
A Linear Time Online Task Assignment Scheme forMultiprocessor SystemsAlmut Burchard �, Yingfeng Oh ��, J�org Liebeherr ��, and Sang H. Son ��� School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332�� Computer Science Department, University of Virginia, Charlottesville, VA 22903AbstractIn this study, a new online task assignment scheme is presented for multiprocessor systemswhere individual processors execute the rate-monotonic scheduling algorithm. The computa-tional complexity of the task assignment scheme grows linearly with the number of tasks, and itsperformance is shown to be signi�cantly better than previously existing schemes. The superior-ity of our scheme is achieved by a new schedulability condition derived for the rate-monotonicscheduling discipline.1 IntroductionRate-monotonic (RM) scheduling is becoming a viable scheduling discipline for real-time systems.Through the years, researchers have successfully applied this discipline to tackle a number of prac-tical problems, such as task synchronization, bus scheduling, joint scheduling of periodic and ape-riodic tasks, and transient overload [4, 9]. This is done through developing various schedulingalgorithms to cope with situations that are not covered by the rate-monotonic algorithm.While rate-monotonic scheduling is optimal for uniprocessor systems with �xed-priority assign-ments, it is, unfortunately, not so for multiprocessor systems. In fact, the problem of optimallyscheduling a set of periodic tasks on a multiprocessor system using either �xed-priority or dynamicpriority assignments is known to be intractable [6]. Hence, any practical solution to the problem ofscheduling real-time tasks on multiprocessor systems presents a trade-o� between computationalcomplexity and performance. Heuristic algorithms have been shown to deliver near-optimal solu-tions with limited computational overhead.In this study, we are concerned with developing an e�cient heuristic algorithm for scheduling aset of periodic tasks on a multiprocessor system. The general solution to such a problem involves twoalgorithms: one to assign tasks to individual processors, and the other to schedule tasks assignedon each individual processor. If the the entire task set is known a priori, the scheduling method isreferred to as being o�ine, otherwise it is said to be online.Since real-time systems often operate in dynamic and complex environments, many schedulingdecisions must be made online. For example, a change of mission may require the execution of atotally di�erent task set. Or the failure of some processors may render the re-assignment of tasksnecessary. In these scenarios, the entire task set to be scheduled may change dynamically, that is,tasks must be added or deleted from the task set. In the following, we will present an online taskassignment scheme for multiprocessor systems where each processor executes the RM schedulingalgorithm.



Previous work on this problem illustrates the trade-o� between computational complexity andperformance of heuristic task assignment schemes. The complexity of an algorithm is given bythe upper bound of the time required to schedule a set of K tasks. The performance of taskassignment schemes is evaluated by providing worst case bounds forN=Nopt, where N is the numberof processors required to schedule a task set with a given heuristic method, and Nopt is the numberof processors needed by an optimal assignment. Bounds for the existing schemes are determinedby limNopt!1N=Nopt.In [2], an algorithm is presented with complexity O(K) and limNopt!1N=Nopt = 2:28. Thetwo scheduling algorithm in [8] have a time complexity of O(K logK), and worst case performancelimNopt!1N=Nopt = 2:33 and 2:66. Both studies apply variants of well-known heuristic bin-packingalgorithms where the set of processors is regarded as a set of bins 1. The decision whether a processoris full is determined by a schedulability condition. Also, these assignment schemes are based onthe su�cient schedulability condition for uniprocessor systems derived in [7] and its variants, e.g.,[3]. Thus, the existing assignment schemes di�er mainly in the choice of the bin-packing heuristic.Our approach for developing a task assignment scheme for multiprocessor systems is di�erentfrom previous work. Rather than increasing the level of sophistication of the bin-packing heuristic,we focus on developing tighter schedulability condition that allows us to assign more tasks toeach processor. If the periods of tasks are close enough, we will show that each processor can bealmost fully utilized. This is achieved with a new schedulability condition. The complexity of ourassignment scheme is given by O(K) and the worst case performance bounds is limNopt!1N=Nopt =1=(1� �), where � is the maximum load factor of any single task.2 Task Model and Schedulability ConditionWe assume that the real-time computer system consists of a multiprocessor system and a set of Kreal-time tasks. The multiprocessor and the task set are characterized as follows.A real-time task is denoted by �i = (Ci; Ti) (i = 1; : : : ; K). Ti denotes the shortest time betweentwo requests of task �i, and is referred to as the period of �i. Ci denotes the maximum executiontime of task �i. Since we assume that the multiprocessor system is homogeneous the execution timeis identical on each processor. Each request for a real-time task must complete execution beforethe next request of the same task. Thus, in the worst case, the execution of �i must be completedafter Ti time units. The period and the maximum execution time of task �i satisfyTi > 0; 0 � Ci � Ti; i = 1; : : : ; kWe will refer to Ui = Ci=Ti as the load factor of the i-th task, and to U =PKi=1 Ui as the total loadof the task set. We de�ne � to be the maximal load factor of each task, i.e., � � max1�i�K Ui .�n denotes the utilization of the n-th processor, that is, the sum of the load factors of the tasksassigned to processor n. Tasks are grouped into M classes, and only tasks from the same class canbe assigned to the same processor.Next we derive a su�cient schedulability condition for a processor that schedules tasks with theRM algorithm. The result, presented in Theorem 1, is a simple modi�cation to the schedulabilitycondition for uniprocessor systems by Liu and Layland [7]. Our condition yields a higher utilization1The bin-packing problem is concerned with packing di�erent-sized items into �xed-sized bins using the leastnumber of bins [5]. 2



