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1. Introduction. Following the pioneering work on invariant manifold theory by Poincaré [1892], Lya-
punov [1892], Hadamard [1901], Perron [1928], the theory of center manifolds for finite dimensional dynamical
systems has been developed by Pliss [1964], Kelley [1967], Hirsch, Pugh and Shub [1970,1977], Fenichel [1974,
1977], Wells [1976], Carr [1981], Chow and Hale [1982], Sijbrand [1985], Vanderbauwhede [1989] and oth-
ers. Center manifold theory for infinite dimensional systems has been studied by Henry [1981], Carr [1981],
Hale, Magalhdes and Oliva [1984], Hale and Lin [1986], Mielke [1986], Bates and Jones [1989], Chow and
Lu [1988a,b], Chow, Lin and Lu [1990], Vanderbauwhede and Iooss [1990], and many others.

Although most fundamental problems in the theory of center manifolds have been solved, a convincing
solution for the uniqueness problem of local center manifolds has been missing. In the context of ordinary
differential equations, the standard method for constructing a local center manifold at a given equilibrium
point is to extend the locally defined equation by a cut-off function to a globally defined one for which
existence and smoothness of a unique global center manifold can be established by either Hadamard’s or
Perron’s method (cf. e.g., Anosov [1967], Hirsch, Pugh and Shub [1977]). The nonuniqueness of local center
manifolds results from the use of arbitrary cut-off functions in the construction as shown by Sijbrand [1985],
and under certain conditions there is an exceptional case given by Bates and Jones [1989]. There is little
doubt that the dynamics on different local center manifolds should behave the same, but the question is in
what sense or to what degree that is so. This question has attracted a good deal of attention in the literature
since the birth of the theory, and some results, by no means a complete account here, can be summarized
as follows. (1) any local center manifold of a given equilibrium point must contain all the invariant sets,
such as equilibrium points, periodic, homoclinic, heteroclinic orbits, etc. near the equilibrium point; (2)
the formal Taylor expansions at the equilibrium point of the vector field when restricted to different local
center manifolds are exactly the same (see, e.g., Carr [1981], Sijbrand [1985]). In this paper, however, we
will exame the uniqueness question from the standpoint of smooth conjugacy. More specifically, we want to
show that the restrictions of the equation to two arbitrary local center manifolds are actually topologically
or differentiably conjugate, depending on the smoothness of the vector field. That is, the smooth conjugacy
class of the restricted equations is indeed unique.

Note that, speaking at the conjugacy level, our result does include the properties (1,2) above, but the
converse is less clear. Indeed, we still do not know what these properties imply about the conjugacy problem

within the context of center manifold theory, and nothing at all can be said about it outside the theory. For
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example, for the two equations & = —xe™ and & = we , the origin is the only invariant set and the
formal Taylor expansions at the origin are the same. But they are not conjugate because the equilibrium
point is stable for the first equation and unstable for the second one.

The main result, Theorem 2.1, is treated in terms of two types of differential equations: ordinary
differential equations and semilinear parabolic equations. The method is based on invariant foliations for
center-stable and center-unstable manifolds. The theory used here is twofold. First, due to many people’s

studies of this subject, cf., e.g., Anosov [1967], Fenichel [1974,1977], Hirsch, Pugh and Shub [1977] for finite
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dimensional systems, and Chow, Lin and Lu [1990] for infinite dimensional systems, it has become a standard
procedure to simultaneously construct for a sufficiently differentiable dynamical system a local center, center-
stable, and center-unstable manifold together with a stable and an unstable foliation on the center-stable
and center-unstable manifold, respectively (see Theorems 5.1,2). Second, we show in Theorem 3.1 that these
geometric structures can be recovered for a given local center manifold by extending the local manifold
of the locally defined equation to the global center manifold of a globally defined equation for which the
invariant manifold and foliation structures follow easily from known results. Based on this, our geometrical
proof is carried out in two steps. We first show in Lemma 4.1 that if two local center manifolds happen
to share a common center-stable or a common center-unstable manifold, then the conjugacy follows from
the foliation of that manifold. In general, two center manifolds lie in neither a common center-stable nor a
common center-unstable manifold (a simple example is given in section 3). In this case, we show that the
flow structures on the two manifolds can be transformed from one to the other through the flow structure
on a third local center manifold which lies in the intersection of a center-stable manifold containing one of

the given center manifolds and a center-unstable manifold containing the other.

