
APM 351: Differential Equations in Mathematical Physics
Assignment 10, due December 1, 2011

Summary
Poisson’s equation

∆u = f

describes physical systems in equilibrium such as steady states for diffusion equations (with f de-
scribing sources and sinks), Maxwell’s equation for a static electric field (with charge distribution
given by f ), and expected values of many interesting random variables under Brownian motion
starting at x. It is the prototype of an elliptic equation.

The most important case is Laplace’s equation

∆u = 0

whose solutions are called harmonic functions. In one dimension, the only harmonic functions
are the linear, u(x) = ax + b. In two dimension, every harmonic function is the real part of a
holomorphic function. As such, it is analytic (i.e., smooth, and agrees with its Taylor series), and
satisfies the strong maximum principle (i.e., u cannot assume a local maximum or minimum
on a connected domain unless it is constant). We will show that harmonic functions in higher
dimensions share the last two properties. A useful fact is the mean value property, which says
that the average of a harmonic function over a ball or a sphere agrees with its value at the center.

We will discuss methods for solving Poisson problems, consisting of Poisson’s equation on a do-
main together with specified boundary values. The goal is to recover u from f and the given
boundary data. In the special case of Laplace’s equation on the unit disc, Poisson’s formula

u(r cos θ, r sin θ) =
1

2π

∫ 2π

0

1− r2

1− 2r cos(θ − θ̃) + r2
g(θ̃) dθ̃

provides the unique harmonic function u on the disc with boundary values u(cos θ, sin θ) = g(θ).
The Poisson kernel

Pr(θ) =
1

2π
· 1− r2

1− 2r cos θ + r2

has the properties that

• Pr(θ) > 0 for all 0 ≤ r < 1 and all θ;

•
∫ 2π

0
Pr(θ) dθ = 1 for all 0 ≤ r < 1;

• limr→1 Pr(θ) = 0 for all θ 6= 0.

Thus, Poisson’s formula represents the solution as an average of the boundary data, weighted by
the Poisson kernel Pr. Since the weight concentrates at θ = 0 as r → 1, it follows that Pr → δ, in
the sense that

lim
r→1

∫ 2π

0

Pr(θ)h(θ) dθ = h(0)
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for every continuous 2π-periodic function h. By definition, the delta distribution is the linear
transformation that sends the function h to its value at zero,

δ(h) =

∫ 2π

0

δ(θ)h(θ) dθ = h(0).

Remark. Poisson’s formula is analogous to the integral representation of solutions to the heat
equation on the real line in terms of the initial data (see Assignment 4, top of second page). The
Poisson kernel plays the role of the fundamental solution, and the limit r → 0 in Poisson’s formula
corresponds to the limit t → 0 in the heat equation.

Assignments:
Read Chapter 6 of Strauss.

1. Find the sums of the series
∑∞

n=1
1
n4 and

∑∞
n=1

(−1)n

n4 .

2. Let f be a continuously differentiable 2π-periodic function.

(a) How are the Fourier coefficients an of f related to those of f ′? Argue that
∑∞

n=∞ n2|an|2
converges.

(b) Consider the partial sums SN and S ′N of the Fourier series of f and f ′, respectively.
Apply Schwarz’ inequality to the sum to show that the sequence {SN} satisfies the Cauchy
criterion with respect to the supremum norm. Hence SN converges uniformly to f .

3. Solve uxx + uyy = 0 in the disk (r < a) with the boundary condition u = sin3 θ.
(Hint: Use the identity sin3 θ = 3

4
sin θ − sin 3θ and apply Poisson’s formula.)

4. Derive Poisson’s formula for the exterior of the unit disc (r > 1).
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