
MAT 267: Ordinary Differential Equations
Problem Set 5

1. Determinant and trace in non-autonomous linear systems. Consider the matrix equation

M ′ = A(t)M , (1)

where A(t) ∈ Rn×n is a given matrix that depends continuously on time, and the unknown
function M takes values in Rn×n. Prove that m(t) = detM satisfies the scalar ODE

m′ =
(
traceA(t)

)
m.

Hint: Use the Taylor expansion M(t + s) = M(t) + sM ′(t) + o(s), then apply Eq. (1).

2. The divergence. Given a smooth vector f field on Rn, let Φt be the dynamical system asso-
ciated with the system x′ = f(x) (also called the flow generated by the vector field f ).

Let A ⊂ Rn be a bounded open subset, and let At := Φt(A) be its image under Φt. We want
to compute a formula for d

dt
Vol (At) in terms of the vector field. By change of variables,

(using y = Φt(x), dy = |detDΦt(x)| dx), we have

Vol (At) =

∫
A

|detDΦt(x)| dx .

(a) Prove that
d

dt
detDΦt(x) = div f

∣∣
Φt(x)

det Φt(x) .

Here, divf := traceDf =
∑n

i=1 ∂xi
f i is the divergence of f .

Hint: Recall the variational equation for DΦt from Section 7.4 (p. 151, top), then apply
Problem 1(a). You can appeal to the semigroup property and consider only t = 0.

(b) Conclude that detDΦt(x) > 0, i.e., Φt is orientation-preserving. Moreover

d

dt
Vol (At)

∣∣∣
t=0

=

∫
A

div f(x) dx . (2)

(Use the Change of Variables from above and differentiate freely under the integral.)

(c) Liouville’s theorem in Hamiltonian mechanics. Let V be a smooth function on Rn.
Show that the flow defined on Rn × Rn (the phase space) by the system

x′ = y

y′ = −∇V (x)

is volume-preserving: For any open bounded A ⊂ Rn × Rn,

Vol(Φt(A)) = Vol(Φ(A)) , t ∈ R .
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3. The Dulac criterion. Let f be a vector field on R2 with divf > 0. You will prove that the
system x′ = f(x) has no non-constant periodic solutions.

Suppose, for contradiction, that x(t) is a non-constant periodic solution. By the Jordan curve
theorem, the orbit of x(t) separates R2 into two components, one of which is bounded and
homeomorphic to a disk. Let A be that bounded component.

(a) Show that the flow Φt generated by the system maps A diffeomorphically onto itself.
(b) Use Problem 2(b) to show that Vol(Φt(A)) is strictly increasing.
(c) Conclude!

4. Grönwall’s inequality. Let x(t) be a nonnegative continuous function on an interval [0, T ].
Suppose that x satisfies the integral inequality

x(t) ≤ a + b

∫ t

0

x(s) ds , (3)

where a, b are nonnegative numbers. You will prove that then x(t) ≤ aebt for 0 ≤ t ≤ T .
Note that we are not assuming that x is differentiable!

Let CT be the space of real-valued continuous functions on [0, T ], with the sup-norm. Define
the Picard map U : CT → CT by(

U(x)
)
(t) := a + b

∫ t

0

x(s) ds , 0 ≤ t ≤ T .

Write x ≤ y if x(t) ≤ y(t) for all 0 ≤ t ≤ T .

(a) The Picard iteration is monotone. Given a function x(t) ∈ CT that satisfies Eq. (3), set
x0 := x, and recursively xk+1 = Uxk. Prove that the sequence of functions (xk)k≥0

increases with k, that is, xk ≤ xk+1 for all k ≥ 0.
(b) Comparison. Set T1 = min{T, (b + 1)−1}, and let y be the solution of the initial-value

problem
y′ = by , y(0) = a .

Prove that xk(t) ↑ y(t) for 0 ≤ t ≤ T1, and hence x(t) ≤ xk(t) ≤ aebt for 0 ≤ t ≤ T1.
(c) Extension. If T > T1, repeat the argument to obtain that x(t) ≤ aebt for all 0 ≤ t ≤ T .

(A small amount of book-keeping will be needed.)

Generalized Grönwall’s inequality. (You are not asked to do this part.) The same strategy
works if x(t) is integrable (not necessarily continuous), and satisfies instead of Eq. (3)

x(t) ≤ A(t) +

∫ t

0

b(s)x(s) dx , (4)

where A(t) is continuously differentiable on [0, T ], and b(t) ≥ 0 is nonnegative and contin-
uous. In that case, the conclusion is

x(t) ≤ A(t) +

∫ t

0

A(s)b(s)eB(t)−B(s) ds , (5)

where B(t) :=
∫ t

0
b(s) ds. The right hand side of Eq. (5) is the solution of y′ = A′(t) + b(t)y

with initial value y(0) = A(0).
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