UNIVERSITY OF TORONTO
 Faculty of Arts and Science

APRIL 2017 EXAMINATIONS MAT351Y1Y Partial Differential Equations

Examiner: Professor Almut Burchard

Time: 3 hours. No calculators or other aids allowed. Six problems, 20 points each.

1. For each of the following terms, give a definition and an example where it applies.
(a) well-posed problem;
(b) Neumann boundary condition;
(c) finite speed of propagation;
(d) orthonormal basis (of a Hilbert space);
(e) spherical harmonic.
2. For Burger's equation $u_{t}+u u_{x}=0$ on the real line $(x \in \mathbb{R}, t>0)$:
(a) If u is a smooth solution, show that $v(x, t)=u(-x,-t)$ is also a solution.
(b) Please write down the characteristic equations.
(c) State the Rankine-Hugoniot condition and Lax' entropy condition.

How do these conditions behave under the time reversal in part (a)?
(d) Given initial conditions

$$
\phi(x)= \begin{cases}0, & x<-1 \\ \frac{1}{2}, & -1<x<0 \\ -1, & 0<x<1 \\ 0, & x>1\end{cases}
$$

how many shocks develop? Determine their location, height, and speed up to time $t=1$.
(e) Sketch the characteristics in the x - t-plane up to time $t \approx 1.5$. Also sketch $u(x, t)$ at time $t=0, t=1$. What will happen as $t \rightarrow \infty$?
3. (a) Let $D \subset \mathbb{R}^{d}$ be a bounded smooth domain, let f be a given function on D, and g a function on the bounday of D. Assuming that Poisson problem

$$
\Delta u=f \quad \text { on } D,\left.\quad u\right|_{\partial D}=g
$$

has a solution, prove that it is unique. Give two different arguments,
i. using the maximum principle; ii. using Dirichlet's principle.
(b) Construct a radial solution (depending only on $|x|$) of the Poisson problem

$$
-\Delta u= \begin{cases}1, & |x|<1 \\ 0, & \text { otherwise }\end{cases}
$$

on \mathbb{R}^{3}. (Hint: Solve separately inside and outside the ball, then match the values of u and its first derivative on the unit sphere.)
4. For the the wave equation in three space dimensions

$$
u_{t t}=c^{2} \Delta u, \quad x \in \mathbb{R}^{3}, t>0
$$

with initial values $u(x, 0)=\phi(x)$ and $u_{t}(x, 0=\psi(x)$:
(a) Define the terms light cone, causality principle, and conservation of energy.
(b) Suppose ϕ, ψ are harmonic. Prove directly from Kirchhoff's formula that

$$
u(x, t)=\phi(x)+t \psi(x) .
$$

(Hint: Use the Mean Value Property).
5. (a) Let T be a distribution on \mathbb{R}^{d}, and g a smooth function. Define their product, $g T$, and argue that it is a distribution.
(b) Define the distributional derivative $\partial_{x_{i}} T$. Prove the product rule

$$
\partial_{x_{i}}(g T)=\left(\partial_{x_{i}} g\right) T+g\left(\partial_{x_{i}} T\right) .
$$

(c) Do distributional partial derivatives commute, that is,

$$
\partial_{x_{i}} \partial_{x_{j}} T=\partial_{x_{j}} \partial_{x_{i}} T \quad \text { for all } i \neq j ?
$$

Please prove your claim!
6. Consider the Fourier transform on the real line.
(a) On a recent assignment, you showed that the Hermite polynomials $\left(H_{n}\right)_{n \geq 0}$ satisfy

$$
\psi_{n}(x):=H_{n}(x) e^{-x^{2}}=(-1)^{n} \frac{d^{n}}{d x^{n}} e^{-x^{2}}
$$

Use this to find the Fourier transform of ψ_{n}.
(b) Prove Heisenberg's uncertainty relation

$$
\|x f\|_{L^{2}}\|k \hat{f}\|_{2} \geq \frac{1}{4 \pi}\|f\|_{2}^{2}
$$

Hint: Apply Schwarz' inequality to $\int x f f^{\prime} d x$. Please justify your computation!
(Do not worry about differentiability and integrability issues.)

Useful formulas

- The Laplacian on \mathbb{R}^{3} in spherical coordinates: $\quad \Delta=\partial_{r}^{2}+\frac{2}{r} \partial_{r}+\frac{1}{r^{2} \sin ^{2} \theta}\left(\left(\sin \theta \partial_{\theta}\right)^{2}+\partial_{\phi}^{2}\right)$.
- The fundamental solution of Laplace's equation on \mathbb{R}^{3} is $G_{0}(x, y)=-\frac{1}{4 \pi|y-x|}$.
- Kirchhoff's formula for waves in three space dimensions:

$$
u(x, t)=\frac{\partial}{\partial t}\left\{\frac{1}{4 \pi c^{2} t} \int_{|y-x|=c t} \phi(y) d S(y)\right\}+\frac{1}{4 \pi c^{2} t} \int_{|y-x|=c t} \psi(y) d S(y) .
$$

- The Fourier transform on \mathbb{R}^{d} is defined by $\hat{f}(k)=\int_{\mathbb{R}^{d}} e^{-2 \pi i k \cdot x} f(x) d x$. With this convention, the Gaussian $f(x)=e^{-\pi|x|^{2}}$ satisfies $\hat{f}=f$.
- end -

