MAT 267: Ordinary Differential Equations Final Assessment Topics, 2021

- Basic concepts: Solution of an ODE; the general solution. Initial-value problems. Existence and uniqueness. How to write a higher-order equation as a first-order system

- Scalar first-order equations

Slope field, solution curves
Separation of variables. Exact equations
Autonomous equations: Equilibria and stability. Phase portraits
Consequences of existence and uniqueness. Examples of non-uniqueness, non-existence, and finite-time blow-up

- Linear systems

General theory: The superposition principle and its consequences. The solution space of a homogeneous equation. The general solution of an inhomogeneous equation
Eigenvalues and eigenvectors: How they give rise to particular solutions $e^{t \lambda} v$. Eigenvalues determine the dynamics (Re λ describes growth or decay, $\operatorname{Im} \lambda$ describes frequency of oscillation), while eigenvectors determine the geometry (including stable and unstable directions). Multiplicity
Planar systems $x^{\prime}=A x$: Classification by type (saddle, node, center, spiral) and stability. Sources and sinks. Phase portraits (using eigenvalues and eigenvectors)
Higher-dimensional systems $x^{\prime}=A x$: Diagonalization and Jordan canonical form. The general solution. How to obtain real solutions from complex ones; Matrix exponentials $e^{t A}$
Duhamel's formula for solving $x^{\prime}=A x+f(t)$
Higher order equations (constant-coefficent and Euler-Cauchy type). Mass-spring systems

- Existence, uniqueness, and continuous dependence

Picard iteration. Local vs. global existence; maximal time of existence
Consequences of existence and uniqueness
The dynamical system $\left(\Phi_{t}\right)_{t \in \mathbb{R}}$ generated by a system $x^{\prime}=f(x)$. The semigroup property. Vector fields and diffeomorphims

- Linearization and stability

Equilibria: Nonlinear sources, sinks, and saddles; hyperbolicity. Topological conjugacy

- Global nonlinear techniques

Nullclines
Definition of stable, unstable, asymptotically stable
Lyapunov functions. Gradient flows and Hamiltonian systems
Positive and negative invariance, α - and ω-limit sets

