MAT 351: Partial Differential Equations
 Test 3, March 92018

(Five problems; 80 points in total.)

1. (10pts) Construct the Green's function for the three-dimensional half-ball

$$
B_{+}=\left\{x \in \mathbb{R}^{3}| | x \mid<1, x_{3}>0\right\}
$$

2. (20pts) Let u be a smooth function on \mathbb{R}^{3} with $\Delta u \geq 0$.
(a) Prove that u is subharmonic, that is, for all $x \in \mathbb{R}^{3}$ and all $r>0$,

$$
u(x) \leq \frac{1}{\frac{4}{3} \pi r^{3}} \int_{B_{r}(x)} u(y) d y
$$

Hint: Compare with the harmonic function that has the same boundary values on $B_{r}(x)$.
(b) Let $D \subset \mathbb{R}^{3}$ be a bounded domain. What can you say about $\sup _{D} u$ and $\inf _{D} u$? Can u assume its maximum in the interior of D ? How about its minimum? Please justify your answers briefly.
3. (10pts) For the wave equation $u_{t t}=c^{2} \Delta u$ in two spatial dimensions $\left(x \in \mathbb{R}^{2}\right)$, find all solutions of the form $u(x, t)=e^{-i \omega t} f(|x|)$ that are finite at $x=0$.
4. (20pts) Let ρ be a positive continuous function on $[0,1]$ with $\int_{0}^{1} \rho(x) d x=1$. Define an inner product on the space of real-valued continuous functions by

$$
\langle u, v\rangle:=\int_{0}^{1} u(x) v(x) \rho(x) d x
$$

(a) Starting from the monomials $m_{k}(x)=x^{k}, k=0,1,2, \ldots$, explain how to construct a sequence of mutually orthogonal polynomials $P_{k}(x)$, where each P_{k} is of degree k. (You don't need to use formulas, but please be specific.)
(b) (Recursion relation) Prove that there exist constants a_{k}, b_{k}, and c_{k}, such that

$$
P_{k}(x)=\left(a_{k} x+b_{k}\right) P_{k-1}(x)+c_{k} P_{k-2}(x) .
$$

Hint: First choose a_{k} so that $Q=P_{k}-a_{k} x P_{k-1}$ has degree $<k$. Then expand Q in terms of the orthogonal polynomials.
5. (20pts) Consider the Klein-Gordon equation $u_{t t}-c^{2} \Delta u+m^{2} u=0$, where $m>0$. (Note that the standard wave equation corresponds to taking $m=0$.)
(a) What is the energy associated with this equation? Show that it is conserved. Hint: Start from the energy for the wave equation.
(b) State the causality principle for the wave equation $(m=0)$.
(c) Use a sketch to argue that the Klein-Gordon equation should obey the same causality principle. (Make the case that the same energy methods apply.)

Some formulas. (Only a few of them will be needed.)

- The Laplacian in spherical coordinates has the form

$$
\Delta u=u_{r r}+\frac{2}{r} u_{r}+\frac{1}{r^{2}}\left[\frac{1}{\sin ^{2} \theta} u_{\phi \phi}+\frac{1}{\sin \theta}\left(\sin \theta u_{\theta}\right)_{\theta}\right] .
$$

Here, $x=r \cos \phi \sin \theta, y=r \sin \phi \sin \theta, z=r \cos \theta$.

- The fundamental solution of Laplace's equation on \mathbb{R}^{3} is $\Phi(x)=-\frac{1}{4 \pi}|x|$.
- The Green's function for the unit ball in \mathbb{R}^{3} is given by

$$
G(x, y)=\frac{1}{4 \pi}\left(\frac{1}{(|y||\bar{y}-x|)}-\frac{1}{|y-x|}\right) .
$$

- The inversion at the unit sphere, given by $x \mapsto \bar{x}=\frac{x}{|x|^{2}}$, satisfies $|\bar{x}-\bar{y}|=\frac{|x-y|}{|x||y|}$.
- Kirchhoff's formula for the solution of the wave equation in \mathbb{R}^{3} is

$$
u(x, t)=\frac{\partial}{\partial t}\left\{\frac{1}{4 \pi c^{2} t} \int_{|y-x|=c t} \phi(y) d S(y)\right\}+\frac{1}{4 \pi c^{2} t} \int_{|y-x|=c t} \psi(y) d S(y)
$$

- Poisson's formula for the solution of the wave equation in \mathbb{R}^{2} is

$$
u(x, t)=\frac{\partial}{\partial t}\left\{\frac{1}{2 \pi c} \int_{|y-x|<c t} \frac{\phi(y)}{\left(c^{2} t^{2}-|y-x|^{2}\right)^{1 / 2}} d y\right\}+\frac{1}{2 \pi c} \int_{|y-x|<c t} \frac{\psi(y)}{\left(c^{2} t^{2}-|y-x|^{2}\right)^{1 / 2}} d y
$$

- The Bessel functions $J_{n}(r)$ are the bounded solutions of Bessel's equations

$$
J^{\prime \prime}+\frac{1}{r} J^{\prime}+\left(1-\frac{n^{2}}{r^{2}}\right) J=0
$$

for $n=0,1, \ldots$ (after suitable normalization). Each J_{n} is a smooth function that changes sign at an infinite sequence of zeroes $z_{n, 1}, z_{n, 2}, \cdots \rightarrow \infty$, separated by an infinite sequence of critical points $p_{n, 1}, p_{n, 2}, \ldots$.

