APM 351: Differential Equations in Mathematical Physics Test 2, March 2, 2010

(Choose five out of six problems; 20 points each. Time: 3 hours.)

1. (a) What are the defining properties of a Green's function for a domain $U \subset \mathbb{R}^{2}$?
(b) Let $G(x, y)$ be the Green's function for U. How can G be used to solve Poisson's equation

$$
\begin{cases}-\Delta u=f, & \text { in } U, \\ u=0, & \text { on } \partial U ?\end{cases}
$$

(c) Construct the Green's function for the Laplacian on the positive quadrant

$$
\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}, x_{2}>0\right\} .
$$

Please justify why your construction yields the required properties!
2. Write down an explicit formula for the solution of the modified diffusion equation

$$
\begin{cases}u_{t}-\Delta u+c u=f & x \in \mathbb{R}^{n}, t>0 \\ u(x, 0)=\phi(x) & x \in \mathbb{R}^{n}, t>0\end{cases}
$$

Hint: Rewrite the equation for $v(x, t)=e^{c t} u(x, t)$, and use Duhamel's formula.
3. Consider a solution u of the wave equation

$$
\begin{cases}u_{t t}=\Delta u, & x \in \mathbb{R}^{3}, t>0 \\ u(x, 0)=0, u_{t}(x, y)=\psi(x), & x \in \mathbb{R}^{3} .\end{cases}
$$

Assume that ψ is smooth, bounded, and vanishes for $|x|>1$.
(a) Where does u have to vanish? (A sketch would be useful.)
(b) Argue that $u(x, t)=O\left(t^{-1}\right)$ uniformly as $t \rightarrow \infty$; that is, show that

$$
\sup _{x, t}\{t \cdot|u(x, t)|\}<\infty
$$

Hint: A spherical cap of radius r and opening angle ϕ has area $2 \pi r^{2}(1-\cos \phi) \leq$ Const. $r^{2} \phi^{2}$.
4. (a) Construct a basis for the spherical harmonics (harmonic polynomials) of degrees 0,1 , 2 , and 3 in three variables (x, y, x). Briefly explain your method.
(b) Use Part (a) to solve Laplace's equation on the unit ball $B=\left\{(x, y, z): x^{2}+y^{2}+z^{2}<1\right\}$,

$$
\begin{cases}\Delta u=0, & \text { in } B \\ u(x, y, z)=x^{2}, & \text { on } \partial B\end{cases}
$$

5. Consider the eigenvalue problem for the Neumann Laplacian on the two-dimensional unit disc,

$$
\begin{cases}-\Delta u=\lambda u, & |x|<1 \\ \frac{\partial u}{\partial n}=0, & |x|=1\end{cases}
$$

(a) Use Separation of Variables to split the problem into two eigenvalue problems.
(b) Solve the angular problem.
(c) Consider, as a special case, solutions of the form $u(r)$ (i.e., purely radial solutions where the angular part is constant.) Express these solutions in terms of the zeroth order Bessel function $J_{0}(r)$. Please explain your reasoning!
6. Let $U \subset \mathbb{R}^{3}$ be a bounded, connected open set with smooth boundary.
(a) Write down the Rayleigh principle for the lowest eigenvalue of the Laplacian with Dirichlet boundary conditions.
(b) Write down a corresponding (minimax or maximin) principle for the n-th eigenvalue λ_{n}.
(c) Show that the eigenvalues of the Neumann Laplacian lie below the corresponding eigenvalues for the Dirichlet Laplacian.
(d) What does Weyl's law say about the behavior of the eigenvalues λ_{n} as $n \rightarrow \infty$?

Useful formulas.

- The fundamental solution of Laplace's equation on \mathbb{R}^{2} is $G_{0}(x)=-\frac{1}{2 \pi} \log |x|$.
- The source function of the diffusion equation $u_{t}=\Delta u$ in \mathbb{R}^{n} is $S(x, t)=(4 \pi t)^{-\frac{n}{2}} e^{-\frac{|x|^{2}}{4 t}}$.
- Duhamel's formula: The solution of the linear equation $\dot{y}=A y$ is given by

$$
y(t)=e^{A t} y(0)+\int_{0}^{t} e^{A(t-s)} f(s) d s
$$

- The Bessel functions $J_{n}(r)$ are the unique bounded solutions of Bessel's equation

$$
J^{\prime \prime}+\frac{1}{r} J^{\prime}+\left(1-\frac{n^{2}}{r^{2}}\right) J=0
$$

for $n=1,2, \ldots$ Each J_{n} is a smooth function that changes sign at an infinite sequence of zeroes $z_{n, 1}, z_{n, 2}, \cdots \rightarrow \infty$, separated by an infinite sequence of critical points $p_{n, 1}, p_{n, 2}, \ldots$.

- Kirchhoff's formula: The solution of the three-dimensional wave equation $u_{t t}=c^{2} \Delta u$ with initial values (ϕ, ψ) is given by

$$
u\left(x_{0}, t_{0}\right)=\frac{\partial}{\partial t_{0}}\left[\frac{1}{4 \pi t_{0}} \int_{\left|x-x_{0}\right|=t_{0}} \phi(x) d S(x)\right]+\frac{1}{4 \pi t_{0}} \int_{\left|x-x_{0}\right|=t_{0}} \psi(x) d S(x) .
$$

