MAT 1060: Partial Differential Equations I Assignment 3, October 6 2009

Read Chapter 2 to the end.

Please hand in to Ehsan in on Wednesday, October 21:

• Chapter 2 (p. 85): Problems 15, 16, 17, 18;

and the additional problems:

• Lorentz invariance of the wave equation in \mathbb{R}^3 .

For $z = (x,t) \in \mathbb{R}^n \times \mathbb{R}$, consider the quadratic form $m(z) = |x|^2 - t^2$. A Lorentz transformation is an invertible linear transformation $L : \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ that satisfies

$$m(L(z)) = m(z), \quad (z \in \mathbb{R}^4).$$

Lorentz transformations form a group, i.e., the product and the inverse of Lorentz transformations is again a Lorentz transformation. (Why?)

(a) Let Γ be the diagonal $(n+1) \times (n+1)$ -matrix with $\Gamma_{ii} = 1$ for $i \leq n$ and $\Gamma_{n+1,n+1} = -1$. Show that L is a Lorentz transformation, if and only if its matrix satisfies $L^t \Gamma L = \Gamma$. What can you say about the determinant of L?

(b) If L is a Lorentz transformation, and v(z) = u(L(z)), show that

$$u_{tt} - \Delta u = v_{tt} - \Delta v \,.$$

Hint: Let ϕ be a smooth function with compact support on \mathbb{R}^n , and consider the integral

$$I(u) = \int \int (u_{tt} - \Delta u) \phi(x, t) \, dx \, dt$$

Integrate by parts and change variables.

Remarks: (i) The quadratic form m is called the **Minkowski metric** on \mathbb{R}^4 . It is used to define the geometry of space-time in the Theory of Special Relativity. A vector z is called **timelike** if m(z) < 0, **spacelike** if m(z) > 0, and **Null** (or **characteristic**) if m(v) = 0.

(ii) The Lorentz transformations are the fundamental symmetries of Minkowski space, analogous to the orthogonal transformations on Euclidean space. An important difference is that the Lorentz group is non-compact, while the orthogonal group is compact. Can you see, why?

• (Alternate proof of the maximum principle).

Let u be a smooth real-valued function on \mathbb{R}^n . Suppose that

$$-\Delta u + b(x) \cdot Du \le 0, \quad x \in U,$$

where U is a bounded set, and b is a bounded vector-valued function on U. Prove that u satisfies the weak maximum principle, i.e., it assumes its maximum on the boundary. *Hint:* Consider the function

$$v(x) = u(x) + \varepsilon e^{\lambda x_1} \,,$$

and choose $\lambda > 0$ so that $-\Delta v(x) + b(x) \cdot Dv(x) < 0$.

Remarks: (i) A careful analysis shows that u satisfies the *strict* maximum principle, see Chapter 6.4.2. The proof remains valid, if the Laplacian is replaced by a differential operator of the form n

$$Lu = \sum_{i,j=1}^{n} a_{ij}(x) D_i D_j u \,,$$

where the functions a_{ij} are smooth and bounded, the matrix $A(x) = (a_{ij}(x))_{i,j=1}^n$ is symmetric, and its eigenvalues lie in some interval [c, C], where c and C are positive constants.

(ii) Maximum principles are particularly useful in nonlinear problems, where exact solutions are usually not available, but they are largely limited to elliptic and parabolic second-order equations for a single real-valued function.

(iii) References: The strong maximum principle is due to Hopf (1927). Good modern sources are "Maximum Principles in Differential Equations", by Protter and Weinberger (book; Springer 1967), and "The strong maximum principle revisited", by Pucci and Serrin (review article, J. Differential Eq. **196**:1-66, 2004).