MAT 267 Ordinary Differential Equations Tutorial 2, January 22, 2020 (Section: Almut, 10am)

Matrix exponentials

For any square matrix $A \in \mathbb{R}^{n \times n}$, we define the matrix exponential function by the power series

$$e^{tA} := \sum_{k=0}^{\infty} \frac{t^k}{k!} A^k, \quad t \in \mathbb{R}.$$

We will see later in the course that this converges for all $t \in \mathbb{R}$, and yields a smooth (matrix-valued) function of t that satisfies $\frac{d}{dt}e^{tA} = Ae^{tA} = e^{tA}A$. In fact, $E(t) = e^{tA}$ it is the unique solution of the matrix-valued ODE E' = AE with initial value E(0) = I. It is also called the **fundamental** solution of the ODE x' = Ax.

Let's compute ...

1. ...
$$e^{tD}$$
, where $D = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ (diagonal)
2. ... e^{tL} and e^{tR} , where $L = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ and $R = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ (nilpotent)
3. ... e^{tJ} , where $J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ (skew)

4. ... e^{tA} , where $A = \begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix}$ is the matrix discussed in class. (*Hint:* Diagonalize A. Its eigenvalues are $\lambda_1 = 3$ and $\lambda_2 = -1$.)

Further properties:

- 5. Eigenvalues and eigenvectors Suppose that v is an eigenvector of A, with eigenvlaue λ . Show that v is also an eigenvector of e^{tA} . What is the corresponding eigenvalue?
- 6. Semigroup property For any $s, t \in \mathbb{R}$, $e^{(s+t)A} = e^{sA}e^{tA}$; in particular, $e^{0A} = I$, and $e^{-tA} = (e^{tA})^{-1}$.
- 7. Commuting matrices If AB = BA then $e^{t(A+B)} = e^{tA}e^{tB}$.

This fails in general: For L, R as in (2.), $e^{t(L+R)}$, $e^{tL}e^{tR}$, and $e^{tR}e^{tL}$ are all different.