MAT 351: Partial Differential Equations

Assignment 17, due March 13, 2017

Summary:

Consider the eigenvalue problem for the Laplacian on a domain $D \subset \mathbb{R}^{d}$ with Dirichlet boundary conditions

$$
-\Delta u=\lambda u \text { on } D, \quad u=0 \text { on } \partial D .
$$

We assume that D is bounded and that its boundary is smooth (e.g., the domein could be defined by an inequality $D=\left\{x \in \mathbb{R}^{d} \mid g(x)>0\right\}$, where g is a smooth function that satisfies the hypotheses of the Implicit Function Theorem at every point where $g(x)=0$.) Our goal is to prove that there is an infinite sequence of positive eigenvalues $\lambda_{1}<\lambda_{2} \leq \ldots$, whose growth is governed by Weyl's law: $\lambda_{n} \sim\left(4 \pi^{2}\right)\left(\frac{n}{\operatorname{VolD} D}\right)^{\frac{2}{d}}$. Furthermore, we have completeness, i.e., $L^{2}\left(\mathbb{R}^{d}\right)$ has an orthonormal basis consisting of the corresponding eigenvectors $\left\{v_{n}\right\}$.

The main tool for the proof is the variational characterization of eigenvalues:

- max-min: $\lambda_{n}=\max _{w_{1}, \ldots w_{n-1}}\left\{\min _{w \perp w_{1}, \ldots, w_{n-1}} \frac{\int_{D}|\nabla w|^{2} d x}{\|\left. w\right|^{2}}\right\} ;$
- min-max: $\lambda_{n}=\min _{w_{1}, \ldots, w_{n}}\left\{\max _{w \in \operatorname{span}\left\{w_{1}, \ldots, w_{n}\right\}} \frac{\int_{D}|\nabla w|^{2} d x}{\|w\|^{2}}\right\}$.

In these variational problems, the eigenvalues play the role of Lagrange multipliers. The objective functions is called the Rayleigh quotient. It is minimized by the lowest eigenvalue

$$
\lambda_{1}=\min _{\|w\|=1} \int_{D}|\nabla w|^{2} d x
$$

In these formulas, it is understood that w_{1}, \ldots, w_{n} and w should all satisfy the Dirichlet boundary conditions. For both the max-min and the min-max principle, the functions w_{i} must be linearly independent (but they need not be orthonormal). The min-max principle is widely used to obtain upper bounds on eigenvalues. The max-min principle can provide lower bounds, but it is difficult to apply, since it requires to solve two infinite-dimensional problems. The following finite-dimensional approximation method is surprisingly powerful.

- Rayleigh-Ritz principle: Choose n orthonormal "trial functions" $w_{1}, \ldots w_{n}$ that satisfy the Dirichlet boundary conditions. Define a symmetric matrix A by

$$
A_{i j}=\int_{D} \nabla w_{i} \cdot \nabla w_{j} d x
$$

and let $\mu_{1} \leq \cdots \leq \mu_{n}$ be its eigenvalues. Then $\lambda_{i} \leq \mu_{i}$ for each $i=1, \ldots, n$.
(There are more complicated versions of this that do not require orthogonality.)
The proof of Weyl's law proceeds by comparing D with a finite union of rectangles. Once we have Weyl's law, we will obtain completeness of the eigenfunctions from the min-max principle.

Midterm 3: Wednesday, March 15, 5-7pm

MS 2173 (Medical Sciences Building, 1 King's College Circle)
Please let me know if you have a conflict.

Assignments:

Start reading Chapter 11.
69. Let $f(x)$ be a function on the interval $[0,3]$ such that

$$
f(0)=f(3)=0, \quad \int_{0}^{3}|f(x)|^{2} d x=1, \quad \int_{0}^{3}\left|f^{\prime}(x)\right|^{2} d x=1
$$

Find such a function if you can. If it cannot be found, explain why not.
70. Estimate the first eigenvalue of $-\Delta$ with Dirichlet boundary conditions in the triangle

$$
D=\{(x, y) \mid x+y<1, x>0, y>0\},
$$

using the Rayleigh quotient with trial function $x y(1-x-y)$.
71. Let D be a smooth, bounded domain in \mathbb{R}^{d}.
(a) Show that the smallest Neumann eigenvalue for $-\Delta$ on D is given by $\mu_{0}=0$. What is the corresponding eigenfunction?
(b) If, moreover D is connected, show that μ_{0} is simple, by proving that the next eigenvalue μ_{1} is strictly positive.
72. Let D be a smooth bounded domain in \mathbb{R}^{d}. Denote by $\left(\lambda_{n}\right)_{n \geq 1}$ the sequence of eigenvalues of the negative Dirichlet Laplacian $-\Delta$, and by $\left(\phi_{n}\right)_{n \geq 1}$ an orthonormal basis of corresponding eigenfunctions.
(a) Find

$$
\sum_{n=1}^{\infty} \int_{D} \phi_{n}(y) d y .
$$

In what sense does the series converge?
(b) Assume that u solves the heat equation $-\Delta u=0$ on D, with Dirichlet boundary conditions $\left.u\right|_{\partial d}=0$ and initial values $u(x, 0)=f(x)$. Express u in terms of the Dirichlet eigenvalues and eigenfunctions defined above.

