APM 351: Differential Equations in Mathematical Physics Test 1, November 252009

(Four problems; 20 points each.)

1. (a) Solve the initial-value problem

$$
2 u_{x}+3 x u_{y}=u, \quad u(0, y)=g(y) .
$$

(b) Sketch a few characteristics. Does your solution exist on the entire plane \mathbb{R}^{2} ? Is it unique? Why?
(c) Suppose we try to solve the same PDE with initial values $u(x, 0)=g(x)$, what goes wrong?
2. (a) Write down a solution of the diffusion equation

$$
u_{t}=u_{x x}, \quad(x \in \mathbb{R}, t>0)
$$

with initial values $u(x, 0)=\phi(x)$.
(b) Assume that ϕ is a continuous function with $0 \leq \phi(x) \leq M$, and that ϕ vanishes outside some compact interval $[-R, R]$. Show that the solution from (a) satisfies $0<u(x, t)<M$ for all $x \in \mathbb{R}, t>0$.
(c) Does the diffusion equation have finite speed of propagation? Explain!
3. (a) Consider the Fourier series

$$
\cos \frac{x}{2}=\sum_{n=-\infty}^{\infty} A_{n} e^{i n x}, \quad(-\pi<x<\pi) .
$$

Argue that that the Fourier coefficients are real, $A_{-n}=A_{n}$, and that $A_{n}=0$ when n is odd.
(b) Determine the coefficients A_{n}.
(c) Briefly comment in which sense the series converges.
4. (a) Define what it means for a problem to be well-posed.
(b) Consider Poisson's equation

$$
\Delta u(x)=f(x), \quad(x \in U)
$$

on a bounded connected open set $U \subset \mathbb{R}^{n}$ with smooth boundary. Impose inhomogeneous Dirichlet boundary conditions $u(x)=g(x)$ for $x \in \partial U$. Use the maximum principle to prove uniqueness, i.e., the problem has at most one solution.
(c) Give another proof of uniqueness for the Poisson problem from (b), using the energy method.

