MAT 351: Partial Differential Equations

Assignment 13, due February 6, 2017

Summary

Consider the wave equation $u_{t t}=c^{2} \Delta u$, with initial conditions $u(x, 0)=\phi(x)$ and $u_{y}(x, u)=\psi(x)$. Two important properties of the wave equation in any dimension are:

- The energy $E(t)=\frac{1}{2} \int u_{t}(x, t)^{2}+c^{2}|\nabla u(x, t)|^{2} d x$ is conserved (constant in time);
- Causality: The solution $u(x, t)$ depends on the initial conditions only on the ball $B_{c|t|}(x)$. In other words, the domain of dependence of (x, t) is the solid backwards light cone

$$
\left\{(y, s) \in \mathbb{R}^{n} \times \mathbb{R}\left|s \leq t,|y-x|^{2} \leq c^{2}\right| t-\left.s\right|^{2}\right\}
$$

We will restrict attention to the cases of two and three spatial dimensions appearing in classical Physics. In three dimensions, the solution of the wave equation is given by Kirchhoff's formula

$$
u(x, t)=\frac{\partial}{\partial t}\left\{\frac{1}{4 \pi c^{2} t} \int_{|y-x|=c t} \phi(y) d S(y)\right\}+\frac{1}{4 \pi c^{2} t} \int_{|y-x|=c t} \psi(y) d S(y) .
$$

Remarkably, the solution depends on the initial data only on the (surface of the) light cone, i.e., waves travel exactly at the speed of light. This is called Huygens principle. It is typical for solutions of the wave equation in all odd dimensions $n=2 k+1 \geq 3$.

In two dimensions, we have Poisson's formula

$$
u(x, t)=\frac{\partial}{\partial t}\left\{\frac{1}{2 \pi c} \int_{|y-x|<c t} \frac{\phi(y)}{\left(c^{2} t^{2}-|y-x|^{2}\right)^{1 / 2}} d y\right\}+\frac{1}{2 \pi c} \int_{|y-x|<c t} \frac{\psi(y)}{\left(c^{2} t^{2}-|y-x|^{2}\right)^{1 / 2}} d y
$$

Note that Huygens' principle fails in two dimensions (and generally in even dimensions.)
The key to the proof of Kirchhoff's formula is the observation that the spherical mean of a solution, given by

$$
\bar{u}(r, t ; x)=\frac{1}{n \omega_{n} r^{n-1}} \int_{|y-x|=r} u(y, t) d s(y)
$$

satisfies Darboux' equation

$$
u_{t t}=c^{2}\left(u_{r r}+\frac{n-1}{r} u_{r}\right) .
$$

(Here, the denominator $n \omega_{n}$ is the $n-1$-dimensional surface area of the n-ball. In $n=3$ dimensions, its value is 4π.) Darboux's equation can be solved explicitly when n is odd, and Kirchhof's formula follows by setting $u(x, t)=\bar{u}(0, t ; x)$. From there, we obtain the solution in even dimensions by using Hadamard's method of descent.

Assignments:

Read Sections 9.1-3 of Strauss.

53. (a) A plane wave is a solution of the wave equation of the form $u(x, t)=f(k \cdot x-c t)$, where f is a C^{2}-function. Find all the three-dimensional plane waves.
(b) Verify that $u(x, t)=\left(c^{2} t^{2}-|x|^{2}\right)^{-1}$ satisfies the three-dimensional wave equation except on the light cone.
54. (a) Use Kirchhoff's formula to find the solution of the three-dimensional wave equation with initial data $u(x, u)=0, u_{t}(x, 0)=x_{2} . \quad$ (Hint: $\Psi(x)=x_{2}$ has the mean value property.)
(b) Use the Darboux equation (for radial solutions of the wave equation) to solve the threedimensional wave equation with initial data $u(x, 0)=0, u_{t}(x, u)=|x|^{2}$.
55. Consider the Klein-Gordon equation $u_{t t}-c^{2} \Delta u+m^{2} u$, where $m>0$.
(a) What is the energy? Show that it is conserved.
(b) Prove the causality principle for it.
56. Consider the one-dimensional wave equation $u_{x x}=c^{2} u_{x x}$ with initial values given on a surface $\mathcal{S}=\{(x, t) \mid t=\gamma(x)\}$, by

$$
u\left((x, \gamma(x))=\phi(x), \quad \frac{\partial u}{\partial n}=\Psi(x)\right.
$$

If \mathcal{S} is space-like, i.e., $\left|\gamma^{\prime}(x)\right|<\frac{1}{c}$, prove that the initial-value problem has a unique solution. (Hint: The solution can be written as $u(x, t)=F(x+c t)+G(x-c t)$.)
57. Thinking of space-time as $\mathbb{R}^{4}=\mathbb{R}^{3} \times \mathbb{R}$, let Γ be the diagonal 4×4 matrix with diagonal entries $1,1,1,-1$. A Lorentz transformation is an invertible matrix that satisfies $L^{t} \Gamma L=\Gamma$, or equivalently, $L^{-1}=\Gamma L^{t} \Gamma$.
(a) Prove that Lorentz transformations form a group, i.e., products and inverse of Lorentz transformations are again Lorentz transformations. What can you say about the determinant of L ?
(b) Show that L is Lorentz if and only if it preserves the quadratic form $m(x, t)=|x|^{2}-t^{2}$, i.e., $m(L(v))=m(v)$ for all $v=(x, t) \in \mathbb{R}^{4}$. The quadratic form m is called the Lorentz metric.
(c) If L is a Lorentz transformation, and $U(z)=u(L(z))$, show that

$$
u_{t t}-\Delta u=U_{t t}-\Delta U
$$

i.e., if u solves the wave equation, so does U.
(d) Explain the meaning of a Lorentz transformation in more geometrical terms, by drawing an analogy to the group of orthogonal matrices. How does m relate to the light cone?