Recently the theory of inertial manifolds has been developed for some dissipative evolution equations,
see Foias, Sell and Témam [1988], Mallet-Paret and Sell [1988], Chow and Lu [1988b], and Constantin, Foias,
Nicolaenko and Témam [1989]. We find that in this context a similar conjugacy question arises. An inertial
manifold of such a system is a finite dimensional invariant manifold which attracts solutions exponentially.
In particular, this implies that it contains the global attractor. Under certain conditions, such as a spectral
gap condition or the cone condition, inertial manifolds do exist. Indeed, similar to the construction of local
invariant manifolds, one obtains such an inertial manifold by modifying the equation outside an absorbing
ball, which contains the attractor, with a cut-off function and constructing an inertial manifold for the
modified equation. Restricting that globally defined inertial manifold to the absorbing ball gives the desired
inertial manifold for the original system that is also referred to as a local inertial manifold. Again, different
cut-off functions give rise to different local inertial manifolds; and it is natural to ask if the dynamics on
different local inertial manifolds are the same up to smooth conjugacy. In fact, we will be able to conclude
at the end of this paper that the same answer with C° or C! conjugacy also applies.

We remark that invariant foliation theory has been applied to conjugacy problems by many people.
For example, Anosov [1967], Palis [1969], Palis and Smale [1970], and Robinson [1976] used it to analyze
structural stability of finite dimensional dynamical systems. Palis and Takens [1977] used it to prove a
result which implies that two differential equations are locally topologically conjugate if the equations when
restricted to their center manifolds are topologically congugate. Lu [1990a,b] used the infinite dimensional
counterpart to generalize the Hartman-Grobman theorem to parabolic equations. It is also very useful in
other areas of study of dynamical systems. In fact, it is one of the key components for the geometric
theory of singular perturbations of Fenichel [1979] and its applications, cf. e.g., Deng [1989b]. It also plays

an important role in the theory of homoclinic and heteroclinic bifurcations of Chow and Lin [1990] and
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Deng [1989a].

The paper is organized as follows. In section 2, we state the main result. In section 3, we introduce the
principal tool, namely, local invariant foliation theory. The main result, Theorem 2.1, is proved in section 4.
The existence theorem for local invariant foliations from section 3 is proved in sections 5, 6. We end the

paper in section 7 with a discussion of some variations and possible generalizations of our results.

Acknowledgment. The authors have benefited from many stimulating discussions with Professor S.-
N. Chow and Professor J.K. Hale. The last two authors also thank for the hospitality of and the financial
support provided by the Center for Dynamical Systems and Nonlinear Studies during their visit at Georgia

Tech in the summer of 1990.

2. The Main Result. Let X be a Banach space and consider a semilinear evolution equation
(2.1) & =Az+ f(x), zeX,

together with two hypotheses:

(2.1a) —A is a sectorial operator from a dense domain D(A) C X into X. Let o(A) denote the spectrum of
A, then o(A) N{A|ReX > 0} consists of a finite number of isolated cigenvalues, each with a finite dimensional
generalized eigenspace.

(2.1b) Let X* be the fractional power space associated with the operator A and U C X be a neighborhood
of the origin # = 0. Then f: U — X is of class C"T1! with r > 0. Moreover, f has zero of higher order at

the origin, i.e., f(0) =0 and the linearization D f(0) = 0.

For background information concerning semilinear evolution equations, we refer to Henry [1981]. We
ounly point out that when X is finite dimensional, A is just a matrix, X* = X for all « and Eq.(2.1) is simply
a system of ordinary differential equations. It is known that if f € C%1(U,X), for every zy € U C X<,
unique solution z(t) € D(A) for small ¢ > 0 with 2(0) = zo. Let S¢(xo) = x(t) denote the resulting local
flow, then a submanifold W C X is said to be locally invariant if for every z € W there is a curve in W
that is a solution of the equation and contains « as an interior point.

Let E¢ C X be the generalized finite dimensional eigenspace corresponding to the eigenvalues ¢ :=
a(4) N {)\|Re)\ = 0}. Then a locally invariant differentiable manifold W¢ C U is said to be a local center
manifold of the equilibrium point « = 0 if W€ is tangent to E¢ at the origin z = 0.

For simplicity, by a C" diffeomorphism we mean a homeomorphism if r = 0. Our main result is the

following theorem:

THEOREM 2.1: Assume the hypotheses (2.1a,b) for Eq.(2.1). Then the local flows on two arbitrary
C" 41 local center manifolds in U C X< are locally C" conjugate. More specifically, if Wi and W$ are such
manifolds, then there is a neighborhood V- C U of the origin and a C” diffeomorphism ¢ : WNV — WsNV
such that

St o ¢(x) = ¢ o Si(x)
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forallz e WENV and all t > 0 so long as Se(x) e WNV.

