MAT 267 Ordinary Differential Equations Tutorial 7, Marh 5 2021 (Section: Almut, 10am)

Global Existence and Uniqueness

Let f be a vector field on \mathbb{R}^n . In class, we proved a theorem on **local Existence and Uniqueness** of solutions to the system

$$x' = f(x) \,. \tag{1}$$

1. Remind yourself what the existence and uniqueness theorem says about solutions of Eq. (1)? Remember to give assumptions as well as conclusions.

You will now construct **global** solutions of this problem.

Global uniqueness. Suppose the system has the following local uniqueness property:
If two solutions x₁(t) (defined on an interval I₁) and x₂(t) (defined on I₂) satisfy x₁(s) = x₁(s) for one point s ∈ I₁ ∩ I₂, then x₁(t) = t₂(t) for all t ∈ I₁ ∩ I₂.

In that case, the two solutions can be combined to a solution x(t) in the union $I_1 \cup I_2$.

Conclude that any solution of Eq. (1) has a unique extension to a maximal time interval $I_{\max} = (T_{\min}, T_{\max}) \subset \mathbb{R}$.

3. Globally Lipschitz vector fields. Suppose for the moment that there is a constant L such that

 $|f(x) - f(y)| \le L|x - y|$ for all $x, y \in \mathbb{R}^n$.

Showe that for any initial value v, Eq. (1) has a (unique) solution, defined for $t \in \mathbb{R}$, with initial value x(0) = v.

Hint: Iterate the local existence theorem to constuct the solution on intervals $[0, k\tau]$ for k = 1, 2, ... (What determines the value of $\tau > 0$?)

- 4. Blow-up condition. In general (if f is not globally Lipschitz), fix a solution x(t), and let $I_{\max} = (T_{\min}, T_{\max}) \subset \mathbb{R}$. be its maximal time of existence. Prove that
 - either $T_{\text{max}} = +\infty$, that is, the solution exists for all > 0,
 - or $|x(t)| \to \infty$ as $t \uparrow T_{\text{max}}$.

Hint: Prove the contrapositive: For any T > 0,

$$R := \liminf_{t \to T} |x(t)| < \infty \qquad \Longrightarrow \qquad s < T_{\max} \,.$$

(Argue that whenever $|x(s)| \le R$ for some s, you can extend the solution by a fixed amount, τ , up to time $s + \tau$. Use that the ball $B := \{x \in \mathbb{R}^n : |x| \le R\}$ is compact.)

So the only way a solution can cease to exist is by running off to infinity.

Further question: Consider solving Eq. (1) on a domain $D \subset \mathbb{R}^n$. Here, f is a smooth vector field on D, and we are looking for solutions x(t) lying in D.

5. Global existence on bounded domains. Assume D is bounded. Prove that, for every $v \in D$, Eq. (1) has a unique solution x(t) with initial value x(0) = v.

Prove that the maximal time of existence satisfies

- either $T_{\text{max}} = +\infty$, that is, the solution exists and remains in D for all > 0,
- or the solution reaches the boundary, that is, dist $(x(t), \partial D) \to 0$ as $t \uparrow T_{\text{max}}$.
- 6. Global existence on manifolds. Let M be a smooth compact manifold, and f a smooth vector field on M.

Prove that for every point $p \in M$, Eq. (1) has a unique solution x(t) defined for all $t \in \mathbb{R}$. (Apply the previous result to coordinate charts.)

Conclude that the vector field defines a group of diffeomorphims $\{\Phi_t\}_{t\geq 0}$ on M.