MAT 267 Ordinary Differential Equations Tutorial 6, February 26 (Section: Almut, 10am)

Banach's Contraction Mapping Theorem

Let d(x, y) be a metric on a set X. Assume that the metric space X is complete.

1. Remind yourself what those terms mean. Which subsets of \mathbb{R}^n are complete?

Let $F: X \to X$ be a function and q a constant with $0 \le q < 1$.

 $d(F(x), F(y)) \le qd(x, y)$, for all $x, y \in X$.

Such a function is called a **contraction** on X. You will prove that F has a unique **fixed point**, i.e., the equation F(x) = x has exactly one solution in X.

- 2. Uniqueness. Prove that F can have at most one fixed point.
- 3. Existence. Given a point $a \in X$, set $x_0 := a$ and define recursively $x_{n+1} = F(x_n)$, $n \ge 0$.
 - (a) Find a constant C (depending on a) such that $d(x_n, x_{n+1}) \leq Cq^n$ for all $n \geq 0$.
 - (b) Show that the sequence (x_n) converges. (Use the Cauchy criterion.)
 - (c) Let $x^* := \lim x_n$. Provide an explicit upper bound on $d(x_n, x^*)$.
 - (d) Show that x^* is a fixed point of F.

You have proved the Contraction Mapping Theorem!

Note that the assumptions on X are not restrictive (for instance, X may be unbounded). Can the assumptions on F be relaxed?

4. Assumptions on *F*. Suppose you only know that d(F(x), F(y)) < d(x, y). What parts of the theorem continue to hold (uniqueness, or existence)? Support your conclusion with a sketch of the function $f(x) = \frac{x}{1+x}$ for $x \ge 0$.

We finally investigate how the fixed point depends on parameters. Suppose that F depends on another parameter, s. Assume that $F(\cdot, s)$ is a **uniform contraction**,

 $d(F(x,s), F(y,s)) \le qd(x,y)$, for all $x, y \in X$ and all s.

Let $x^*(s)$ be the unique fixed point of $F(\cdot, s)$, defined by $F(x^*(s), s)) = x^*$.

5. Continuous dependence. If F(x, s) is continuous in s, prove that $x^*(s)$ is continuous.

(Fix s. Given $\varepsilon > 0$, suppose that t is such that

$$d(F(x^*(s), s), F(x^*(s), t)) \le \varepsilon$$

Establish the estimate

$$d(x^*(s), x^*(t)) \le \frac{\varepsilon}{1-q}.$$