
APM 351: Differential Equations in Mathematical Physics
Assignment 4, due Oct. 13, 2011)

Summary
The diffusion equation (or heat equation)

ut = kuxx

is the prototype of a parabolic equation. It is used to describe the diffusion of a chemical substance
by Brownian motion, or the flow of heat in a body. A variant of this equation appears in the Black-
Scholes equation for the price of a stock option. The parameter k > 0 is called the diffusion
constant or the volatility. The diffusion equation is not time reversible; we will see that the
initial-value problem is well-posed forward in time, but the backwards heat equation is ill-posed in
most commonly used function spaces.

The most striking property of the heat equation is the maximum principle: If we consider a
solution on a region a ≤ x ≤ b, t0 ≤ t ≤ T , then its maximal value is assumed either at at
the initial time (t = t0), or at the boundary (x = a or x = b). The strong maximum principle
says that the maximum cannot be asssumed at some point (x1, tx) with x1 in the interior of the
interval and t1 > t0 unless u is constant up to time t1. (We have not proved the strong maximum
principle here.) One consequence is that the solution of the heat equation with nonnegative data
remains nonnegative. In fact, unless the data are zero, the solution will immediately become
positive everywhere — the diffusion equation has infinite speed of propagation !

The maximum principle implies that solutions of boundary-value problems on finite intervals are
unique. Note that this argument fails for solutions that are defined on the entire real line – there
we need additional growth conditions (i.e., boundary conditions at infinity) to ensure uniqueness.

Typical solutions of the diffusion equation on the real line spread out and decay over time. One
manifestation of this is that energy decreases:

d

dt

∫
1

2
u2(x, t) dx ≤ 0

(assuming that the integral is finite). This is useful for understanding well-posedness and analyzing
the long-time behavior.

The fundamental solution of the diffusion equation is given by the source function

S(x, t) =
1√

4πkt
e−

x2

4kt .

Physically, this represents the diffusion of a substance on the real line that was initially concen-
trated at x = 0. The total mass is given by∫ ∞

−∞
S(x, t) dt = 1

1



for all t > 0. The concentration at time t is given by a Gaussian bell-shaped curve of width
proportional to

√
kt. The function

u(x, t) =

∫ ∞

−∞
S(x− y, t)φ(y) dy

solves the diffusion equation with initial values u(x, y) = φ(x). The formula says that the concen-
tration at position x, time t is a weighted average of the concentrations at time t = 0.

Assignments:
Read the sections in Chapter 2 of Strauss about the diffusion equation, and solve the folllowing
problems.

1. Consider the wave equation utt − c2uxx = 0 with initial values u(x, 0) = φ(x), ut(x, 0) =
ψ(x). If both φ and ψ are odd in x, prove that u is odd in x.

2. Prove the comparison principle for the diffusion equation: If u and v are two solutions of
ut = kuxx for 0 < x < ` and t > 0, and u ≤ v initially (t = 0) and on the boundary
(x = 0, `), then u(x, t) ≤ v(x, y) for all t.

3. Let U be a connected open bounded set with smooth boundary, let ∂U be its boundary, and
let U its closure. Let u be a solution of Laplace’s equation

uxx + uyy = 0 , (x, y ∈ U)

that is continuous on U .

(a) Prove that u satisfies the maximum principle:

sup
(x,y)∈U

u(x, y) = max
(x,y)∈∂U

u(x, y) .

(b) Conclude that Poisson’s problem

uxx + uyy = f(x, y) , (x, y ∈ U) ,

u(x, y) = g(x, y) , (x, y) ∈ ∂U

can have at most one solution.
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