MAT 351: Partial Differential Equations

Assignment 11, due January 16, 2017

Summary

The fundamental solution of the Laplacian in \mathbb{R}^{n} is given by

$$
\Phi(x)= \begin{cases}\frac{1}{2 \pi} \log |x|, & n=2 \\ -\frac{1}{n(n-2) \omega_{n}|x|^{n-2}}, & n \geq 3\end{cases}
$$

where ω_{n} is the volume of the unit ball in \mathbb{R}^{n}. In three dimensions $\Phi(x)=-\frac{1}{4 \pi|x|}$ can be interpreted as the gravitational potential of a point mass, or equivalently, the electrostatic field of a point charge at the origin.

If f is a bounded function on \mathbb{R}^{n} (where $n \geq 3$) that vanishes outside some ball, then

$$
u(x)=\int_{\mathbb{R}^{n}} \Phi(x-y) f(y) d y
$$

is the unique solution of Poisson's equation

$$
\Delta u=f, \quad x \in \mathbb{R}^{n}
$$

with $u(x) \rightarrow 0$ as $|x| \rightarrow \infty$. (Normalizing the potential to vanish at infinity is a standard choice in Physics. There are many other solutions of Poisson's equation, all of which which grow at infinity.) We say that

$$
\Delta \Phi=-\delta
$$

in the sense of distributions.
A similar formula holds for Poisson's eqation on a bounded domain in \mathbb{R}^{n} : The unique solution of the Dirichlet problem

$$
\Delta u=f, \quad \text { for } x \in D, \quad u(x)=g(x), \quad \text { for } x \in \partial D
$$

is given by

$$
u(y)=\int_{D} G(y, x) f(y) d y+\int_{\partial D} g(y) \nabla_{y} G(y, x) \cdot n(y) d S(y) .
$$

Here, $G(y, x)$ is the Green's function of the domain. It is defined by the properties that

- $G(y, x)-\Phi(x, y)$ is smooth and harmonic on D;
- $G(y, x)=0$ for $y \in \partial D$
for every $x \in D$. We will see that the Green's function is negative and symmmetric, i.e.,
- $G(x, y)=G(y, x)$.

The function defined on the boundary of D by

$$
P(x, y)=\nabla_{y} G(x, y) \cdot n(y)
$$

is called the Poisson kernel associated with D.
The proofs in this section are based on Green's identities: For any pair of smooth functions u, v on D, we have

$$
\begin{align*}
\int_{D} v \Delta u d x & =-\int_{D} \nabla u \cdot \nabla v d x+\int_{\partial D} v \nabla u \cdot n(x) d S(x), \tag{1}\\
\int_{D}(u \Delta v-v \Delta u) d x & =\int_{\partial D}(u \nabla v-v \nabla u) \cdot n(x) d S(x) . \tag{2}
\end{align*}
$$

Assignments:

Read Chapter 7 of Strauss.

Hand-in (due Monday, January 16):

45. Find the radial solutions (depending only on $r=|x|$) of the equation $u_{x x}+u_{y y}+u_{z z}=k^{2} u$, where k is a positive constant.
(Hint: Substitute $u(r)=\frac{v(r)}{r}$. Solutions may blow up at $r=0$.)
46. Use the Mean Value Property of harmonic functions in n variables to derive the maximum principle. Conclude that the solution of Poisson's problem $\Delta u=f$ on a bounded domain D, with Dirichlet boundary conditions $\left.u\right|_{\partial D}=g$ is unique (assuming it exists).
47. Let D be an open set with smooth boundary in \mathbb{R}^{n}. Use the divergence theorem to show that the Neumann problem

$$
\Delta u=f \text { in } D, \quad \nabla u \cdot \nu=g \text { on } \partial D
$$

cannot have a solution unless $\operatorname{int}_{D} f d x=\int_{\partial D} g d S$.
48. Dirichlet's principle for Neumann boundary conditions (Strauss, Problem 7.1.5)

Prove that among all real-valued functions w on D, the quantity

$$
E(w)=\frac{1}{2} \int_{D}|\nabla w|^{2} d x-\int_{\partial D} h w d s
$$

is minimized by $w=u$, where u is a harmonic function that satisfies the Neumann boundary condition $\left.\nabla u \cdot n\right|_{\partial D}=h$. Here, h is a given function on ∂D with $\int_{\partial D} h d S=0$.
49. Consider a homogeneous polynomial in two variables

$$
P(x, y)=a_{0} x^{k}+a_{1} x^{k-1} y+\cdots+a_{k} y^{k} .
$$

(a) Under what conditions on the coefficients is the polynomial harmonic? How many linearly independent harmonic polynomials are there of degree k ?
(b) Write down a basis of the space of harmonic polynomials of degree $k \leq 4$, in both Cartesian and polar coordinates. Identify them as the real (or imaginary) parts of holomorphic functions.