Two different versions of this theorem with weaker regularity assumptions on the nonlinear term f and

slightly more restrictive assumptions on the center manifolds are given in section 7.

3. Local Foliations. Let 0° := o(4) ﬂ{)\|Re)\ <0}, 0% :=0(A) ﬂ{)\|Re)\ > 0}. Then o(A) = o°UoUo™.
By hypothesis (2.1a), o* consists of a finite number of isolated eigenvalues, each with a finite dimensional
generalized eigenspace. Let E“ be the generalized eigenspace corresponding to ¢* in D(A). Because both
E¢ and E* are finite dimensional in D(A), the projection 7; : D(A) — E* C D(A) can be continuously
extended to m; : X — E' C X for i = ¢,u. Therefore, , := Idx — . — 7, is also a projection map, and so

we can denote E* := m,(X). We denote throughout
X = {E°NX“} @ E° @ E", E“:={E°NX"}&E°, E:=E ¢LE"

Note that E* ¢ X for all 0 < «a,i = c,u, whereas E°® depends on the fractional power a. We also use
T =25+ 3. + T, with z; € E'i = s,¢,u and ||z||a = ||Ts]|a + ||zc|| + ||zu]|, where || - ||« is the graph norm
for X* and || - || is the norm for X.

Let V' C U be a neighborhood of the origin where U C X is as in the hypothesis (2.1b). A locally
invariant manifold W C V (resp. W C V) is said to be a local center-stable (resp. center-unstable)
manifold of the equilibrium point z = 0 if it is tangent to E°® (resp. E°*) at this point when differentiable,
or if it is the graph of a C%! function h : E* NV — E* (resp. h : E°“NV — E*) with h(0) = 0
and sufficiently small Lipschitz constant Liph < 1. We will take Liph < 1/3 in various places for technical
reasons. For simplification, we also use LipW* < p to mean Liph < p. Such slightly abused notation also
applies to center-unstable and center manifolds.

Let W C V be a locally invariant manifold of the origin. Let {F(p)|p € W} be a family of submanifolds
of W parametrized by p € W. {F(p) |p € W} is said to be locally positively (resp. negatively) invariant
if Si(F(p))NV C F(Si(p)) NV for those t > 0 (resp. t < 0, provided Si(p) is well-definedon W) with
S.(p) € WnNV for all 7 € [0,t] (resp. 7 € [t,0]). It is called a C" family of C™! manifolds if the set
{(p,q) |p e W,q e F(p)}is a C" x C™! submanifold of X* x X%, where r > 0.

Let W€ be a local center-stable manifold in a neighborhood V' of the origin. A family of submanifolds
{F* (p)|p € Wes} is said to be a C" x C™! stable foliation for W* if the following conditions are satisfied:

(i) p € F°(p) fo each p € Wes.
(ii) F*(p) and F*(q) are disjoint or identical for each p and ¢ in We*.
(iii) Ifr > 1, 7%(0) is tangent to E* at the origin; or if r = 0, every leaf 7*(p) is the graph of a C%! function,
say ¢(p,) : E*NV — E°“ NV with Lipschitz constant Lipp(p, ) < 1 for all p € W** near the origin.
(iv) {F*(p)|p € W**} is a positively invariant C" family of C™! manifolds for Wes.
Note that we can always identify the local center-stable manifold W¢* with the linear space E* locally

through a function from E° into E* whose graph is the manifold itself. Thus, in terms of the coordinate
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system for E°, conditions (i-iv) amount to saying that there is a C™ x C™! function ¢ : {E®* NV} x
{E* NV} — E° with F°(p) = graphy(p,-) that satisfies (i) p. = ©(p,ps); (i) p. = (g, ps) if and
ounly if ¢. = ¢(p, gs); (iil) either the partial derivative with respect to the second variable D2p(0,0) = 0 or
Lipg(p, -) < 1, depending on whether r > 0 or 7 = 0; and (iv) S¢ (25 + (P, 2s)) = 7 Se(x)+ (S (), 75 S ()
for small ¢t > 0, where p =ps +pc,¢ =¢s +¢. € E¢°NV.