of the processor if the task periods satisfy certain constraints. On a uniprocessor system, Theorem1 does not provide a signi�cant improvement for scheduling real-time tasks. For multiprocessorscheduling, however, we can divide a large task set into subsets in such a way that we can makeuse of the sharpened condition on all but possibly M processors.The schedulability condition presented in the following theorem takes advantage of a specialproperty of the RM scheduling algorithm. We show that we can increase the processor utilizationif all periods in a task set have values that are close to each other. The proof of the theorem canbe found in [1].Theorem 1 Given a real-time task set �1; : : : ; �K. For i = 1; : : : ; K, de�neSi := log2 Ti � blog2 Tic and � := max1�i�K Si � min1�i�K Si (1)A task set with � < 1� 1=K can be feasibly scheduled by the Rate-Monotonic algorithm if the totalload satis�es (2). The condition is tight.U � (K � 1) �2�=(K�1)� 1�+ 21�� � 1 (2)Note that the condition given by (2) is tighter than the one given by Liu and Layland [7] under� < 1� 1=K.Corollary 1 Given a set of real-time tasks �1; : : : ; �K, If the total load satis�es U � max fln 2; 1� � ln 2g,then the task set can be scheduled on one processor, where � is as de�ned above in (1).3 An Online Task Assignment SchemeOur new scheme is based on the schedulability condition of Theorem 1. The parameter used in forthe scheme, M, denotes the number of processors to which a new task can be assigned. Recall thattasks are divided into M classes. The class membership of a task � is determined by the followingexpression: m = jM(log2 (T )� blog2 (T )c)k+ 1 (3)Each processor is assigned tasks from only one class. Thus, at each processor the value of � asde�ned in (1) is bounded above by 1 � ln 2=M . For each class, the scheme one so-called currentprocessor. If a new task from class m is added to the task set, the scheme �rst attempts toaccommodate the task to the current processor for classm. A complete description of the algorithmfor assigning a task � = (C; T ) is given in Algorithm 1.In Algorithm 1, adding a new task � = (C; T ) is accomplished in the following manner. First,the class membership of the new task � (Step 1) is determined. If � can be added to the currentprocessor of class m without violating the schedulability condition it is assigned to this processor.Otherwise, � is assigned to an empty processor. If the load factor of � is su�ciently small (Step 4),the processor to which � is assigned becomes the current processor of class m (Step 5). If the loadfactor of � is large, no other task will be assigned to this processor (Step 7).3



