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Abstract: In this paper, we prove that for a system of ordinary di�erential equations of class Cr+1;1; r �0 and two arbitrary Cr+1;1 local center manifolds of a given equilibrium point, the equations whenrestricted to the center manifolds are Cr conjugate. The same result is proved for semilinear parabolicequations. The method is based on the geometric theory of invariant foliations for center-stable andcenter-unstable manifolds.AMS classi�cations(1980): 34C and 58F.Key words: center manifold, center-stable manifold, center-unstable manifold, stable foliations, unstablefoliations, cut-o� functions, extension lemma, sectorial operator, Cr conjugacy of 
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1. Introduction. Following the pioneering work on invariant manifold theory by Poincar�e [1892], Lya-punov [1892], Hadamard [1901], Perron [1928], the theory of center manifolds for �nite dimensional dynamicalsystems has been developed by Pliss [1964], Kelley [1967], Hirsch, Pugh and Shub [1970,1977], Fenichel [1974,1977], Wells [1976], Carr [1981], Chow and Hale [1982], Sijbrand [1985], Vanderbauwhede [1989] and oth-ers. Center manifold theory for in�nite dimensional systems has been studied by Henry [1981], Carr [1981],Hale, Magalh~aes and Oliva [1984], Hale and Lin [1986], Mielke [1986], Bates and Jones [1989], Chow andLu [1988a,b], Chow, Lin and Lu [1990], Vanderbauwhede and Iooss [1990], and many others.Although most fundamental problems in the theory of center manifolds have been solved, a convincingsolution for the uniqueness problem of local center manifolds has been missing. In the context of ordinarydi�erential equations, the standard method for constructing a local center manifold at a given equilibriumpoint is to extend the locally de�ned equation by a cut-o� function to a globally de�ned one for whichexistence and smoothness of a unique global center manifold can be established by either Hadamard's orPerron's method (cf. e.g., Anosov [1967], Hirsch, Pugh and Shub [1977]). The nonuniqueness of local centermanifolds results from the use of arbitrary cut-o� functions in the construction as shown by Sijbrand [1985],and under certain conditions there is an exceptional case given by Bates and Jones [1989]. There is littledoubt that the dynamics on di�erent local center manifolds should behave the same, but the question is inwhat sense or to what degree that is so. This question has attracted a good deal of attention in the literaturesince the birth of the theory, and some results, by no means a complete account here, can be summarizedas follows. (1) any local center manifold of a given equilibrium point must contain all the invariant sets,such as equilibrium points, periodic, homoclinic, heteroclinic orbits, etc. near the equilibrium point; (2)the formal Taylor expansions at the equilibrium point of the vector �eld when restricted to di�erent localcenter manifolds are exactly the same (see, e.g., Carr [1981], Sijbrand [1985]). In this paper, however, wewill exame the uniqueness question from the standpoint of smooth conjugacy. More speci�cally, we want toshow that the restrictions of the equation to two arbitrary local center manifolds are actually topologicallyor di�erentiably conjugate, depending on the smoothness of the vector �eld. That is, the smooth conjugacyclass of the restricted equations is indeed unique.Note that, speaking at the conjugacy level, our result does include the properties (1,2) above, but theconverse is less clear. Indeed, we still do not know what these properties imply about the conjugacy problemwithin the context of center manifold theory, and nothing at all can be said about it outside the theory. Forexample, for the two equations _x = �xe�1=x2 and _x = xe�1=x2 , the origin is the only invariant set and theformal Taylor expansions at the origin are the same. But they are not conjugate because the equilibriumpoint is stable for the �rst equation and unstable for the second one.The main result, Theorem 2.1, is treated in terms of two types of di�erential equations: ordinarydi�erential equations and semilinear parabolic equations. The method is based on invariant foliations forcenter-stable and center-unstable manifolds. The theory used here is twofold. First, due to many people'sstudies of this subject, cf., e.g., Anosov [1967], Fenichel [1974,1977], Hirsch, Pugh and Shub [1977] for �nite2



dimensional systems, and Chow, Lin and Lu [1990] for in�nite dimensional systems, it has become a standardprocedure to simultaneously construct for a su�ciently di�erentiable dynamical system a local center, center-stable, and center-unstable manifold together with a stable and an unstable foliation on the center-stableand center-unstable manifold, respectively (see Theorems 5.1,2). Second, we show in Theorem 3.1 that thesegeometric structures can be recovered for a given local center manifold by extending the local manifoldof the locally de�ned equation to the global center manifold of a globally de�ned equation for which theinvariant manifold and foliation structures follow easily from known results. Based on this, our geometricalproof is carried out in two steps. We �rst show in Lemma 4.1 that if two local center manifolds happento share a common center-stable or a common center-unstable manifold, then the conjugacy follows fromthe foliation of that manifold. In general, two center manifolds lie in neither a common center-stable nor acommon center-unstable manifold (a simple example is given in section 3). In this case, we show that the