Similarly, a C" x C™! unstable foliation {f”(p)|p € Weu} for a local center-unstable manifold 1W¢*
satisfies:
(i) p € F*(p) for each p € Wev.
(ii) F*(p) and F*(q) are disjoint or identical for each p and ¢ in W€,
(iii) If r > 1, F%(0) is tangent to E“ at the origin; or if 7 = 0, it is the graph of a C%! function, say

Y(p,-): E*NV — E° NV with the property that Lipy(p,-) < 1 for all p € W< near the origin.
(iv) {F“(p)|p € W*"} is a negatively invariant C" family of C™! manifolds for W,

Note that an unstable foliation can be expressed in terms of the local coordinate system for E<* in the
same way as was done for stable foliations in the previous paragraph.

We remark that the formulation of the stable and unstable foliations in this paper follows that of
Fenichel [1979] for the geometric theory of singular perturbations.

One of the key ingredients for proving the main result is the following theorem which will be proved in

section 6.

THEOREM 3.1: Assume the hypotheses (2.1a,b) for Eq.(2.1). Then for any C™T4t local center manifold
We C U of the origin, there are a C™' local center-stable manifold W< and a C™! local center-unstable
manifold W in a neighborhood V- C U of the origin both containing W¢ as a submanifold and satisfying
LipW® < 1/3,i = cs,cu. Moreover, there are a C" x C™! stable foliation on W and a C" x C™' unstable

foliation on We".

We end this section with an example. Consider the three dimensional system of ordinary differential
equations: & = —x,9 = y%,% = z. Every local center manifold of the origin is given by one of the curves
We = {(clel/y,y,0)| for small y < 0} U {(0,y762€71/y)| for small y > 0} for some choice of the constants
c¢1, 2. Moreover, given a local center manifold W€, there is a local center-stable manifold W** containing W
and, in terms of a stable foliation, W = {p+(1, 0, 0)x|p eWe |z << 1}. Similarly, a local center-unstable
manifold W containing W€ can be expressed as {p + (0,0, 1)z|p e We,|z| << 1} in terms of an unstable
foliation. In fact, every local center stable manifold is given by z = 0 for y < 0, z = e ¥ f(e~'/¥z) for
y > 0, x,y small, where f is any sufficiently smooth function; similarly, every local center unstable manifold
is given by = = e'/¥f(e/¥z) for y < 0, = 0 for y > 0, y, z small, g a sufficient smooth function. A given
local center manifold lies on a certain center stable (center unstable) manifold, if ¢2 = f(0) (c1 = ¢(0),
respectively). Observe that two pairs of distinct constants (c1,c2) can be chosen so that the resulting local

center manifolds share neither a common center-stable manifold nor a common center-unstable manifold.
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This observation motivates the proof of the main theorem in the next section.

4. Proof of Theorem 2.1. We will need the following two lemmas:

LEMMA 4.1: Let W C X® be a C™' local center-stable manifold of the origin with LipW e < 1 and
r > 0. Assume there is a C" x C™! stable foliation on W¢. Then for two arbitrary C™' local center manifolds
Wi Cc Wes Wy C W€ of the origin with LipW < 1,¢ = 1,2 the conclusion of Theorem 2.1 holds true. That
is, there is a neighborhood V- C X“ of the origin and a C" diffeomorphism ¢ : W0V — W5 NV such that

Siog(x) = ¢o Si(x)
for all z € W NV and all t satisfying Si(z) € WNV.

PROOF: We only demonstrate the C%! case since the C™! case with r > 0 is simplified when the contraction
mapping principle is replaced by the implicit function theorem.

By assumption, let {F*(p) |p € We#} be the local stable foliation in a neighborhood U of the origin. We
want to show that a homeomorphism is defined by ¢(p) = ¢ := F*(p) N Wy for p € W near the origin.

To do this, we begin by identifying the local center-stable manifold W* with the coordinate plane E<*NU
via a C%! function whose graph is the manifold W°. Now, in terms of the coordinate system for E°°, let
W§ = graphh,; for some C%! function h; : ENU — E* N U with Liph; < 1 and let ¢ : {E“*NU} x {E*N
U} — E°NU represent the stable foliation on W®*, satistying F*(p) = graphe(p,-), and Lipp(p,-) < 1
zslla < 6, [Jze]] < 6}

for all p € E“*NU. Let 6 > 0 be so small that the closed box B := {z € E*

centered at the origin is contained entirely in U. Consider the operator = ®(p,z),z € B defined by
Z. = o(p,xs),Ts = ho(x.) and parametrized by p € W NU. We want to show that for some carefully
chosen neighborhood V' C B of the origin, the fixed point ¢ € Wy NV, which is the intersection point of
Fo(p),p € W NV and W$, gives rise to the conjugating map ¢.

