MAT 267: Ordinary Differential Equations Problem Set 5

1. Determinant and trace in non-autonomous linear systems. Consider the matrix equation

$$
\begin{equation*}
M^{\prime}=A(t) M \tag{1}
\end{equation*}
$$

where $A(t) \in \mathbb{R}^{n \times n}$ is a given matrix that depends continuously on time, and the unknown function M takes values in $\mathbb{R}^{n \times n}$. Prove that $m(t)=\operatorname{det} M$ satisfies the scalar ODE

$$
m^{\prime}=(\operatorname{trace} A(t)) m
$$

Hint: Use the Taylor expansion $M(t+s)=M(t)+s M^{\prime}(t)+o(s)$, then apply Eq. (1).
2. The divergence. Given a smooth vector f field on \mathbb{R}^{n}, let Φ_{t} be the dynamical system associated with the system $x^{\prime}=f(x)$ (also called the flow generated by the vector field f).

Let $A \subset \mathbb{R}^{n}$ be a bounded open subset, and let $A_{t}:=\Phi_{t}(A)$ be its image under Φ_{t}. We want to compute a formula for $\frac{d}{d t} \operatorname{Vol}\left(A_{t}\right)$ in terms of the vector field. By change of variables, (using $y=\Phi_{t}(x), d y=\left|\operatorname{det} D \Phi_{t}(x)\right| d x$), we have

$$
\operatorname{Vol}\left(A_{t}\right)=\int_{A}\left|\operatorname{det} D \Phi_{t}(x)\right| d x
$$

(a) Prove that

$$
\frac{d}{d t} \operatorname{det} D \Phi_{t}(x)=\left.\operatorname{div} f\right|_{\Phi_{t}(x)} \operatorname{det} \Phi_{t}(x)
$$

Here, $\operatorname{div} f:=\operatorname{trace} D f=\sum_{i=1}^{n} \partial_{x_{i}} f^{i}$ is the divergence of f.
Hint: Recall the variational equation for $D \Phi_{t}$ from Section 7.4 (p. 151, top), then apply
Problem 1(a). You can appeal to the semigroup property and consider only $t=0$.
(b) Conclude that $\operatorname{det} D \Phi_{t}(x)>0$, i.e., Φ_{t} is orientation-preserving. Moreover

$$
\begin{equation*}
\left.\frac{d}{d t} \operatorname{Vol}\left(A_{t}\right)\right|_{t=0}=\int_{A} \operatorname{div} f(x) d x \tag{2}
\end{equation*}
$$

(Use the Change of Variables from above and differentiate freely under the integral.)
(c) Liouville's theorem in Hamiltonian mechanics. Let V be a smooth function on \mathbb{R}^{n}. Show that the flow defined on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ (the phase space) by the system

$$
\begin{aligned}
x^{\prime} & =y \\
y^{\prime} & =-\nabla V(x)
\end{aligned}
$$

is volume-preserving: For any open bounded $A \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$,

$$
\operatorname{Vol}\left(\Phi_{t}(A)\right)=\operatorname{Vol}(\Phi(A)), \quad t \in \mathbb{R}
$$

3. The Dulac criterion. Let f be a vector field on \mathbb{R}^{2} with $\operatorname{div} f>0$. You will prove that the system $x^{\prime}=f(x)$ has no non-constant periodic solutions.
Suppose, for contradiction, that $x(t)$ is a non-constant periodic solution. By the Jordan curve theorem, the orbit of $x(t)$ separates \mathbb{R}^{2} into two components, one of which is bounded and homeomorphic to a disk. Let A be that bounded component.
(a) Show that the flow Φ_{t} generated by the system maps A diffeomorphically onto itself.
(b) Use Problem 2(b) to show that $\operatorname{Vol}\left(\Phi_{t}(A)\right)$ is strictly increasing.
(c) Conclude!
4. Grönwall's inequality. Let $x(t)$ be a nonnegative continuous function on an interval $[0, T]$. Suppose that x satisfies the integral inequality

$$
\begin{equation*}
x(t) \leq a+b \int_{0}^{t} x(s) d s \tag{3}
\end{equation*}
$$

where a, b are nonnegative numbers. You will prove that then $x(t) \leq a e^{b t}$ for $0 \leq t \leq T$. Note that we are not assuming that x is differentiable!
Let C_{T} be the space of real-valued continuous functions on $[0, T]$, with the sup-norm. Define the Picard map $U: C_{T} \rightarrow C_{T}$ by

$$
(U(x))(t):=a+b \int_{0}^{t} x(s) d s, \quad 0 \leq t \leq T
$$

Write $x \leq y$ if $x(t) \leq y(t)$ for all $0 \leq t \leq T$.
(a) The Picard iteration is monotone. Given a function $x(t) \in C_{T}$ that satisfies Eq. (3), set $x_{0}:=x$, and recursively $x_{k+1}=U x_{k}$. Prove that the sequence of functions $\left(x_{k}\right)_{k \geq 0}$ increases with k, that is, $x_{k} \leq x_{k+1}$ for all $k \geq 0$.
(b) Comparison. Set $T_{1}=\min \left\{T,(b+1)^{-1}\right\}$, and let y be the solution of the initial-value problem

$$
y^{\prime}=b y, \quad y(0)=a
$$

Prove that $x_{k}(t) \uparrow y(t)$ for $0 \leq t \leq T_{1}$, and hence $x(t) \leq x_{k}(t) \leq a e^{b t}$ for $0 \leq t \leq T_{1}$.
(c) Extension. If $T>T_{1}$, repeat the argument to obtain that $x(t) \leq a e^{b t}$ for all $0 \leq t \leq T$. (A small amount of book-keeping will be needed.)

Generalized Grönwall's inequality. (You are not asked to do this part.) The same strategy works if $x(t)$ is integrable (not necessarily continuous), and satisfies instead of Eq. (3)

$$
\begin{equation*}
x(t) \leq A(t)+\int_{0}^{t} b(s) x(s) d x \tag{4}
\end{equation*}
$$

where $A(t)$ is continuously differentiable on $[0, T]$, and $b(t) \geq 0$ is nonnegative and continuous. In that case, the conclusion is

$$
\begin{equation*}
x(t) \leq A(t)+\int_{0}^{t} A(s) b(s) e^{B(t)-B(s)} d s \tag{5}
\end{equation*}
$$

where $B(t):=\int_{0}^{t} b(s) d s$. The right hand side of Eq. (5) is the solution of $y^{\prime}=A^{\prime}(t)+b(t) y$ with initial value $y(0)=A(0)$.