ow structures on the two manifolds can be transformed from one to the other through the 
ow structureon a third local center manifold which lies in the intersection of a center-stable manifold containing one ofthe given center manifolds and a center-unstable manifold containing the other.Recently the theory of inertial manifolds has been developed for some dissipative evolution equations,see Foias, Sell and T�emam [1988], Mallet-Paret and Sell [1988], Chow and Lu [1988b], and Constantin, Foias,Nicolaenko and T�emam [1989]. We �nd that in this context a similar conjugacy question arises. An inertialmanifold of such a system is a �nite dimensional invariant manifold which attracts solutions exponentially.In particular, this implies that it contains the global attractor. Under certain conditions, such as a spectralgap condition or the cone condition, inertial manifolds do exist. Indeed, similar to the construction of localinvariant manifolds, one obtains such an inertial manifold by modifying the equation outside an absorbingball, which contains the attractor, with a cut-o� function and constructing an inertial manifold for themodi�ed equation. Restricting that globally de�ned inertial manifold to the absorbing ball gives the desiredinertial manifold for the original system that is also referred to as a local inertial manifold. Again, di�erentcut-o� functions give rise to di�erent local inertial manifolds; and it is natural to ask if the dynamics ondi�erent local inertial manifolds are the same up to smooth conjugacy. In fact, we will be able to concludeat the end of this paper that the same answer with C0 or C1 conjugacy also applies.We remark that invariant foliation theory has been applied to conjugacy problems by many people.For example, Anosov [1967], Palis [1969], Palis and Smale [1970], and Robinson [1976] used it to analyzestructural stability of �nite dimensional dynamical systems. Palis and Takens [1977] used it to prove aresult which implies that two di�erential equations are locally topologically conjugate if the equations whenrestricted to their center manifolds are topologically congugate. Lu [1990a,b] used the in�nite dimensionalcounterpart to generalize the Hartman-Grobman theorem to parabolic equations. It is also very useful inother areas of study of dynamical systems. In fact, it is one of the key components for the geometrictheory of singular perturbations of Fenichel [1979] and its applications, cf. e.g., Deng [1989b]. It also playsan important role in the theory of homoclinic and heteroclinic bifurcations of Chow and Lin [1990] and3



Deng [1989a].The paper is organized as follows. In section 2, we state the main result. In section 3, we introduce theprincipal tool, namely, local invariant foliation theory. The main result, Theorem 2.1, is proved in section 4.The existence theorem for local invariant foliations from section 3 is proved in sections 5, 6. We end thepaper in section 7 with a discussion of some variations and possible generalizations of our results.Acknowledgment. The authors have bene�ted from many stimulating discussions with Professor S.-N. Chow and Professor J.K. Hale. The last two authors also thank for the hospitality of and the �nancialsupport provided by the Center for Dynamical Systems and Nonlinear Studies during their visit at GeorgiaTech in the summer of 1990.2. The Main Result. Let X be a Banach space and consider a semilinear evolution equation(2:1) _x = Ax+ f(x); x 2 X;together with two hypotheses:(2.1a) �A is a sectorial operator from a dense domain D(A) � X into X. Let �(A) denote the spectrum ofA, then �(A)\f���Re� � 0g consists of a �nite number of isolated eigenvalues, each with a �nite dimensionalgeneralized eigenspace.(2.1b) Let X� be the fractional power space associated with the operator A and U � X� be a neighborhoodof the origin x = 0. Then f : U �! X is of class Cr+1;1 with r � 0. Moreover, f has zero of higher order atthe origin, i.e., f(0) = 0 and the linearization Df(0) = 0.For background information concerning semilinear evolution equations, we refer to Henry [1981]. Weonly point out that when X is �nite dimensional, A is just a matrix, X� = X for all � and Eq.(2.1) is simplya system of ordinary di�erential equations. It is known that if f 2 C0;1(U;X), for every x0 2 U � X�,unique solution x(t) 2 D(A) for small t > 0 with x(0) = x0. Let St(x0) = x(t) denote the resulting local
ow, then a submanifold W � X� is said to be locally invariant if for every x 2 W there is a curve in Wthat is a solution of the equation and contains x as an interior point.Let Ec � X be the generalized �nite dimensional eigenspace corresponding to the eigenvalues �c :=�(A) \ f���Re� = 0g. Then a locally invariant di�erentiable manifold W c � U is said to be a local centermanifold of the equilibrium point x = 0 if W c is tangent to Ec at the origin x = 0.For simplicity, by a Cr di�eomorphism we mean a homeomorphism if r = 0. Our main result is thefollowing theorem:THEOREM 2.1: Assume the hypotheses (2.1a,b) for Eq.(2.1). Then the local 