To be precise, choose a neighborhood Vy C B of the origin so that ||o(p,z,)|| < 6 forallp € Vp, ||zs]|a < 6
and ||hi(x:)|la < 6 for all ||z.|| < 6,4 = 1,2. This can be done because we have the strict inequalities
Lipp(p,-) < 1 and Liph; < 1. Hence, ®(p,-) maps B into itself for all p € W N Vy. Moreover, by the box
norm for the space X, we have

Lip®(p, -) = max{Lipp(p, -), Liphs } < 1
uniformly for all p € W N Vy. Therefore, by the contraction mapping principle, there is a unique fixed
point g(p) € W§ N B for every p € Wf NV;y. Denote by g := ¢(p) the fixed point, then ¢ is C°. Arguing
symmetrically, we can also show that for every point ¢ € Wy N Vp there is a unique fixed point p € W N B
of the operator Z. = ¢(q, x,),Zs = hi(z.) so that the fixed point p := @(q), which is the intersection point
of F%(q) and W{ N B, depends continuously on ¢ € W5 N V.
We now claim that the function ¢ is actually locally invertible with inverse ¢. More specifically, we

claim

-1
(¢|¢_>(W2COVO)OVO) :¢|¢(mevo)mvo'
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In fact, let p = ¢(q) with ¢ € (W N Vp) N Vy. We first need to show g = ¢(p) with p € ¢(Ws N V) N V4.
By definition, we have p. = ¢(q,ps),ps = h1(p.) with ¢s = ha(g.). Because of the foliation property (ii),
ge = ©(p,¢s), 80 ¢ is the fixed point of the operator ®(p,-), provided that p € W{ N Vy. Suppose on the
contrary that p € B — V4. By definition, there exists for ¢ € (W NVy) N Vo a point p € W N Vp such that
q = ¢(p), i.e., ¢ = (P, qs),qs = h2(g.). By the foliation property (ii) again, p. = ¢(q,ps). This gives rise

to the following contradiction,

||pc_ﬁc||:||(p(q7p5)_(p(qaﬁs)|| <||ps_ﬁs||a and ||ps_ﬁs||a:||h1(pc)_h1(ﬁc)||a<||pc_ﬁc||7

because of ps = hi(p.). This implies ||p — ||« < ||p — P||«. Therefore, we must have p=p € Wy NV, q =
#(p) = ¢ o ¢(q). Conversely, the same argument shows that if ¢ = ¢(p) with p € (W5 N Vp) NV, then
p=¢(q) = ¢ o ¢(p). This proves the claim.

By the foregoing argument the neighborhood V' can be any open set satisfying

VAWS =¢(WenVe)NVy and V NAWS = @(WsNVo)N Vo,

for instance, we can take V := Vo — {(W5 — ¢(W¢ N Vo) NVp) U (Wf — (W5 N V)N Vo))
Finally, since Si(p) € W¥, Si(é(p)) € Wy, F*(p(p)) = F*(p) and S¢(F*(p)) C F*(St(p)), locally, by the

invariance of the center manifolds and the foliation, we have
Siod(p) = Si(F*(p) NW3) = F*(S:(p)) N W3 = ¢ 0 5i(p)

so long as Sy(p) e WfnNV. O

We remark that the same conclusion also holds true for any C™! local center-unstable manifold together

with a C™ x C™! unstable foliation.

LEMMA 4.2: Let Wg, W$ be two C™T11 local center manifolds of the origin. Let W< C X* be a C™' local
center-stable manifold containing W¢ and We* C X% a C™! local center-unstable manifold containing W,
both constructed according to Theorem 3.1. Then the intersection W N W is another C™' local center

manifold, W€, of the origin with LipW* < 1.

PROOF: For the same reason as in the last proof, we only demonstrate the C%' case. Since the center-
stable and center-unstable manifolds are constructed according to Theorem 3.1, they satisfy W¢* = graphh®?,
We¥ = graphh* for some C%! functions h°, h°* defined near the origin with Liph! < 1/3,i = cs,cu. The
intersection W N W consists of all points x5 + x. + x, € X* satisfying x, = h*(z., Ts), xs = h*(Tc, o).
Think of the right hand side of these equations as an operator parametrized by x., then the contraction
constant of this operator is bounded by max{Liph®*(x., ), Liph®*(z., )} < 1 uniformly for all small ||z.]|.
By the contraction mapping principle, one can solve uniquely for a C° function z, + x,, = h¢(z.) for small

[|Z||o- h° is Lipschitz with

, Liph® + Liphet
Lipht < |
P S T ax{Liphe™, Liphe} <
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as Liph! < 1/3,i = es, cu by Theorem 3.1. This sketch can be made as precise as we have done for the proof
of Lemma 4.1 above.

