APM 351: Differential Equations in Mathematical Physics Test 2, March 16, 2011

(Five problems; 20 points each. Time: 2 hours.)

1. (a) Assume that f is a smooth function that minimizes the Rayleigh quotient

$$
\frac{\int_{-1}^{1}\left(1+x^{2}\right)\left|f^{\prime}(x)\right|^{2} d x}{\int_{-1}^{1}|f(x)|^{2} d x}
$$

among all smooth functions on $[-1,1]$. Write down the Sturm-Liouville eigenvalue problem that f solves.
(b) Let λ, μ be two different eigenvalues of this Sturm-Liouville problem, and let f, g be the corresponding eigenfunctions. Prove that f and g are orthogonal.
(c) It is known that the eigenfunction corresponding to the lowest eigenvalue of a SturmLiouville problem is always strictly positive. Prove that the lowest eigenvalue is simple, i.e., the corresponding eigenspace is one-dimensional.
(d) Conclude that the eigenfunction corresponding to the lowest eigenvalue is even.
2. (a) What are the defining properties of a Green's function for a domain $U \subset \mathbb{R}^{2}$?
(b) Let $G(x, y)$ be the Green's function for U. How can G be used to solve Laplace's equation

$$
\left\{\begin{array}{cl}
-\Delta u=0, & \text { in } U, \\
u=g, & \text { on } \partial U ?
\end{array}\right.
$$

(c) Construct the Green's function for the Laplacian on the complement of the unit disc

$$
\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1}^{2}+x_{2}^{2}>1\right\} .
$$

Please justify why your construction yields the required properties!
3. (a) State the strong maximum principle for the heat equation $u_{t}=\Delta u$ on \mathbb{R}^{d}.
(b) Use the maximum principle to show that if the initial-value problem

$$
\begin{aligned}
u_{t}=\Delta u, & (x \in U) \\
u(x, t)=0, & (x \in \partial U) \\
u(x, 0)=g(x) &
\end{aligned}
$$

has a solution, then it must be unique.
(c) Let f be a bounded function on \mathbb{R} with compact support. Verify that

$$
u(x, t)=\frac{1}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} e^{-\frac{|x-y|^{2}}{4 t}} f(y) d y
$$

solves the heat equation for $t>0$ and $x \in \mathbb{R}$.
(d) If f is continuous, except for a single jump at $x=a$, prove that

$$
\lim _{t \rightarrow 0} u(a, t)=\frac{1}{2}\left\{f\left(a^{-}\right)+f\left(a^{+}\right)\right\} .
$$

Here, $f\left(a^{-}\right)$and $f\left(a^{+}\right)$are the limits of f as $x \rightarrow a$ from the left and right hand side, respectively.
4. Consider a solution u of the wave equation

$$
\begin{cases}u_{t t}=\Delta u, & x \in \mathbb{R}^{n}, t>0 \\ u(x, 0)=\phi(x), u_{t}(x, 0)=0, & x \in \mathbb{R}^{n} .\end{cases}
$$

Assume that ϕ is smooth, bounded, and vanishes for $|x|>1$.
(a) In dimension $n=1,2,3$, where does u have to vanish? (A sketch would be useful.)
(b) State Huygens' principle.
5. [(20pts] (a) Construct a basis for the spherical harmonics (harmonic polynomials) of degree four in three variables (x, y, z). Briefly explain your method.
(b) What is the dimension of the space of all homogenenous polynomials of degree 4 in x, y, z ?
(c) Argue by dimension-counting that every homogeneous polynomial of degree four can be written as

$$
P=P_{4}+\left(x^{2}+y^{2}+z^{2}\right) P_{2}+\left(x^{2}+y^{2}+z^{2}\right)^{2},
$$

where P_{4} and P_{2} are harmonic polynomials.
(d) Use this to solve

$$
\begin{aligned}
\Delta u & =0, & & \left(x^{2}+y^{2}+z^{2}<1\right) \\
u & =\left(2 x^{2}+y^{2}\right)\left(x^{2}+y^{2}+z^{2}\right), & & \left(x^{2}+y^{2}+z^{2}=1\right) .
\end{aligned}
$$

Useful formulas.

- The fundamental solution of Laplace's equation on \mathbb{R}^{2} is $G_{0}(x)=-\frac{1}{2 \pi} \log |x|$.
- The fundamental solution of the heat equation $u_{t}=\Delta u$ in \mathbb{R}^{n} is $\Phi(x, t)=(4 \pi t)^{-\frac{n}{2}} e^{-\frac{|x|^{2}}{4 t}}$.
- Kirchhoff's formula: The solution of the three-dimensional wave equation $u_{t t}=\Delta u$ with initial values (ϕ, ψ) is given by

$$
u\left(x_{0}, t_{0}\right)=\frac{\partial}{\partial t_{0}}\left[\frac{1}{4 \pi t_{0}} \int_{\left|x-x_{0}\right|=t_{0}} \phi(x) d S(x)\right]+\frac{1}{4 \pi t_{0}} \int_{\left|x-x_{0}\right|=t_{0}} \psi(x) d S(x) .
$$

- The inversion at the unit sphere in \mathbb{R}^{n}, given by $x \mapsto \bar{x}=\frac{x}{|x|^{2}}$, satisfies $|\bar{x}-\bar{y}|=\frac{|x-y|}{|x| y \mid}$.

