
PARTIAL DIFFERENTIAL EQUATIONS — LECTURE 3

BURGER’S EQUATION: SHOCKS AND ENTROPY SOLUTIONS

A conservation law is a first order PDE of the form

ut + ∂xF (u) = 0 .

We think of x as a spatial variable, and t as time. The function u is interpreted as the density of a
(one-dimensional) fluid, and F describes the flow speed as a function of density. In gas dynamics, F
is usually increasing and convex, while in traffic modeling it is increasing and concave. The simplest
example is Burger’s equation, where F (u) = 1

2
u2, resulting in

ut + uux = 0 .

The results we discuss are representative for scalar conservation laws in one dimension. Systems of
conservation laws in higher spatial dimensions, which appear in fluid dynamics, pose greater chal-
lenges that are beyond the scope of this course.

Conservation laws are examples of quasilinear equations, that is, equations that are linear in the
highest order derivatives, with coefficients that depend on the unknown function. What makes them
interesting is that singularities can develop after a finite time, even when the initial values are smooth.
This motivates the

• weak formulation of the PDE: We ask that for every interval [a, b],

d

dt

∫ b

a

u(x, t) dt + F (u(x, t)
∣∣∣b
x=a

= 0 .

The prototypical singularity of a weak solution is a shock, where the value of the solution jumps across
a smooth curve x = γ(t). The motion of the shock is governed by the

• Rankine-Hugoniot condition

γ′(t) =
F (u`)− F (ur)

u` − ur

at every point (γ(t), t) on the curve.
For Burger’s equation, the shock speed is just the average of the characteristic speeds immediately to
the left and right of the shock. We can think of the characteristic ODE as an infinitesimal version of
the Rankine-Hugoniot condition.

It turns out that weak solutions at a given initial-value problem are not unique. Uniqueness is restores,
by requiring additionally that the solution satisfy

• Lax’ entropy condition: At a shock,

Fu(u`) > γ′(t) > Fu(ur) .

This means that nearby characteristics should always run into the shock. Characteristics emanating
from a shock are viewed as unphysical. Note that the entropy condition breaks the symmetry of the
PDE under the change of variables (x, t) → (−x,−t), and introduces a preferred direction of time.
This is remniscent of the second law of thermodynamics, which says that entropy always increases
with time. One consequence is that shocks travel forward in gas dynamics, but backwards in traffic
modeling. A weak solution that satifies Lax’ condition is called an entropy solution.
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We note in passing that the method of characteristics can be adapted to solve first order fully non-
linear equations locally, i.e., in a neighborhood of the initial data. Examples of fully nonlinear first
order equations are the eikonal equation |∇u| = 1 (which describes characteristic surfaces for the
wave equation), and the Hamilton-Jacoby equation ut + H(u,∇u) = 0 (which appears in classical
mechanics).

PROBLEMS

(1) Compute explicitly the solution of Burger’s equation ut + uux = 0 with initial values

u(x, 0) =


1 if x < −1
0 if − 1 < x < 0
2 if 0 < x < 1
0 if x > 1

that satisfies both the Rankine-Hugoniot jump condition and the entropy condition. Please
draw a sketch of the characteristics and the shocks.

(2) Let u be an entropy solution of the conservation law

ut + ∂xF (u) = 0 ,

where F is a non-decreasing function on the real line with F (0) = 0. Justify the following
statement: If F is convex, then shocks travel forward (to the right); if F is concave, they travel
backwards (to the left).

(3) (The real and imaginary parts of holomorphic functions are harmonic)
(a) Let u, v be two real-valued functions in two variables. Assume that (u, v) satisfy the

Cauchy-Riemann system

ux = vy uy = −vx .

Show that u and v satisfy Laplace’s equation
(b) Conversely, assume that u : R2 → R satisfies Laplace’s equation. (We say that u is a

harmonic function). Show that there exists a function v such that the Cauchy-Riemann
differential equations hold. (v is called the conjugate harmonic function to u.)
Hint: The vector field (−vx, vy) is exact.

(c) What happens to (b) if u is defined not on the entire plane but on an open subset Ω ⊂ R2?
(4) A plane wave is a solution of the wave equation utt = ∆u with x ∈ R3 and t ∈ R of the form

u(x, t) = f(k · x− ct), where f is a smooth function of a single variable, c is a constant, and
k is a constant vector in R3. Find all the three-dimensional plane waves.

(5) Use the method of characteristics to solve
(a) xux + yuy = 2u, u(x, 1) = φ(x);
(b) ux + uy = u2, u(x, 0) = φ(x);
(c) uux + uy = 1, u(x, x) = 1

2
x.

Which of these equations are linear?
(6) A multi-index is a vector α = (α1, . . . , αn) of nonnegative integers. Define

• |α| = α1 + · · ·+ αn, the order of α,
• the power xα = xα1

1 · · · · · xαn
n ,

• the factorial α! = α1! · · · · · αn! and the multinomial coefficient
(|α|

α

)
= |α|!

α!
= |α|!

α1!·····αn!
.

(a) Show that (x1 + · · ·+ xn)k =
∑
|α|=k

(
|α|
α

)
xα. (Hint: Induction over either k or n).

(b) Let f be a k-times continuously differentiable function in n variables. Write down the
Taylor expansion of order k about x = 0, using multi-index notation.