To show W := graphh® is indeed a C%! local center manifold of the origin, it suffices to show that it
is locally invariant. For X finite dimensional, this is trivial. Otherwise, we proceed as follows: Let p € W€,
and let z(t) € W be the solution curve in the center-unstable manifold containing p as an interior point.
Because of the uniqueness for the initial value problem of Eq.(2.1) and the invariance of W x(t) € W¢*
for small ¢ > 0. Because any backward extension of the solution x(¢) must also be in W by the remark
after the proof of Theorem 3.1 in section 6, we have that z(t) € W for all small |¢| for which it is defined.
Hence, z(t) € W =W N W for the same small |t|. O

PROOF OF THEOREM2.1: Let W¢ be a C™! local center-stable manifold containing W¢ and W<* be
a C™! local center-unstable manifold containing Wy by Theorem 3.1. Then Wy := W N W is another
C™! local center manifold by Lemma 4.2. By Theorem 3.1 again, there exist C" x C™! stable and unstable
foliations on W and W*°* respectively. Hence, the conditions of Lemma 4.1 are satisfied for W, W§ on
wWes, and Wy, W5 on W, respectively. Hence, the flows on WS and Wy are C" conjugate for ¢ = 1,2.

Therefore, the local flows on W and Wy are C" conjugate because C" conjugacy is an equivalence relation.

O

5. Global Foliations. The following two sections are dedicated to the proof of Theorem 3.1. The idea of
the proof is to show that the local result can be obtained by extending the given local center manifold of the
locally defined equation to the global center manifold of a globally defined equation to which some modified
global result applies. In this section we introduce the global theory of invariant manifolds and foliations.

We begin with some more notation. For § > 0, define Ny := {x € X*|||z;||a < 6, ||zu|| < 6}, a tubular
neighborhood of E¢. Also, Ef := E°* N Ns, Ef := E* N Ns, E5* := E° N Ns, Eg* := E“ N Ns, and
E* := E** N Ns where E** := E* @ E*. For simplicity, we denote 7y 1= 75 + Ty, Agy 1= ATgu, Tou =
Tyl = Tg + Ty

In addition to Eq.(2.1) which is only defined near the origin, we will consider equations of the form
(5.1) & = Az + F(x),

where F(z) € X is defined for all x € X* for some 0 < a < 1. From now on we will use Wy _, W25 WS
for local center manifold, local center-stable manifold, local center-unstable manifold, respectively; while
We, Wes Wet are reserved for global center manifold, global center-stable manifold, global center-unstable
manifold, respectively. The former are defined as in the previous sections and the latter are defined as
follows:

We = {z e X°| sup |I7suSe(z)]|o < 00},

<o

(5.2) we = {z e X°| OSS?<poo |70 St(2)]|a < 00},

we = {z e X |75 Si(2)]|a < 00}

sup
—c0<t<0
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We have the following results.

THEOREM 5.1 (Existence, Uniqueness and Smoothness of Global Invariant Manifolds): Assume the
hypothesis (2.1a) for the linear operator A and that F € C*1(X*,X) N C™(Ns,X) (resp. C*H(X*,X) N
C"(Ns, X)) satisfying F(0) = 0, where 0 < a < 1,7 > 0. There exist constants m = O(6),e = €(r) and
0o < 0 such that if sup,cxa ||TsuF'(x)|| < m,LipF < e, there exist for Eq.(5.1) a unique global center-stable
manifold and a unique global center-unstable manifold. These manifolds are of class C™ (resp. C”) and
are given by W = graphh®®, W = graphh". Here, h®* : E® — Eg h°* : E® — Ej are of class
C%', and he® hev are of class C™' (resp. C"), satisfying h'(0) = 0,Liph’ < 1/3, or Dh*(0) = 0

ECS )
L)

Bge
for i = c¢s,cu, if DF(0) = 0 for v > 1. Furthermore, there is a unique global center manifold given by
We =WenWe" = graphh®, where h® : E¢ — Eg* is of class C™ (resp. C") satisfying h*(0) = 0, Liph® < 1
and ,for r > 1, Dh(0) =0 if DF(0) = 0.

