MAT 351: Partial Differential Equations
 Test 1, November 92016

(Three problems; 20 points each.)

1. (a) Is the PDE

$$
\sin y u_{x}+u_{y}+2 u=0
$$

linear or nonlinear? What is its order?
(b) Write down the characteristic equations and sketch a few characteristics in the x - y-plane.
(c) Solve this PDE with initial values $u(x, 0)=g(x)$, where g is a given function. Does your solution exist on the entire plane \mathbb{R}^{2} ? Is it unique? Why?
(d) Suppose, instead, we try to solve the same PDE with initial values $u(0, y)=h(y)$. What goes wrong?
2. (a) For the wave equation on the real line: Write down the initial-value problem. Briefly explain the terms finite speed of propagation, conservation of energy.
(b) Write down Burger's equation. State the Rankine-Hugoniot shock condition and Lax's entropy condition. Use a sketch and one or two sentences to explain how these conditions determine the motion of shocks.
3. (a) Write down the fundamental solution of the heat equation $u_{t}=k u_{k k}$ on the real line.
(b) Use the method of reflections to solve the heat equation on the half-line

$$
u_{t}=k u_{x x}, \quad(x>0, t>0)
$$

with Dirichlet boundary condition $u(0, t)=0$ for $t>0$, and initial values $u(x, 0)=\phi(x)$.
(c) Suppose the initial values in (b) are given by

$$
\phi(x)= \begin{cases}\sin ^{2} x, & \text { if } 0<x<\pi \\ 0 & \text { otherwise }\end{cases}
$$

Prove that the solution is strictly positive, $u(x, t)>0$ for all $x>0, t>0$.