ows on two arbitraryCr+1;1 local center manifolds in U � X� are locally Cr conjugate. More speci�cally, if W c1 and W c2 are suchmanifolds, then there is a neighborhood V � U of the origin and a Cr di�eomorphism � :W c1 \V �!W c2 \Vsuch that St � �(x) = � � St(x)4



for all x 2W c1 \ V and all t > 0 so long as St(x) 2 W c1 \ V .Two di�erent versions of this theorem with weaker regularity assumptions on the nonlinear term f andslightly more restrictive assumptions on the center manifolds are given in section 7.3. Local Foliations. Let �s := �(A)\f���Re� < 0g, �u := �(A)\f���Re� > 0g. Then �(A) = �s[�c[�u.By hypothesis (2.1a), �u consists of a �nite number of isolated eigenvalues, each with a �nite dimensionalgeneralized eigenspace. Let Eu be the generalized eigenspace corresponding to �u in D(A). Because bothEc and Eu are �nite dimensional in D(A), the projection �i : D(A) �! Ei � D(A) can be continuouslyextended to �i : X �! Ei � X for i = c; u. Therefore, �s := IdX � �c � �u is also a projection map, and sowe can denote Es := �s(X). We denote throughoutX� = fEs \X�g �Ec �Eu; Ecs := fEs \X�g �Ec; Ecu := Ec �Eu:Note that Ei � X� for all 0 � �; i = c; u, whereas Ecs depends on the fractional power �. We also usex = xs + xc + xu with xi 2 Ei; i = s; c; u and jjxjj� = jjxsjj� + jjxcjj+ jjxujj; where jj � jj� is the graph normfor X� and jj � jj is the norm for X.Let V � U be a neighborhood of the origin where U � X� is as in the hypothesis (2.1b). A locallyinvariant manifold W cs � V (resp. W cu � V ) is said to be a local center-stable (resp. center-unstable)manifold of the equilibrium point x = 0 if it is tangent to Ecs (resp. Ecu) at this point when di�erentiable,or if it is the graph of a C0;1 function h : Ecs \ V �! Eu (resp. h : Ecu \ V �! Es) with h(0) = 0and su�ciently small Lipschitz constant Liph < 1. We will take Liph < 1=3 in various places for technicalreasons. For simpli�cation, we also use LipW cs < % to mean Liph < %. Such slightly abused notation alsoapplies to center-unstable and center manifolds.Let W � V be a locally invariant manifold of the origin. Let fF(p)��p 2Wg be a family of submanifoldsof W parametrized by p 2 W . fF(p)��p 2 Wg is said to be locally positively (resp. negatively) invariantif St(F(p)) \ V � F(St(p)) \ V for those t � 0 (resp. t � 0, provided St(p) is well-de�nedon W ) withS� (p) 2 W \ V for all � 2 [0; t] (resp. � 2 [t; 0]). It is called a Cr family of Cr;1 manifolds if the setf(p; q)��p 2 W; q 2 F(p)g is a Cr � Cr;1 submanifold of X� �X�, where r � 0.Let W cs be a local center-stable manifold in a neighborhood V of the origin. A family of submanifoldsfFs(p)��p 2W csg is said to be a Cr � Cr;1 stable foliation for W cs if the following conditions are satis�ed:(i) p 2 Fs(p) fo each p 2W cs.(ii) Fs(p) and Fs(q) are disjoint or identical for each p and q in W cs.(iii) If r � 1, Fs(0) is tangent to Es at the origin; or if r = 0, every leaf Fs(p) is the graph of a C0;1 function,say '(p; �) : Es \ V �! Ecu \ V with Lipschitz constant Lip'(p; �) < 1 for all p 2W cs near the origin.(iv) fFs(p)��p 2W csg is a positively invariant Cr family of Cr;1 manifolds for W cs.Note that we can always identify the local center-stable manifold W cs with the linear space Ecs locallythrough a function from Ecs into Eu whose graph is the manifold itself. Thus, in terms of the coordinate5



system for Ecs, conditions (i{iv) amount to saying that there is a Cr � Cr;1 function ' : fEcs \ V g �fEs \ V g �! Ec with Fs(p) = graph'(p; �) that satis�es (i) pc = '(p; ps); (ii) pc = '(q; ps) if andonly if qc = '(p; qs); (iii) either the partial derivative with respect to the second variable D2'(0; 0) = 0 orLip'(p; �) < 1, depending on whether r > 0 or r = 0; and (iv) St�xs+'(p; xs)� = �sSt(x)+'�St(p); �sSt(x)�for small t � 0, where p = ps + pc; q = qs + qc 2 Ecs \ V .Similarly, a Cr � Cr;1 unstable foliation fFu(p)��p 2 W cug for a local center-unstable manifold W cssatis�es:(i) p 2 Fu(p) for each p 2 W cu.(ii) Fu(p) and Fu(q) are disjoint or identical for each p and q in W cu.(iii) If r � 1, Fu(0) is tangent to Eu at the origin; or if r = 0, it is the graph of a C0;1 function, say (p; �) : Eu \ V �! Ecs \ V with the property that Lip (p; �) < 1 for all p 2W cu near the origin.(iv) fFu(p)��p 2W cug is a negatively invariant Cr family of Cr;1 manifolds for W cu.Note that an unstable foliation can be expressed in terms of the local coordinate system for Ecu in thesame way as was done for stable foliations in the previous paragraph.We remark that the formulation of the stable and unstable foliations in this paper follows that ofFenichel [1979] for the geometric theory of singular perturbations.One of the key ingredients for proving the main result is the following theorem which will be proved insection 6.THEOREM 3.1: Assume the hypotheses (2.1a,b) for Eq.