THEOREM 5.2 (Existence and Smoothness of Global Foliations): Assume the conditions of Theorem 5.1.
Then there exist constants m = O(6),e = €(r) and &y < & such that if |7 F|| < m,LipF <€, there exist for
Eq.(5.1) unique global center-stable and center-unstable manifolds W<, W ¥ as stated in Theorem 5.1, and, in
addition, there exist a C"xC™* (resp. C"*xC" ifr > 1) global stable foliation {F*(p) € Ns,|p € W NNs,}
on We and a C" x C™ (resp. C"~1 x C" if r > 1) global unstable foliation {F*(p) € Ns,|p € W N N, }
on We*. More specifically, there are functions ¢* @ Ef* x Ef  — Eg, "« Egt x By — Eg* of class
C" x C™t (resp. C"~Y x C" if r > 1) satisfying the properties (i-iv) for invariant foliations of section 3 such

that F'(p) = grapho'(p,-),i = s, u.

Theorem 5.1 was first explicitly stated in Vanderbauwhede and Iooss [1990], while Theorems 5.1, 2 with
the tubular neighborhoods replaced by the respective entire subspaces were essentially proved by Chow, Lin
and Lu [1990]. Their proofs can be easily adapted to our case with some minor modifications based on the
following two observations. The regularity of the global manifolds and foliations at any point only depends
on a neighborhood of the positive orbit through that point for the center-stable case or a neighborhood of
the negative orbit for the center-unstable case. On the other hand, following their approach via the variation
of constants formula, it is straightforward to verify that a constant 9 < é can be found so that all orbits
starting in the smaller tubular neighborhood Ng, stay in the larger one Vs for all forward or backward time
depending on the center-stable or the center-unstable case. For these reasons, we omit the proofs and refer

to these two sources for the necessary modifications.

6. Extension Lemma and Proof of Theorem 3.1. In this section we will use the following standard
order notations: By O(1),0(6),0(671) we mean that lims_+O(1), lims_o+O(8)/8, lims_o+O(671)5 are
constants, and by o(1),0(8) we mean limg_,g+0(1) = 0, limgs_q+0(8)/6 = 0.

We now begin with the standard cut-off functions for invariant manifold theory. A cut-off function

in one variable is a C'* function o : [0,00) — [0,00) satistying o(t) = 1,t € [0,1], o(t) = 0,¢t > 2 and
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sup0§t<oo(|a(t)| + |o'(8)] + 0" (t)]) < oc. Let 6 > 0 and denote o5(t) := o(t/6). It is easy to verify that, in
terms of our order notation,
os = O(1), of = 0671, of =0(67?).

Now cut-off functions in the Banach space X are defined by

ps(xe) = os(llzcll),  ps(@) = os([|ze|Dos([[Tsulla)

for x. € E¢, x5, € E*". The following properties will be used later:
ps is a C* function. Indeed, for ||z.|| < § it is so since ps(||x.||) = 1 while for ||z.|| > 6, ||z.|| is a C°
function since E° is finite dimensional and o4 is C'*° as well. Moreover, it satisfies the following estimates
ps(xe) =0(1),
IDps ()l <log(l]zel])] e || Dllze|l]|

=0(871),

1D? ps ()|l <log (lwe|DI( sup . |[Dl]z]]

lzell>

N+ o (||| ‘sup§||D2||xc||

llwell2

=0(6"2) +0(6 Ho(s ™)
=0(572),

D?|lz.|||| = O(J|z.||~1) for ||z.|| > 0. ps(z) is of class C%! because the norm

because ||D||z.||

| =0,
functions are C%!; it is C™ in Nj since ps(z) = ps(z.) as o5(||zsulla) = 1 for € N5. Moreover,

ﬁg(:ﬂ) =1, x€ Qs and p~5($) =0, ze€X*—Qos,

(6.10) Lipps <Lipos Lip(|| - ||) sup os + sup os Lipos Lip (|| - ||«)
=0(67),
where Qs := {z € X*|||z,||oa <6, |zc|| <6, |lxu|| < 6}, a box neighborhood of the origin.

