APM 351: Differential Equations in Mathematical Physics Assignment 14, due February 2, 2012

Summary:

We have studied the wave equation $u_{tt} = c^2 \Delta u$ in two and three spatial dimensions. The initial conditions are given by $u(x, 0) = \phi(x)$ and $u_y(x, u) = \psi(x)$. Two important properties of the wave equation in any dimension are:

- The energy $E(t) = \frac{1}{2} \int u_t(x,t)^2 + |\nabla u(x,t)|^2 dx$ is conserved (constant in time);
- Causality: The solution u(x, t) depends on the initial condition only inside the solid light cone

$$\{(y,s)\in\mathbb{R}^n\times\mathbb{R}\ |\ |y-x|^2\leq |t-s|^2\}.$$

For the solution of the wave equation $u_{tt} = c^2 \Delta u$ in three dimensions, we have derived **Kirchhoff's** formula

$$u(x,t) = \frac{\partial}{\partial t} \left\{ \frac{1}{4\pi c^2 t} \int_{|y-x|=ct} \phi(y) \, dS(y) \right\} + \frac{1}{4\pi c^2 t} \int_{|y-x|=ct} \psi(y) \, dS(y) \, .$$

Remarkably, the solution depends on the initial data only on the (surface of the) light cone, i.e., waves travel exactly at the speed of light. This is called **Huygens principle**. It is typical for solutions of the wave equation in all odd dimensions $n = 2k + 1 \ge 3$.

In two dimensions, we have Poisson's formula

$$u(x,t) = \frac{\partial}{\partial t} \left\{ \frac{1}{2\pi c} \int_{|y-x| < ct} \frac{\phi(y)}{(c^2 t^2 - |y-x|^2)^{1/2}} \, dy \right\} + \frac{1}{2\pi c} \int_{|y-x| < ct} \frac{\psi(y)}{(c^2 t^2 - |y-x|^2)^{1/2}} \, dy \,.$$

Note that Huygens' principle fails in two dimensions (and generally in even dimensions.)

The key to the proof of Kirchhoff's formula is the observation that the **spherical mean** of a solution, given by

$$\bar{u}(r,t;x) = \frac{1}{n\omega_n r^{n-1}} \int_{|y-x|=r} u(y,t) \, ds(y)$$

satisfies Darboux' equation

$$u_{tt} = c^2 \left(u_{rr} + \frac{n-1}{r} u_r \right) \,.$$

(Here, the denominator $n\omega_n$ is the n-1-dimensional surface area of the *n*-ball. In n=3 dimensions, its value is 4π .) Darboux's equation can be solved explicitly when n is odd, and Kirchhof's formula follows by setting $u(x,t) = \bar{u}(0,t;x)$. From there, we obtain the solution in even dimensions by using **Hadamard's method of descent**.

Assignments:

Read Chapter 9 of Strauss.

1. (a) Verify that $u(x,t) = (c^2t^2 - |x|^2)^{-1}$ satisfies the three-dimensional wave equation except on the light cone.

(b) Use Kirchhoff's formula to find the solution of the three-dimensional wave equation with initial data $u(x, u) = 0, u_t(x, 0) = x_2$.

Hint: The linear function $\Psi(x) = x_2$ has the mean value property.

(c) Use the Darboux equation (for radial solutions of the wave equation) to solve the threedimensional wave equation with initial data u(x, 0) = 0, $u_t(x, u) = |x|^2$.

- 2. Consider the Klein-Gordon equation $u_{tt} c^2 \Delta u + m^2 u$, where m > 0.
 - (a) What is the energy? Show that it is conserved.
 - (b) Prove the causality principle for it.
- 3. (a) For any solution of the two-dimensional wave equation with initial data vanishing outside some circle, prove that $u(x,t) = O(t^{-1})$ as $t \to \infty$ for each fixed $x \in \mathbb{R}^2$, i.e., tu(x,t) is bounded in t for each fixed x.
 - (b) Also show that $\sup_x u(x,t) = O(t^{-1/2})$, i.e., $t^{1/2}u(\cdot,t)$ is bounded uniformly in x as $t \to \infty$.