MAT 351: Partial Differential Equations
 Test 2, January 262018

(Five problems; 80 points in total.)

1. (20pts) Consider the Fourier series

$$
\sin \frac{x}{2}=\sum_{k=-\infty}^{\infty} A_{k} e^{i k x}, \quad(-\pi<x<\pi)
$$

(a) Argue that the Fourier coefficients A_{k} are purely imaginary, and $A_{-k}=-A_{k}$.
(b) Find the coefficients A_{k}. (Useful fact: $e^{i \pi / 2}=i$.)
(c) Find the value of $\sum_{k=1}^{\infty}\left|A_{k}\right|^{2}$.
(d) Briefly describe in which sense the series converges.
2. (20pts) Suppose u solves $\Delta u=0$ on the unit disc $\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}<1\right\}$, with boundary values $u(\cos \theta, \sin \theta)=(\cos \theta)^{4}$. Find \ldots
(a) ...the maximum and minimum value of u on the unit disc;
(b) \ldots the value of $u(0,0)$;
(c) \ldots an explicit formula for u (in polar or Cartesian coordinates).

Please explain your reasoning!
3. (10pts) Consider the inhomogeneous heat equation

$$
u_{t}=u_{x x}+f(x, t), \quad(x \in \mathbb{R}, t>0)
$$

with initial values $u(x, 0)=0$. Write down a solution of this problem, using Duhamel's formula and the fundamental solution.
4. (10pts) State and prove Dirichlet's principle.
5. (20pts) Let D be a bounded open subset of \mathbb{R}^{3}, with smooth boundary.
(a) Define the Green's function $G(x, a)$ of D.
(b) Let u be a harmonic function on D, with boundary values $\left.u\right|_{\partial D}=g$, where g is a given continuous function. Use the Green's function to give a formula for u.
(c) In your formula, indicate the Poisson kernel, $K_{a}(x)$, defined for $a \in D, x \in \partial D$. Prove that

$$
\int_{\partial D} K_{a}(x) d S(x)=1
$$

for each $a \in D$. (Hint: Consider the case where g is constant.)
(d) Also prove that $K_{a}(x)>0$ for all $x \in \partial D$.