Global functions:curr(m) { Returns the current processor for class m.newproc() { Returns the index of an empty processor.Add (� = (C; T ))1. m := jM (log2 (T )� blog2 (T )c)k+ 1;2. if (�curr(m) + C=T � 1� ln 2=M) then3. �curr(m) := �curr(m) + C=T ;4. else if (�curr(m) < C=T ) then5. curr(m) := newproc(); �curr(m) := C=T ;6. else7. x := newproc(); �x := C=T ;8. endif Algorithm 1. Online Task Assignment.The performance bounds of our scheme are given in Theorem 2 and Corollary 2. Corollary 2states the asymptotic bound.Theorem 2 If a task set is scheduled by Algorithm 1, then the number of processors needed satis�es(4) if � � (1� ln 2=M)=2, and satis�es (5) if � � (1� ln 2=M)=2. Both bounds are tight.N < U1� ln 2=M � � +M (4)N < 2U1� ln 2=M +M (5)Corollary 2 Let f�i j i = 1; 2; : : :g be a given in�nite task set. Denote by U(k) the sum of the loadfactors of the �rst k tasks. Denote by NM(k) the number of processors used by Algorithm 1, and byNopt(k) the number of processors used by an optimal scheme. If limk!1 U(k) = 1 then we havethe asymptotic bounds (6) and (7). The bounds are tight.limk!1 U(k)NM(k) � max�1� ln 2=M � � ; 1� ln 2=M2 � (6)limk!1 NM(k)Nopt(k) � min� 11� ln 2=M � � ; 21� ln 2=M � (7)From the derived bounds we see that the performance of Algorithm 1 is sensitive to the selectionof M , the number of task classes. The asymptotic bounds in (6) and (7) improve for large valuesof M . However, M also determines the number of current processors, i.e., processors which are notfully utilized. Next we present a method for selecting an appropriate value of M .Assume that the total load of the task set is known. To �nd the value of M that gives the bestworst-case bound for the number of processors used, we �x the value of U in (5). Since the righthand side of (5) is a strictly convex function of M , we can calculate the unique minimum which isdenoted by M�: M� = p2U ln 2 + ln 2 (8)This suggests that we should choose M � pU . Then we obtainU=N � (1� ln 2=M � �)(1�M=N) = 1=2� O(1=pU) (9)4



and hence N=Nopt � 2 +O(1=pU) (10)Similarly, if � < 1=2, we can minimize the right hand side of (4) over M and obtain that theoptimal choice for M should be as close as possible toM� = pU ln 2 + ln 21� � (11)If we choose M � pU , we obtain with (4) the following bound for the average utilization at eachprocessor. U=N � (1� ln 2=M � �)(1�M=N) = 1� ��O(1=pU) : (12)and N=Nopt is given by N=Nopt � 1=(1� �) +O(1=pU) (13)4 Average-Case Performance Evaluation of the New SchemeWhile a worst-case analysis assures that the performance bound is satis�ed for any task set, it doesnot provide insight into the average-case behavior of the assignment scheme. To gain insight intothe average-case behavior of Algorithm 1, we conduct some simulation experiments.Our simulations consider large task sets with 100 � K � 1000 tasks. In each experiment, wevary the value of parameter M, the number of task classes. The task periods are assumed to beuniformly distributed with values 1 � Ti � 500. The execution times of the tasks are also takenfrom a uniform distribution with range 1 � Ci � Ti=2. Thus, �, the maximum load factor of anytask, is given by � = 1=2. The performance metric in all experiments is the number of processorsrequired to assign a given task set.We compare our scheme with the online assignment scheme by Davari and Dhall [2], NF-M. Recall that NF-M also has linear computational complexity. The outcome of the simulationexperiments is shown in Figure 1. Since an optimal task assignment cannot be calculated for largetask sets, we use the total load (U =PKi=1 Ui) to obtain a lower bound for the number of processorsrequired. The maximum number of task classes is set to M = 10, 20, 30, respectively. Each datapoint in the �gure depicts the average value of 15 independently generated task sets with identicalparameters. Note that for all values of M, our scheme gives superior performance over the existingone.
5



References[1] A. Burchard, J. Liebeherr, Y. Oh, and S. H. Son. Assigning Real-Time Tasks to Homogeneous MultiprocessorSystems. Technical Report CS-94-01, University of Virginia, Computer Science Department, January 1994.[2] S. Davari and S. K. Dhall. An On Line Algorithm for Real-Time Allocation. In IEEE Real-Time SystemsSymposium, pages 194{200, 1986.[3] S. K. Dhall and C. L. Liu. On a real-time scheduling problem. Operations Research, 26(1):127{140, Jan-uary/February 1978.[4] J. D. Ga�ord. Rate-Monotomic Scheduling. IEEE Micro, pages 34{39, June 1991.[5] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Graham. Worst Case Performance Bounds forSimple One-dimensional Packing Algorithms. SIAM Journal of Computing, 3:299{325, 1974.[6] J. Y.-T. Leung and J. Whitehead. On the Complexity of Fixed-Priority Scheduling of Periodic, Real-Time Tasks.Performance Evaluation, 2:237{250, 1982.[7] C. L. Liu and J. W. Layland. Scheduling Algorithms for Multiprogramming in a Hard Real Time Environment.Journal of the ACM, 20(1):46{61, January 1973.[8] Y. Oh and S. H. Son. On-line Task Allocation Algorithms for Hard Real-Time Multiprocessor Systems. Submittedfor Publication.[9] L. Sha and J.B. Goodenough. Real-time Scheduling Theory and Ada. Computer, pages 53{66, April 1990.

Figure 1: Task Sets with � = 0:5.6


