MAT 267 Ordinary Differential Equations
 Tutorial 2, January 22, 2020 (Section: Almut, 10am)

Matrix exponentials

For any square matrix $A \in \mathbb{R}^{n \times n}$, we define the matrix exponential function by the power series

$$
e^{t A}:=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} A^{k}, \quad t \in \mathbb{R}
$$

We will see later in the course that this converges for all $t \in \mathbb{R}$, and yields a smooth (matrix-valued) function of t that satisfies $\frac{d}{d t} e^{t A}=A e^{t A}=e^{t A} A$. In fact, $E(t)=e^{t A}$ it is the unique solution of the matrix-valued ODE $E^{\prime}=A E$ with initial value $E(0)=I$. It is also called the fundamental solution of the ODE $x^{\prime}=A x$.

Let's compute ...

1. $\ldots e^{t D}$, where $D=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)$ (diagonal)
2. $\ldots e^{t L}$ and $e^{t R}$, where $L=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ and $R=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \quad$ (nilpotent)
3. $\ldots e^{t J}$, where $J=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right) \quad$ (skew)
4. $\ldots e^{t A}$, where $A=\left(\begin{array}{ll}2 & 3 \\ 1 & 0\end{array}\right)$ is the matrix discussed in class.
(Hint: Diagonalize A. Its eigenvalues are $\lambda_{1}=3$ and $\lambda_{2}=-1$.)

Further properties:

5. Eigenvalues and eigenvectors

Suppose that v is an eigenvector of A, with eigenvlaue λ. Show that v is also an eigenvector of $e^{t A}$. What is the corresponding eigenvalue?
6. Semigroup property

For any $s, t \in \mathbb{R}, e^{(s+t) A}=e^{s A} e^{t A}$; in particular, $e^{0 A}=I$, and $e^{-t A}=\left(e^{t A}\right)^{-1}$.
7. Commuting matrices

If $A B=B A$ then $e^{t(A+B)}=e^{t A} e^{t B}$.
This fails in general: For L, R as in (2.), $e^{t(L+R)}, e^{t L} e^{t R}$, and $e^{t R} e^{t L}$ are all different.

