APM 351: Differential Equations in Mathematical Physics Test 2, January 20, 2012

(Five problems; 80 points total)

1. (20pts) (a) Find the full Fourier series $\sum_{k=-\infty}^{\infty} a_k e^{ikx}$ of the function

$$f(x) = e^x, \qquad x \in (0, 2\pi)$$

Does the series converge in L^2 ? pointwise? uniformly? Please explain your reasoning!

- (b) What does Parseval's identity give for the Fourier coefficients of f?
- (c) What it the k-th Fourier coefficient of f'? Why is it different from ika_k ?
- 2. (10pts) Solve $\Delta u = 0$ on a three-dimensional spherical shell $r_0 < |x| < R$ with boundary conditions u = A at $|x| = r_0$ and u = B at |x| = R, where A and B are given constants. *Hint:* Look for a radial solution u(x) = v(|x|).
- 3. (20pts) Assume that u_0 solves Poisson's equation

$$\Delta u_0 = f, \quad \text{on } D, u_0(x) = g(x), \quad \text{for } x \in \partial D$$

on a smooth bounded domain $D \subset \mathbb{R}^n$. Prove that u_0 minimizes

$$\mathcal{I}(u) := \frac{1}{2} \int_{D} |\nabla u|^2 \, dx + \int_{D} f(x)u(x) \, dx$$

among all smooth functions u on D that satisfy the boundary conditions u(x) = g(x) on ∂D . *Hint:* Write $u = u_0 + v$, and try to show that $\mathcal{I}(u_0 + v) - \mathcal{I}(u_0) \ge 0$. Expand the square and use Green's first identity ...

4. (20pts) Consider the diffusion equation

 $u_t = u_{xx} + f(x,t), \qquad 0 < x < 1, t > 0,$

with initial and boundary conditions

$$u(0,t) = u(1,t) = 0$$
 for $t > 0$, $u(x,0) = g(x)$ for $0 < x < 1$.

- (a) Use the maximum principle to show that the solution of this problem is unique.
- (b) Give a second proof of uniqueness, using the energy method.
- 5. (10pts) Let f be a smooth 2π -periodic function. Show that

$$||f'||_{L^2}^2 \le ||f||_{L^2} \cdot ||f''||_{L^2}$$