \mathrm{sec}\right)$;
- the spring constant k has units of force per length (Newton/meter $\left.=\mathrm{kg} / \mathrm{sec}^{2}\right)$,
- the frequency ω_{0} has units of inverse time $\left(\mathrm{Hz}=\mathrm{sec}^{-1}\right)$.

The transformation in Part (b) combines the physical quantities m, r, and k into the single dimension-less parameter ρ.

Non-dimensionalization is usually the first step in analyzing a physical system. After completing the analysis, the transformation must be reversed to obtain predictions in terms of the original physical parameters. Important dimensionless parameters are the Reynolds number $R e$ (in fluid dynamics), the fine-structure constant α (in particle physics), and of course, π (the ratio of circumference to diameter of a circle).
4. Resonance in the mass-spring system with friction. Consider the inhomogeneous equation

$$
\begin{equation*}
x^{\prime \prime}+\rho x^{\prime}+x=\cos \omega t \tag{4}
\end{equation*}
$$

Here, ρ is the (non-dimensionalized) friction coefficient from Problem 1. The purpose of this problem is to analyze the long-term response of the mass-spring system to the periodic forcing $\cos \omega t$. The term resonance refers to the phenomenon is that the system response is strongest, if ω is close to the proper frequency of the system (in this case, $\omega_{0}=1$).
(a) Find the general solution of this equation. (The answer depends on ρ and ω.) Hint: Set $x:=\operatorname{Re} z$, where z solves the complex equation $z^{\prime \prime}+\rho z^{\prime}+z=e^{i \omega t}$.
(b) Given $\rho>0$, find the unique solution that does not decay as $t \rightarrow \infty$. Writing $x(t)=\operatorname{Re}\left(C e^{i \omega t}\right)$, determine the complex constant C.
(c) Amplitude. Set $a(\rho, \omega)=|C|$. Prove that a decreases with ρ, and $\lim _{\rho \rightarrow \infty} a(\rho, \omega)=0$. (Work with $|a(\rho, \omega)|^{-2}$.)
(d) Resonance frequency. Show that for each $\rho>0$, the amplitude $a(\rho, \cdot)$ assumes its maximum at a unique point $\omega_{\rho}<1$. Verify that $\omega_{\rho}=0$ for $\rho \geq 2$, and

$$
\lim _{\rho \rightarrow 0^{+}} \omega_{\rho}=1, \quad \lim _{\rho \rightarrow 0^{+}} a\left(\rho, \omega_{\rho}\right)=+\infty .
$$

Remark. By expressing C in polar coordinates, we can write the long-term response as $x(t)=a \cos (\omega t+\tau)$. Here a is the amplitude defined above, and τ is called the phase shift of the response relative to the forcing. With a similar analysis as for the amplitude, we can study how the the phase shift depends on ρ and ω. (You are not asked to do this).

