## MAT 351: Partial Differential Equations

## Assignment 19, due April 3, 2017

## Summary:

The Fourier transform of a smooth complex-valued function $f$ on $\mathbb{R}^{n}$ is defined by

$$
\mathcal{F}(f)(k)=\hat{f}(k)=\int_{\mathbb{R}^{n}} e^{-2 \pi i k \cdot x} f(x) d x
$$

This integral makes sense, provided that $f$ is at least integrable. In that case, $\hat{f}$ turns out to be bounded, continuous, and vanish at infinity. The most important properties of the Fourier transform are its relationship with the natural symmetries of $\mathbb{R}^{n}$ :

- Translation: For $v \in \mathbb{R}^{n}$, define $T_{v} f(x)=f(x-v)$. Then $\widehat{T_{v} f}(k)=e^{-2 \pi i k \cdot v} \hat{f}(k)$.
- Rotation: If $R^{t} R=I$, define $R f(x)=f\left(R^{-1} x\right)$. Then $\widehat{R f}(k)=\hat{f}\left(R^{-1} k\right)$.
- Scaling: For $\lambda>0$, define $S_{\lambda} f(x)=f\left(\frac{x}{\lambda}\right)$. Then $\widehat{S_{\lambda} f}(k)=\lambda^{n} \hat{f}(\lambda k)$.

In other words, the Fourier transform diagonalizes translations (in the sense that the translation is represented as a multiplication operator), commutes with rotations, and has a simple commutation relation with scaling.

In the theory of PDE, the Fourier transform appears as a fundamental tool for solving linear, constantcoefficient equations. The reason is that as a consequence of the translation invariance,

$$
\frac{\widehat{\partial}}{\partial x_{j}} f(k)=2 \pi i k_{j} \hat{f}(k), \quad \widehat{f * g}(k)=\hat{f}(k) \hat{g}(k)
$$

More subtle are the applications of the Fourier transform to nonlinear dispersive equation, such as the nonlinear Schrödinger and the KdV equation.

By Plancherel's theorem, the Fourier transform can be extended as a unitary transformation from $L^{2}$ onto itself, i.e., $\|f\|_{L^{2}}=\|\hat{f}\|_{L^{2}}$. More generally, we have

- Parseval's identity: for all $f, g \in L^{2}\left(\mathbb{R}^{n}\right)$,

$$
\int_{\mathbb{R}^{n}} f(x) \bar{g}(x) d x=\int_{\mathbb{R}^{n}} \hat{f}(k) \overline{\hat{g}}(k) d k
$$

- Fourier inversion formula: $\quad \mathcal{F}^{-1}(g)(x)=\check{g}(x) \int_{\mathbb{R}^{n}} e^{2 \pi i k \cdot x} g(k) d k$.

Our proof of Parseval's identity and the inversion formula was based on the fact that $G(x)=e^{-\pi|x|^{2}}$ is unchanged under the Fourier transform. The Fourier transform can be extended to even larger spaces of functions and distributions, most notably the Schwarz space $\mathcal{S}$ of rapidly decaying functions, and its dual $\mathcal{S}^{\prime}$ consisting of tempered distributions. In the sense of distributions, $\hat{\delta}(k)=1$.

## Assignments:

Read Section 12.3 of Strauss. Note that Strauss uses a different convention for the Fourier integral (omitting the factor $2 \pi$ in the exponent, which requires him to multiply the result by $(2 \pi)^{-n}$ ).
76. Under what assumptions on $f$ is its Fourier transform $\hat{f}$
(a) real?
(b) even?
77. Use the Fourier transform to solve the $\mathrm{ODE}-u_{x x}+a^{2} u=\delta$, where $\delta$ is the delta distribution.
78. Re-derive the solution formula for initial-value problem of the heat equation

$$
u_{t t}=k \Delta u, \quad u(x, 0)=\phi(x),
$$

by deriving and solving an ODE for the Fouier transform $\hat{u}(x, t)$. Remember to transform back!
79. "Solve" the wave equation using the Fourier transform, as follows:
(a) If $u$ solves the initial-value problem

$$
\begin{array}{ll}
u_{t t}=\Delta u, & x \in \mathbb{R}^{n}, t>0 \\
u(x, 0)=\phi(x), u_{t}(x, 0)=\psi(x), & x \in \mathbb{R}^{n}, t=0
\end{array}
$$

write down a formula for $\hat{u}(k, t)$ in terms of the initial conditions $\hat{\phi}(k)$ and $\hat{\psi}(k)$.
(b) Use Fourier inversion to write a "formula" for $u(x, t)$ in terms of $\phi(x)$ and $\psi(x)$.
(c) Suppose that $n=3$ and $\phi=0$. Can you see any relation between your formula and Huygens' principle? Kirchhoff's formula? Why not?
80. Let $f$ be a continuous function on $\mathbb{R}$ such that its Fourier transform satisfies $\hat{f}(k)=0$ for $|k|>\frac{1}{2}$. Such a function is called band-limited.
(a) Prove Nyquist's sampling theorem:

$$
f(x)=\sum_{\ell=-\infty}^{\infty} f(\ell) \frac{\sin [\pi(x-\ell)]}{\pi(x-\ell)} .
$$

That is, $f$ is completely determined by its values at the integers.
Hint: Extend $\hat{f}$ to a periodic function, and compare its Fourier series with $f$.
(b) If $\hat{f}(k)=1$ for $|x| \leq \frac{1}{2}$ and $\hat{f}(k)=0$ for $|k|>\frac{1}{2}$, calculate both sides of (a) directly to verify that they are equal.