(2.1). Then for any Cr+1;1 local center manifoldW c � U of the origin, there are a Cr;1 local center-stable manifold W cs and a Cr;1 local center-unstablemanifold W cu in a neighborhood V � U of the origin both containing W c as a submanifold and satisfyingLipW i < 1=3; i = cs; cu. Moreover, there are a Cr � Cr;1 stable foliation on W cs and a Cr � Cr;1 unstablefoliation on W cu.We end this section with an example. Consider the three dimensional system of ordinary di�erentialequations: _x = �x; _y = y2; _z = z. Every local center manifold of the origin is given by one of the curvesW c := �(c1e1=y; y; 0)�� for small y � 0	 [ �(0; y; c2e�1=y)�� for small y � 0	 for some choice of the constantsc1; c2. Moreover, given a local center manifoldW c, there is a local center-stable manifoldW cs containingW cand, in terms of a stable foliation, W cs = �p+(1; 0; 0)x��p 2W c; jxj << 1	. Similarly, a local center-unstablemanifold W cu containing W c can be expressed as �p+ (0; 0; 1)z��p 2 W c; jzj << 1	 in terms of an unstablefoliation. In fact, every local center stable manifold is given by z = 0 for y � 0, z = e�1=yf(e�1=yx) fory > 0, x; y small, where f is any su�ciently smooth function; similarly, every local center unstable manifoldis given by x = e1=yf(e1=yz) for y < 0, x = 0 for y � 0, y; z small, g a su�cient smooth function. A givenlocal center manifold lies on a certain center stable (center unstable) manifold, if c2 = f(0) (c1 = g(0),respectively). Observe that two pairs of distinct constants (c1; c2) can be chosen so that the resulting localcenter manifolds share neither a common center-stable manifold nor a common center-unstable manifold.6



This observation motivates the proof of the main theorem in the next section.4. Proof of Theorem 2.1. We will need the following two lemmas:LEMMA 4.1: Let W cs � X� be a Cr;1 local center-stable manifold of the origin with LipW cs < 1 andr � 0. Assume there is a Cr�Cr;1 stable foliation on W cs. Then for two arbitrary Cr;1 local center manifoldsW c1 �W cs;W c2 �W cs of the origin with LipW ci < 1; i = 1; 2 the conclusion of Theorem 2.1 holds true. Thatis, there is a neighborhood V � X� of the origin and a Cr di�eomorphism � :W c1 \V �!W c2 \V such thatSt � �(x) = � � St(x)for all x 2W c1 \ V and all t satisfying St(x) 2W c1 \ V .PROOF: We only demonstrate the C0;1 case since the Cr;1 case with r > 0 is simpli�ed when the contractionmapping principle is replaced by the implicit function theorem.By assumption, let fFs(p)��p 2W csg be the local stable foliation in a neighborhood U of the origin. Wewant to show that a homeomorphism is de�ned by �(p) = q := Fs(p) \W c2 for p 2W c1 near the origin.To do this, we begin by identifying the local center-stable manifoldW cs with the coordinate plane Ecs\Uvia a C0;1 function whose graph is the manifold W cs. Now, in terms of the coordinate system for Ecs, letW ci = graphhi for some C0;1 function hi : Ec \U �! Es \U with Liphi < 1 and let ' : fEcs \ Ug� fEs \Ug �! Ec \ U represent the stable foliation on W cs, satisfying Fs(p) = graph'(p; �), and Lip'(p; �) < 1for all p 2 Ecs \ U . Let � > 0 be so small that the closed box B := fx 2 Ecs��jjxsjj� � �; jjxcjj � �gcentered at the origin is contained entirely in U . Consider the operator �x = �(p; x); x 2 B de�ned by�xc = '(p; xs); �xs = h2(xc) and parametrized by p 2 W c1 \ U . We want to show that for some carefullychosen neighborhood V � B of the origin, the �xed point q 2 W c2 \ V , which is the intersection point ofFs(p); p 2 W c1 \ V and W c2 , gives rise to the conjugating map �.To be precise, choose a neighborhood V0 � B of the origin so that jj'(p; xs)jj � � for all p 2 V0; jjxsjj� � �and jjhi(xc)jj� � � for all jjxcjj � �; i = 1; 2. This can be done because we have the strict inequalitiesLip'(p; �) < 1 and Liphi < 1. Hence, �(p; �) maps B into itself for all p 2 W c1 \ V0. Moreover, by the boxnorm for the space X, we have Lip�(p; �) = maxfLip'(p; �);Liph1g < 1uniformly for all p 2 W c1 \ V0. Therefore, by the contraction mapping principle, there is a unique �xedpoint q(p) 2 W c2 \ B for every p 2 W c1 \ V0. Denote by q := �(p) the �xed point, then � is C0. Arguingsymmetrically, we can also show that for every point q 2 W c2 \ V0 there is a unique �xed point p 2 W c1 \ Bof the operator �xc = '(q; xs); �xs = h1(xc) so that the �xed point p := ��(q), which is the intersection pointof Fs(q) and W c1 \ B, depends continuously on q 2 W c2 \ V0.We now claim that the function � is actually locally invertible with inverse ��. More speci�cally, weclaim ������(W c2\V0)\V0��1 = �����(W c1\V0)\V0 :7



In fact, let p = ��(q) with q 2 �(W c1 \ V0) \ V0. We �rst need to show q = �(p) with p 2 ��(W c2 \ V0) \ V0.By de�nition, we have pc = '(q; ps); ps = h1(pc) with qs = h2(qc). Because of the foliation property (ii),qc = '(p; qs), so q is the �xed point of the operator �(p; �), provided that p 2 W c1 \ V0. Suppose on thecontrary that p 2 B � V0. By de�nition, there exists for q 2 �(W c1 \ V0) \ V0 a point ~p 2 W c1 \ V0 such thatq = �(~p), i.e., qc = '(~p; qs); qs = h2(qc). By the foliation property (ii) again, ~pc = '(q; ~ps). This gives riseto the following contradiction,jjpc � ~pcjj = jj'(q; ps)� '(q; ~ps)jj < jjps � ~psjj� and jjps � ~psjj� = jjh1(pc)� h1(~pc)jj� < jjpc � ~pcjj;because of ~ps = h1(~pc). This implies jjp� ~pjj� < jjp� ~pjj�. Therefore, we must have p = ~p 2 W c1 \ V0; q =�(p) = � � ��(q). Conversely, the same argument shows that if q = �(p) with p 2 ��(W c2 \ V0) \ V0 thenp = ��(q) = �� � �(p). This proves the claim.By the foregoing argument the neighborhood V can be any open set satisfyingV \W c2 = �(W c1 \ V0) \ V0 and V \W c1 = ��(W c2 \ V0) \ V0;for instance, we can take V := V0 � �(W c2 � �(W c1 \ V0) \ V0) [ (W c1 � ��(W c2 \ V0) \ V0)	.Finally, since St(p) 2W c1 , St(�(p)) 2W c2 , Fs(�(p)) = Fs(p) and St(Fs(p)) � Fs(St(p)), locally, by theinvariance of the center manifolds and the foliation, we haveSt � �(p) = St(Fs(p) \W c2 ) = Fs(St(p)) \W c2 = � � St(p)so long as St(p) 2 W c1 \ V .We remark that the same conclusion also holds true for any Cr;1 local center-unstable manifold togetherwith a Cr � Cr;1 unstable foliation.LEMMA 4.2: Let W c1 ;W c2 be two Cr+1;1 local center manifolds of the origin. Let W cs � X� be a Cr;1 localcenter-stable manifold containing W c1 and W cu � X� a Cr;1 local center-unstable manifold containing W c2 ,both constructed according to Theorem 3.1. Then the intersection W cs \W cu is another Cr;1 local centermanifold, W c, of the origin with LipW c < 1.PROOF: For the same reason as in the last proof, we only demonstrate the C0;1 case. Since the center-stable and center-unstable manifolds are constructed according to Theorem 3.1, they satisfyW cs = graphhcs,W cu = graphhcu for some C0;1 functions hcs; hcu de�ned near the origin with Liphi < 1=3; i = cs; cu. Theintersection W cs \W cu consists of all points xs+xc+xu 2 X� satisfying xu = hcs(xc; xs); xs = hcu(xc; xu).Think of the right hand side of these equations as an operator parametrized by xc, then the contractionconstant of this operator is bounded by maxfLiphcs(xc; �);Liphcu(xc; �)g < 1 uniformly for all small jjxcjj.By the contraction mapping principle, one can solve uniquely for a C0 function xs + xu = hc(xc) for smalljjxjj�. hc is Lipschitz with Liphc � Liphcs + Liphcu1�maxfLiphcs;Liphcug < 18



as Liphi < 1=3; i = cs; cu by Theorem 3.1. This sketch can be made as precise as we have done for the proofof Lemma 4.1 above.To show W c := graphhc is indeed a C0;1 local center manifold of the origin, it su�ces to show that itis locally invariant. For X �nite dimensional, this is trivial. Otherwise, we proceed as follows: Let p 2 W c,and let x(t) 2 W cu be the solution curve in the center-unstable manifold containing p as an interior point.Because of the uniqueness for the initial value problem of Eq.(2.1) and the invariance of W cs, x(t) 2 W csfor small t � 0. Because any backward extension of the solution x(t) must also be in W cs by the remarkafter the proof of Theorem 3.1 in section 6, we have that x(t) 2W cs for all small jtj for which it is de�ned.Hence, x(t) 2W c =W cs \W cu for the same small jtj.PROOF OF THEOREM2.1: Let W cs be a Cr;1 local center-stable manifold containing W c1 and W cu bea Cr;1 local center-unstable manifold containing W c2 by Theorem 3.1. Then W c3 := W cs \W cu is anotherCr;1 local center manifold by Lemma 4.2. By Theorem 3.1 again, there exist Cr � Cr;1 stable and unstablefoliations on W cs and W cu respectively. Hence, the conditions of Lemma 4.1 are satis�ed for W c1 ;W c3 onW cs, and W c2 ;W c3 on W cu, respectively. Hence, the 
ows on W ci and W c3 are Cr conjugate for i = 1; 2.Therefore, the local 
ows on W c1 and W c2 are Cr conjugate because Cr conjugacy is an equivalence relation.5. Global Foliations. The following two sections are dedicated to the proof of Theorem 3.1. The idea ofthe proof is to show that the local result can be obtained by extending the given local center manifold of thelocally de�ned equation to the global center manifold of a globally de�ned equation to which some modi�edglobal result applies. In this section we introduce the global theory of invariant manifolds and foliations.We begin with some more notation. For � > 0, de�ne N� := �x 2 X���jjxsjj� < �; jjxujj < �	; a tubularneighborhood of Ec. Also, Es� := Es \ N�; Eu� := Eu \ N�; Ecs� := Ecs \ N�; Ecu� := Ecu \ N� , andEsu� := Esu \ N� where Esu := Es � Eu. For simplicity, we denote �su := �s + �u; Asu := A�su; xsu :=�sux = xs + xu.In addition to Eq.(2.1) which is only de�ned near the origin, we will consider equations of the form(5:1) _x = Ax + F (x);where F (x) 2 X is de�ned for all x 2 X� for some 0 � � < 1. From now on we will use W cloc;W csloc;W culocfor local center manifold, local center-stable manifold, local center-unstable manifold, respectively; whileW c;W cs;W cu are reserved for global center manifold, global center-stable manifold, global center-unstablemanifold, respectively. The former are de�ned as in the previous sections and the latter are de�ned asfollows:(5:2) W c := �x 2 X��� supjtj<1 jj�suSt(x)jj� <1	;W cs := �x 2 X��� sup0�t<1 jj�uSt(x)jj� <1	;W cu := �x 2 X��� sup�1<t�0 jj�sSt(x)jj� <1	:9



