MAT 351: Partial Differential Equations Assignment 7 - October 27, 2017

Separation of variables is a method for finding special solutions of a partial differential equation. Sometimes we can generate all solutions of the PDE from these special solutions, using the

- Superposition principle: If the PDE is linear and homogeneous, then any linear combination of solutions is again a solution.

If, moreover, its coefficients are constant, then translates and derivatives of solutions are again solutions; if the equation has additional symmetries (such as rotations and dilations), they can be used to generate yet more solutions.

To explain the method, consider the wave equation on an interval

$$
u_{t t}=c^{2} u_{x x}, \quad(0<x<\ell)
$$

with Dirichlet boundary conditions $u(0, t)=u(\ell, t)=0$. We seek solutions that can be written as a product

$$
u(x, t)=X(x) T(t)
$$

for some unknown functions X and T. Inserting this into the PDE and collecting terms, we see that

$$
\frac{T^{\prime \prime}(t)}{c^{2} T(t)}=\frac{X^{\prime \prime}(x)}{X(x)}=:-\lambda,
$$

and deduce that λ can depend neither on x nor on t. We obtain a system of two ODE:

$$
-X^{\prime \prime}(x)=\lambda X(x), \quad-T^{\prime \prime}(t)=c^{2} \lambda T(t) .
$$

Enforcing the Dirichlet boundary conditions $X(0)=X(\ell)=0$, we conclude that

$$
X(x)=\sin \beta x, \quad \lambda=\beta^{2}, \quad T(t)=A \cos (c \beta t)+B \sin (c \beta t),
$$

where $\beta=n \pi / \ell$ for some integer $n \geq 1$, and A and B are constants. We have found the special solutions

$$
u_{n}(x, t)=\cos \left(\frac{n \pi c t}{\ell}\right) \sin \left(\frac{n \pi x}{\ell}\right), \quad v_{n}(x, t)=\sin \left(\frac{n \pi c t}{\ell}\right) \sin \left(\frac{n \pi x}{\ell}\right) .
$$

Two questions remain:

- Can we construct the general solution of the wave equation from the u_{n} and v_{n} by superposition?
- How can we determine the coefficients in the superposition from initial values?

Read: Chapter 4 of Strauss.

Hand-in (due Friday, November 3):

(H1) Consider Laplace's equation in polar coordinates in the plane

$$
u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}, \quad(r>0, \theta \in \mathbb{R}),
$$

with periodic boundary conditions in θ, i.e., $u(r \theta+2 \pi)=u(r, \theta)$ for all θ.
(a) Set $u(r, \theta)=f(r) g(\theta)$ and separate variables to obtain a pair of ODE for f and g.
(b) Solve these ODE to obtain special solutions for the PDE. (Hint: Try $f(r)=r^{\alpha}$.)
(H2) Suppose that ϕ is bounded and continuous everywhere except for a jump discontinuity at a, i.e., the right- and left-sided limits

$$
\phi\left(a^{+}\right)=\lim _{x \rightarrow a^{+}} \phi(x) \quad \text { and } \quad \phi\left(a^{-}\right)=\lim _{x \rightarrow a^{-}} \phi(x)
$$

exist. Let S be the fundamental solution of the heat equation $u_{t}=k u_{x x}$, and set

$$
u(x, t)=\int_{-\infty}^{\infty} S(x-y, t) \phi(y) d y
$$

(a) Explain why u solves the heat equation for $x \in \mathbb{R}, t>0$.
(b) Show that for every $x \in \mathbb{R}$,

$$
\lim _{t \rightarrow 0} u(x, t)=\frac{1}{2}\left\{\phi\left(x^{+}\right)+\phi\left(x^{-}\right)\right\} .
$$

Hint: Change variables and prove that

$$
\lim _{t \rightarrow 0^{+}} \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} e^{-z^{2} / 4} \phi(\sqrt{4 k t} z) d z=\frac{1}{2} \phi\left(0^{+}\right) .
$$

For discussion and practice:

1. A metal rod $(0<x<\ell)$ insulated along its sides but not its ends is initially at a constant temperature u_{0}. Suddenly both ends are plunged into a bath of temperature zero.
(a) Write the initial-value problem for the temperature.
(b) Use the formula

$$
1=\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{1}{2 k+1} \sin \left(\frac{2 \pi(k+1) x}{\ell}\right), \quad(0<x<\ell)
$$

to represent the solution $u(x, t)$ as a series.
2. Apply separation of variables to the Schrödinger equation $i u_{t}=u_{x x}$ with Dirichlet boundary conditions on $0<x<1$. Here, i is the imaginary unit, satisfying $i^{2}=-1$. You may find Euler's formula useful: $e^{a+i b}=e^{a}(\cos b+i \sin b)$.
3. Find all eigenvalues of the linear operator $A u=2 u_{x x x x}$ on the space of 2π-periodic functions.
4. Use separation of variables to find solutions of the diffusion problem $u_{t}=k u_{x x}$ with mixed boundary conditions $u(0, t)=u_{x}(\ell, t)=0$.

