MAT 267: Ordinary Differential Equations Problem Set 5

1. Determinant and trace in non-autonomous linear systems. Consider the matrix equation

$$M' = A(t)M, (1)$$

where $A(t) \in \mathbb{R}^{n \times n}$ is a given matrix that depends continuously on time, and the unknown function M takes values in $\mathbb{R}^{n \times n}$. Prove that $m(t) = \det M$ satisfies the scalar ODE

 $m' = (\operatorname{trace} A(t)) m$.

Hint: Use the Taylor expansion M(t + s) = M(t) + sM'(t) + o(s), then apply Eq. (1).

2. The divergence. Given a smooth vector f field on \mathbb{R}^n , let Φ_t be the dynamical system associated with the system x' = f(x) (also called the **flow** generated by the vector field f).

Let $A \subset \mathbb{R}^n$ be a bounded open subset, and let $A_t := \Phi_t(A)$ be its image under Φ_t . We want to compute a formula for $\frac{d}{dt} \operatorname{Vol}(A_t)$ in terms of the vector field. By change of variables, (using $y = \Phi_t(x)$, $dy = |\det D\Phi_t(x)| dx$), we have

$$\operatorname{Vol}(A_t) = \int_A \left| \det D\Phi_t(x) \right| dx \,.$$

(a) Prove that

$$\frac{d}{dt}\det D\Phi_t(x) = \operatorname{div} f\big|_{\Phi_t(x)}\det \Phi_t(x)\,.$$

Here, $\operatorname{div} f := \operatorname{trace} Df = \sum_{i=1}^{n} \partial_{x_i} f^i$ is the **divergence** of f. *Hint:* Recall the variational equation for $D\Phi_t$ from Section 7.4 (p. 151, top), then apply Problem 1(a). You can appeal to the semigroup property and consider only t = 0.

(b) Conclude that det $D\Phi_t(x) > 0$, i.e., Φ_t is orientation-preserving. Moreover

$$\frac{d}{dt} \operatorname{Vol}\left(A_{t}\right)\Big|_{t=0} = \int_{A} \operatorname{div} f(x) \, dx \,. \tag{2}$$

(Use the Change of Variables from above and differentiate freely under the integral.)

(c) Liouville's theorem in Hamiltonian mechanics. Let V be a smooth function on \mathbb{R}^n . Show that the flow defined on $\mathbb{R}^n \times \mathbb{R}^n$ (the **phase space**) by the system

$$\begin{aligned} x' &= y\\ y' &= -\nabla V(x) \end{aligned}$$

is volume-preserving: For any open bounded $A \subset \mathbb{R}^n \times \mathbb{R}^n$,

$$\operatorname{Vol}(\Phi_t(A)) = \operatorname{Vol}(\Phi(A)), \quad t \in \mathbb{R}.$$

3. The Dulac criterion. Let f be a vector field on \mathbb{R}^2 with $\operatorname{div} f > 0$. You will prove that the system x' = f(x) has no non-constant periodic solutions.

Suppose, for contradiction, that x(t) is a non-constant periodic solution. By the Jordan curve theorem, the orbit of x(t) separates \mathbb{R}^2 into two components, one of which is bounded and homeomorphic to a disk. Let A be that bounded component.

- (a) Show that the flow Φ_t generated by the system maps A diffeomorphically onto itself.
- (b) Use Problem 2(b) to show that $Vol(\Phi_t(A))$ is strictly increasing.
- (c) Conclude!
- 4. Grönwall's inequality. Let x(t) be a nonnegative continuous function on an interval [0, T]. Suppose that x satisfies the integral inequality

$$x(t) \le a + b \int_0^t x(s) \, ds \,, \tag{3}$$

where a, b are nonnegative numbers. You will prove that then $x(t) \le ae^{bt}$ for $0 \le t \le T$. Note that we are not assuming that x is differentiable!

Let C_T be the space of real-valued continuous functions on [0, T], with the sup-norm. Define the Picard map $U: C_T \to C_T$ by

$$(U(x))(t) := a + b \int_0^t x(s) \, ds \,, \qquad 0 \le t \le T \,.$$

Write $x \le y$ if $x(t) \le y(t)$ for all $0 \le t \le T$.

- (a) The Picard iteration is monotone. Given a function $x(t) \in C_T$ that satisfies Eq. (3), set $x_0 := x$, and recursively $x_{k+1} = Ux_k$. Prove that the sequence of functions $(x_k)_{k\geq 0}$ increases with k, that is, $x_k \leq x_{k+1}$ for all $k \geq 0$.
- (b) Comparison. Set $T_1 = \min\{T, (b+1)^{-1}\}$, and let y be the solution of the initial-value problem

$$y' = by, \qquad y(0) = a.$$

Prove that $x_k(t) \uparrow y(t)$ for $0 \le t \le T_1$, and hence $x(t) \le x_k(t) \le ae^{bt}$ for $0 \le t \le T_1$.

(c) *Extension*. If $T > T_1$, repeat the argument to obtain that $x(t) \le ae^{bt}$ for all $0 \le t \le T$. (A small amount of book-keeping will be needed.)

Generalized Grönwall's inequality. (You are not asked to do this part.) The same strategy works if x(t) is integrable (not necessarily continuous), and satisfies instead of Eq. (3)

$$x(t) \le A(t) + \int_0^t b(s)x(s) \, dx$$
, (4)

where A(t) is continuously differentiable on [0, T], and $b(t) \ge 0$ is nonnegative and continuous. In that case, the conclusion is

$$x(t) \le A(t) + \int_0^t A(s)b(s)e^{B(t) - B(s)} \, ds \,, \tag{5}$$

where $B(t) := \int_0^t b(s) ds$. The right hand side of Eq. (5) is the solution of y' = A'(t) + b(t)y with initial value y(0) = A(0).