We have the following results.THEOREM 5.1 (Existence, Uniqueness and Smoothness of Global Invariant Manifolds): Assume thehypothesis (2.1a) for the linear operator A and that F 2 C0;1(X�;X) \ Cr;1(N�;X) (resp. C0;1(X�;X) \Cr(N�;X)) satisfying F (0) = 0, where 0 � � < 1; r � 0. There exist constants m = O(�); � = �(r) and�0 < � such that if supx2X� jj�suF (x)jj < m;LipF < �, there exist for Eq.(5.1) a unique global center-stablemanifold and a unique global center-unstable manifold. These manifolds are of class Cr;1 (resp. Cr) andare given by W cs = graphhcs;W cu = graphhcu: Here, hcs : Ecs �! Eu�0 ; hcu : Ecu �! Es�0 are of classC0;1, and hcs��Ecs�0 ; hcu��Ecu�0 are of class Cr;1 (resp. Cr), satisfying hi(0) = 0;Liphi < 1=3, or Dhi(0) = 0for i = cs; cu, if DF (0) = 0 for r � 1. Furthermore, there is a unique global center manifold given byW c =W cs\W cu = graphhc, where hc : Ec �! Esu�0 is of class Cr;1 (resp. Cr) satisfying hc(0) = 0;Liphc < 1and ,for r � 1, Dhc(0) = 0 if DF (0) = 0.THEOREM 5.2 (Existence and Smoothness of Global Foliations): Assume the conditions of Theorem 5.1.Then there exist constants m = O(�); � = �(r) and �0 < � such that if jj�suF jj < m;LipF < �, there exist forEq.(5.1) unique global center-stable and center-unstable manifoldsW cs;W cu as stated in Theorem 5.1, and, inaddition, there exist a Cr�Cr;1 (resp. Cr�1�Cr if r � 1) global stable foliation fFs(p) 2 N�0��p 2W cs\N�0gon W cs and a Cr � Cr;1 (resp. Cr�1 � Cr if r � 1) global unstable foliation fFu(p) 2 N�0��p 2 W cu \N�0gon W cu. More speci�cally, there are functions 's : Ecs�0 � Es�0 �! Ecu�0 ; 'u : Ecu�0 � Eu�0 �! Ecs�0 of classCr�Cr;1 (resp. Cr�1�Cr if r � 1) satisfying the properties (i{iv) for invariant foliations of section 3 suchthat F i(p) = graph'i(p; �); i = s; u.Theorem 5.1 was �rst explicitly stated in Vanderbauwhede and Iooss [1990], while Theorems 5.1, 2 withthe tubular neighborhoods replaced by the respective entire subspaces were essentially proved by Chow, Linand Lu [1990]. Their proofs can be easily adapted to our case with some minor modi�cations based on thefollowing two observations. The regularity of the global manifolds and foliations at any point only dependson a neighborhood of the positive orbit through that point for the center-stable case or a neighborhood ofthe negative orbit for the center-unstable case. On the other hand, following their approach via the variationof constants formula, it is straightforward to verify that a constant �0 < � can be found so that all orbitsstarting in the smaller tubular neighborhood N�0 stay in the larger one N� for all forward or backward timedepending on the center-stable or the center-unstable case. For these reasons, we omit the proofs and referto these two sources for the necessary modi�cations.6. Extension Lemma and Proof of Theorem 3.1. In this section we will use the following standardorder notations: By O(1); O(�); O(��1) we mean that lim�!0+O(1); lim�!0+O(�)=�; lim�!0+O(��1)� areconstants, and by o(1); o(�) we mean lim�!0+o(1) = 0; lim�!0+o(�)=� = 0.We now begin with the standard cut-o� functions for invariant manifold theory. A cut-o� functionin one variable is a C1 function � : [0;1) �! [0;1) satisfying �(t) = 1; t 2 [0; 1], �(t) = 0; t � 2 and10



sup0�t<1�j�(t)j + j�0(t)j + j�00(t)j� <1. Let � > 0 and denote ��(t) := �(t=�). It is easy to verify that, interms of our order notation, �� = O(1); �0� = O(��1); �00� = O(��2):Now cut-o� functions in the Banach space X� are de�ned by��(xc) := ��(jjxcjj); ~��(x) := ��(jjxcjj)��(jjxsujj�)for xc 2 Ec; xsu 2 Esu. The following properties will be used later:�� is a C1 function. Indeed, for jjxcjj � � it is so since ��(jjxcjj) = 1 while for jjxcjj � �, jjxcjj is a C1function since Ec is �nite dimensional and �� is C1 as well. Moreover, it satis�es the following estimates
(6:1a) ��(xc) =O(1);jjD��(xc)jj �j�0�(jjxcjj)j supjjxcjj�� ����Djjxcjj����=O(��1);jjD2��(xc)jj �j�00� (jjxcjj)j� supjjxcjj�� ����Djjxcjj�����2 + j�0�(jjxcjj)j supjjxcjj�� ����D2jjxcjj����=O(��2) +O(��1)O(��1)=O(��2);because ����Djjxcjj���� = O(1); ����D2jjxcjj���� = O(jjxcjj�1) for jjxcjj > 0. ~��(x) is of class C0;1 because the normfunctions are C0;1; it is C1 in N� since ~��(x) = ��(xc) as ��(jjxsujj�) = 1 for x 2 N� . Moreover,(6:1b) ~��(x) =1; x 2 Q� and ~��(x) = 0; x 2 X� �Q2�;Lip~�� �Lip�� Lip�jj � jj� sup�� + sup�� Lip�� Lip�jj � jj��=O(��1);where Q� := �x 2 X���jjxsjj� < �; jjxcjj < �; jjxujj < �	, a box neighborhood of the origin.We remark that following Vanderbauwhede and Iooss [1990] one obtains existence and smoothness oflocal center manifolds for the locally de�ned equations (2.1) by applying the global center manifold resultto a globally extended equation of the form _x = Ax + ~��(x)f(x). By the properties of ~�� discussed above,the function F := ~��f satis�es the conditions of Theorem 5.1, and the desired result follows from the factthat the solutions of Eqs.(2.1), (5.1) coincide in the neighborhood Q�. Similarly, existence and regularity ofthe local center-stable and center-unstable manifolds together with the local stable and unstable foliationsfor Eq.(2.1) now follow directly from Theorems 5.1,2 for the extended equation. Conversely, Sijbrand [1985]has shown that for systems of ordinary di�erential equations every local center manifold can be constructedin this way. We extend his idea to the in�nite dimensional case in the following two lemmas:LEMMA 6.1: Let W = graphh and h : U � Ec �! Esu \X� with 0 � � < 1 be a Cr+1;1; r � 0 functionand U an open set in Ec. Then W is invariant for Eq.(5.1) if and only if h maps U into X1, the domainD(A) of A, and the identity(6:2) Asuh(xc) + Fsu�xc + h(xc)� = Dh(xc)�Acxc + Fc�xc + h(xc)��11



