MAT 267 Ordinary Differential Equations Tutorial 3, January 29, 2020 (Section: Almut, 10am)

Consider the constant-coefficient (scalar, homogeneous linear) ODE of order n,

$$
\begin{equation*}
\sum_{k=0}^{n} a_{k} x^{(k)}=0 . \tag{1}
\end{equation*}
$$

Here, $a_{0}, \ldots, a_{n} \in \mathbb{R}$ are constants, with $a_{n} \neq 0$, and $x^{(k)}(t)$ denotes the k-th derivative. We will see that this equation is much easier to solve than the corresponding first-order system:

1. Show that the superposition principle holds for (1), i.e., its solutions form a vector space.
2. For what values of λ is $x(t)=e^{\lambda t}$ a solution?
(The answer will depend on the characteristic polynomial of the ODE).
3. Suppose that the characteristic polynomial has a root $\lambda=\alpha+i \beta$ with imaginary part $\beta \neq 0$. Find two linearly independent real-valued solutions of the ODE.
4. As an application, consider the harmonic oscillator equation

$$
m x^{\prime \prime}+r x^{\prime}+k x=0
$$

where $m>0$ is the mass, $k>0$ the spring constant, and $r \geq 0$ the friction coefficient. Take $m=k=1$ (to simplify notation).
(a) Depending on the value of r, what types of solutions do you find?

Is the zero solution always stable?
(b) What happens at $r=2$? Find a basis for the solution space in this case.
(Make an educated guess, or apply Variation of Constants.)

Construction of the general solution (...if you have time ...)
5. Let $y(t)=Q(t) e^{\lambda t}$, where $Q(t)$ is a polynomial of degree k and λ is a constant. If μ is any constant, prove that

$$
y^{\prime}-\mu y=\tilde{Q}(t) e^{\lambda t}
$$

for some polynomial \tilde{Q}. What is its degree?
6. Find n linearly independent solutions of Eq. (1). (Factor the characteristic polynomial as $P(\lambda)=\prod_{i=1}^{\ell}\left(\lambda-\lambda_{i}\right)^{m_{i}}$ where $\lambda_{1}, \ldots, \lambda_{\ell}$ are the roots, and m_{1}, \ldots, m_{ℓ} their multiplicities, write the ODE as $\prod_{i=1}^{\ell}\left(\frac{d}{d t}-\lambda_{i}\right)^{m_{i}} x=0$, and apply Part 5.)
7. Argue that the dimension of the solution space is n.
(What initial values are needed to uniquely determine the solution?)
You have constructed a basis for the solution space!