holds for all xc 2 U .PROOF: SupposeW is invariant. For every x 2W with xc 2 U , let ~x(t) be a solution curve inW containingx as an interior point, say ~x(t0) = x for some t0. Then, the invariance of W implies ~xsu(t) = h�~xc(t)�.Because ~x(t) is a solution, then h(xc) = h�~xc(t0)� = ~xsu(t0) 2 D(A) by de�nition. Di�erentiating theidentity ~xsu(t) = h�~xc(t)� at t = t0 yields (6.2).Conversely, suppose h maps U into D(A) and the identity (6.2) holds for all xc 2 U . Then, for everyx 2 W , let ~xc(t) be the solution of the ordinary di�erential equation _xc = Acxc + Fc�xc + h(xc)� such that~xc(t) 2 U for small jtj and ~xc(0) = xc. It can be veri�ed directly that ~x(t) := ~xc(t) + h�~xc(t)� 2 W is asolution curve in W containing x as an interior point. Indeed, by the de�nition for ~xsu and identity (6.2),we have _~xsu(t) = Dh�~xc(t)��Ac~xc(t) + Fc�~xc(t) + h(~xc(t))�� = Asuh�~xc(t)�+Fsu�~xc(t) + h(~xc(t))�which together with the equation for xc(t) shows that the full equation is satis�ed.Note that since the neighborhood U in the proof above is arbitrary, the result is true regardless whetherthe equation is locally or globally de�ned. In particular, it applies for Eq.(2.1). This observation will beused later.LEMMA 6.2 (Extension Lemma): Assume hypotheses (2.1a,b) for Eq.(2.1). For an arbitrary Cr+1;1 localcenter manifold W cloc � X�, there are a small � > 0, a function F 2 C0;1(X�;X)\Cr;1(N�;X) and a globalCr;1 center manifold W c � N� of the new equation(6:3) _x = Ax+ F (x)satisfying that supx2X� jjF (x)jj = o(�), LipF = o(1), as � ! 0+, and that F ��Q� = f ��Q� , W c\Q� =W cloc\Q�.PROOF: By de�nition, W cloc = graphh for some small neighborhood V � X� of the origin and a Cr+1;1function h : Ec \ V �! Esu \X� with h(0) = 0; Dh(0) = 0. Let �� and ~�� be cut-o� functions as in (6.1).For � > 0 so small that Q2� � V , de�nehc(xc) :=��(xc)h(xc)W c :=graphhcF (x) :=~��(x)f(x) +G(xc)where G : Ec �! Esu is de�ned byG(xc) := Dhc(xc)�Acxc+~���xc + hc(xc)�fc�xc + hc(xc)��� ~���xc + hc(xc)�fsu�xc + hc(xc)�� ��(xc)�Dh(xc)�Acxc + fc�xc + h(xc)��� fsu�xc + h(xc)�	:We claim that F;W c have the desired properties. 12



First, we verify the extension properties for F and W c. Indeed, W c \Q� =W cloc \Q� by construction.Moreover, ����Q� = ~����Q� = 1, G��Q� = 0, and hence, F ��Q� = f ��Q� . Next, we use Lemma 6.1 to demonstratethe invariance of the manifoldW c. Note that because the local center manifoldW cloc is invariant for Eq.(2.1),we have by Lemma 6.1Asuh(xc) = Dh(xc)�Acxc + fc�xc + h(xc)��� fsu�xc + h(xc)� := g(xc); for xc + h(xc) 2 V:Moreover, since ��(xc) is a scalar constant with respect to the operatorAsu, Asuhc(xc) = Asu���(xc)h(xc)� =��(xc)Asuh(xc) = ��(xc)g(xc). Thus, by de�nition of F , we haveAsuhc(xc) + Fsu�xc + hc(xc)� =Asuhc(xc) + ~���xc + hc(xc)�fsu�xc + hc(xc)�+Dhc(xc)�Acxc + ~���xc + hc(xc)�fc�xc + hc(xc)��� ~���xc + hc(xc)�fsu�xc + hc(xc)�� ��(xc)g(xc)=Dhc(xc)�Acxc + Fc�xc + hc(xc)��:This implies that W c is invariant for Eq.(6.3) by Lemma 6.1. Furthermore, W c is the center manifold of theglobally de�ned equation because W c �Q2� = Ec �Q2� on which the growth condition (5.2) characterizingthe global center manifold is satis�ed.Finally, to prove W c � N� and the estimates for F , we �rst collect some order estimates:(6:4a) jjh(xc)jj� = o(jjxcjj); jjDh(xc)jj� = o(1); as jjxcjj ! 0+, and Liph��Q2� = O(1);because h(0) = 0; Dh(0) = 0 and h is of class Cr+1;1. And(6:4b) jjg(xc)jj� = o(jjxcjj); as jjxcjj ! 0+, and Lip�g��Q2�� = o(1); Lip(��g) = o(1); as � ! 0+.Here, the �rst two estimates are true because of the de�nition of g and the preceeding estimates for h togetherwith the assumption that f(0) = 0; Df(0) = 0 and f 2 Cr+1;1. The third estimate is true becauseLip(��g) � supjjxcjj�2��jjD��(xc)jj jjg(xc)jj+ j��(xc)jLip�g��Q2���;where the �rst term is of order O(��1)o(�) and the second O(1)o(1) by (6.1a) and the preceeding estimatesfor g. We also claim that the following estimates hold:(6:5) jjDhc(xc)jj� = o(1); LipDhc = o(1)O(��1); as � ! 0+.We now estimate F and W c by assuming this claim and then prove the claim.To simplify the notation further, we denoteH(xc) := Acxc + ~���xc + hc(xc)�fc�xc + hc(xc)�; �(xc) := xc + hc(xc):Thus, G = DhcH � (~�fsu) � � � ��g. 13



It is easy to see that jjhc(xc)jj� = j��(xc)j jjh(xc)jj� � O(1) sup jjh��Q2� jj� = o(�) by (6.4a). Therefore,W c � N� for su�ciently small �. Also, jj�(xc)jj� = O(jjxcjj).The fact that jjF (x)jj = o(�) is demonstrated as follows. Starting with the �rst term in the de�nitionof F , we have jj~��f(x)jj = O(1) jjf ��Q2� (x)jj = o(jjxjj�) by the hypothesis for the nonlinear term f . For thesecond term in the de�nition of F , we note that the foregoing estimate also implies jjH(xc)jj = O(jjxcjj).Since jjG(xc)jj � jjDhc(xc)jj jjH��Q2� (xc)jj+ jj(~��fsu) � �(xc)jj+ jj(��g)(xc)jj;we also have jjG(xc)jj = o(�) by (6.4b) and (6.5). Therefore, the estimate jjF (x)jj = o(�) follows.To show LipF = o(1), we also begin with the �rst term of F , and for which we haveLip(~��f) � Lip~�� sup jjf ��Q2� jj+ sup j~��jLip�f ��Q2�� = o(1)because the �rst term after the inequality sign is of order O(��1)o(�) and the second o(1) by (6.1b) togetherwith the assumption for f . For the second term of F , we note that the foregoing estimate also impliesLip�(~��f) � �� � Lip(~��f) Lip� = o(1)since Lip� � (1 + sup jjDhcjj�) = O(1) by the claim. Hence, LipH = O(1) + o(1) = O(1) and Lip�DhH� =o(1) because Lip�DhH� � Lip(Dhc) sup jjH��Q2� jj+ sup jjDhcjj�LipHfor which the �rst term is of order o(1)O(��1)O(�) and the second o(1)O(1) by the claim (6.5). We concludefrom above and (6.4b) thatLipG � Lip(DhH) + Lip�(~��fsu) � ��+ Lip(��g) = o(1)and, hence, LipF � Lip(~��f) + LipG = o(1) as desired.Finally, we complete the proof by proving claim (6.5). First, we have jjDhc(xc)jj� = o(1) becausejjDhc(xc)jj� � jjD��(xc)jj jjh��Q2� (xc)jj� + j��(xc)j jjDh��Q2� (xc)jj�;of which the �rst term is of order O(��1)o(�), or O(1)o(1), and the second term O(1)o(1). Next, to showLip(Dhc) = o(1)O(��1) we haveLip(Dhc) � max�Lip�Dh��Q��;Lip�Dhc��Q2��Q��	of which the �rst element is at most O(1) since h is of class Cr+1;1 and the second element can be estimatedLip�Dhc��Q2��Q�� � supxc2Q2��Q� jjD2��(xc)jj supxc2Q2� jjh(xc)jj�+ 2 supxc2Q4��Q� jjD��(xc)jj supxc2Q2� jjDh(xc)jj� + Lip�Dh��Q2��;14



which is of order o(1)O(��1) because the �rst term is O(��2)o(�), or O(��1)o(1), the second O(��1)o(1) andthe third O(1) by (6.1a) and (6.4a) respectively.A di�erent version of this lemma can be obtained based on the following observations. Note that if Lipfis not replaced by o(1) in all the estimates above, then the estimates for the extended nonlinear term readjjF (x)jj = o(�)+O(�) Lipf and LipF = o(1)+Lipf . Moreover, if f is of class Cr;1 while W cloc belongs to thesame Cr+1;1 class of manifolds as in the lemma, then the same result holds with these modi�ed estimates ofF . This remark will be used in section 7 below.We are now ready to give a proof for Theorem 3.1.PROOF OF THEOREM3.1: It is simply an application of Lemma 6.2 and Theorem 5.2. Indeed, because ofsupx2X� jjF (x)jj = o(�);LipF = o(1) by Lemma 6.2, the conditions that supx2X� jj�suF (x)jj = o(�) < m =O(�) and LipF = o(1) < �(r) for Theorem 5.2 are satis�ed for su�ciently small �. The smooth foliationsfor the locally de�ned equation (2.1) are now obtainted by restricting the smooth foliations of the extendedequation (5.1) to the neighborhood V := Q�0 � Q�.We end this section with a remark that was used for the proof of Lemma 4.2. It is easy to see that for agiven solution of Eq.(5.1) that starts on the global center-stable manifoldW cs constructed from Theorem 5.1,all the backward extensions must stay on the manifold by the characterization (5.2). Therefore, the samestatement is true for any local center-stable manifold constructed by the Extension Lemma and Theorem 5.1.7. Final Remarks: (a) From the proof of the theorem and the remark after the Extension Lemma, it iseasy to see that the following theorem is true.THEOREM 7.1: Assume the hypothesis (2.1a) for Eq.(2.1) and that the nonlinear term f is of class Cr;1with f(0) = 0 and Lipf su�ciently small. Then the equations when restricted to two Cr+1;1 local centermanifolds of the origin are Cr conjugate.(b) In practice, there may be no need for the Extension Lemma because all center manifolds in applica-tions are constructed in the way described in section 6. These manifolds are as smooth as the equation andthe foliations only loose the Lipschitz continuity of the top partial derivative with respect to the base point.Hence, the conjugating map in this situation looses the top Lipschitz continuity as well. We have proved thefollowing result.THEOREM 7.2: Assume the hypothesis (2.1a) for Eq.(2.1) and that the nonlinear term f is of class Cr;1with f(0) = 0 and Lipf su�ciently small. Then the equations when restricted to two local center manifoldsof the origin that are constructed by the standard method are Cr conjugate.(c) For other types of in�nite dimensional systems, e.g., the elliptic and hyperbolic equations studiedby Vanderbauwhede and Iooss [1990], we believe that invariant foliation theory can also be extended, andso can Theorems 2.1, 7.1, 7.2. The same result should also be expected for center manifolds of normallyhyperbolic invariant sets of di�eomorphisms and normally hyperbolic invariant manifolds of 
ows, for which a15



theory of invariant manifolds and foliations has long been established, cf., e.g., Hirsch, Pugh and Shub [1977]and Fenichel [1974,1977,1979]. The latter includes the case of slow manifolds in the theory of singularperturbations.(d) Back to the conjugacy problem for inertial manifolds of an appropriate dissipative evolution equationdiscussed in the introduction, we point out that the same result with C0 conjugating map applies for C0;1inertial manifolds and C0;1 equations. Furthermore, for C1;1 equations, the C0 regularity can be improvedto C1 when the spectral gap can be cut su�ciently away from the imaginary axis. Indeed, unlike the generalcase considered in the proof of Theorem 2.1, two inertial manifolds can be essentially regarded as lying in acommon manifold, the entire phase space, that possesses a stable foliation. Thus, a proof for the C0 or C1conjugacy statement follows directly from the invariant foliation theory proved by Chow, Lin and Lu [1990]and the argument of Lemma 4.1. We remark that in general inertial manifolds are of class C1 at best forCr;1; r � 1 systems under the conditions mentioned above. In fact, an example of an analytic equation havinga C1 inertial manifold which is not C2 was given by Chow, Lu and Sell [1990]. Note that even though thisresult applies only to inertial manifolds that are constructed by the standard method described in section 1,it might be quite adequate for many practical purposes.ReferencesD. V. Anosov [1967], Geodesic 
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