We remark that following Vanderbauwhede and Iooss [1990] one obtains existence and smoothness of
local center manifolds for the locally defined equations (2.1) by applying the global center manifold result
to a globally extended equation of the form & = Ax + ps(x)f(x). By the properties of ps discussed above,
the function F' := psf satisfies the conditions of Theorem 5.1, and the desired result follows from the fact
that the solutions of Egs.(2.1), (5.1) coincide in the neighborhood @s. Similarly, existence and regularity of
the local center-stable and center-unstable manifolds together with the local stable and unstable foliations
for Eq.(2.1) now follow directly from Theorems 5.1,2 for the extended equation. Conversely, Sijbrand [1985]
has shown that for systems of ordinary differential equations every local center manifold can be constructed

in this way. We extend his idea to the infinite dimensional case in the following two lemmas:

LEMMA 6.1: Let W = graphh and h : U C B¢ — E**N XY with 0 < a <1 be a C"1 r > 0 function
and U an open set in E¢. Then W is invariant for Eq.(5.1) if and only if h maps U into X', the domain
D(A) of A, and the identity

(6.2) Aguh(z) + Fyu(ze + h(z.)) = Dh(z.) [Acae + Fe (@ + h(z.))]
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holds for all z. € U.

PROOF: Suppose W is invariant. For every « € W with . € U, let &(t) be a solution curve in W containing
x as an interior point, say &(ty) = « for some to. Then, the invariance of W implies Z.(t) = h(Z.(t)).
Because Z(t) is a solution, then h(z.) = h(Z.(t)) = Zsu(to) € D(A) by definition. Differentiating the
identity #,.(t) = h(Z.(t)) at t =ty yields (6.2).

Conversely, suppose h maps U into D(A) and the identity (6.2) holds for all z. € U. Then, for every
x € W, let &.(t) be the solution of the ordinary differential equation &, = A.x. + F. (CUC + h(azc)) such that
Z.(t) € U for small |¢| and &.(0) = z.. It can be verified directly that &(t) := &.(t) + h(Z.(t)) € W is a
solution curve in W containing x as an interior point. Indeed, by the definition for #, and identity (6.2),

we have
Tou(t) = Dh(%c(t)) [Acic(t) + Fo(8e(t) + h(Ec(1))] = Asuh(2c(t))+Fou (Z(t) + h(2:(t)))

which together with the equation for z.(t) shows that the full equation is satisfied. O

Note that since the neighborhood U in the proof above is arbitrary, the result is true regardless whether
the equation is locally or globally defined. In particular, it applies for Eq.(2.1). This observation will be

used later.

LEMMA 6.2 (Extension Lemma): Assume hypotheses (2.1a,b) for Eq.(2.1). For an arbitrary C™"11 local

center manifold W, C X%, there are a small § > 0, a function F € C%*(X*,X)NC™(Ns,X) and a global

loc

C™' center manifold W¢ C Ns of the new equation
(6.3) &= Az + F(x)

satisfying that sup,cxa ||F(z)|] = 0(6), LipF = o(1), as § — 0T, and thatF|Q5 = f|Q5, WenQs = Wi, .NQs.
PROOF: By definition, W}, = graphh for some small neighborhood V' C X of the origin and a Ccrtid
function h: E€NV — E** N X* with A(0) = 0,Dh(0) = 0. Let ps and ps be cut-off functions as in (6.1).
For § > 0 so small that Q25 C V, define
h(@e) :=ps(we)h(z.)
W€ :=graphh®
F(z) :=ps(x) f(z) + G(z.)
where G : E¢ — E°" is defined by
G(x.) := Dh®(x.) [Acwetps (xe + ho(xe)) fo(ze + R ()] — ps(ze + b (2e)) fou (e + ()
— pg(xc){Dh(xc) [Acxc + fe (xc + h(zc))] — fsu (zc + h(zc))}
We claim that F, W€ have the desired properties.
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First, we verify the extension properties for F' and W¢. Indeed, W N Qs = W

°. N Qs by construction.

Moreover, ps =1, G|Q5 = 0, and hence, F|Q5 = f|Q5. Next, we use Lemma 6.1 to demonstrate

|Q5 =P |Q5
the invariance of the manifold W¢. Note that because the local center manifold W . is invariant for Eq.(2.1),

we have by Lemma 6.1
Aguh(z.) = Dh(x.) [Acxc + f. (zc + h(xc))] — fsu (zc + h(xc)) =g(z.), for z.+ h(z.)€EV.
Moreover, since ps(z.) is a scalar constant with respect to the operator Ay, As h¢(x.) = Asu (p5 (:Uc)h(a:c)) =
ps(xe)Asuh(z.) = ps(z.)g(z.). Thus, by definition of F'; we have
Aguh(@e) + Fou(we + b (20)) =Asuh(@e) + ps (@ + h(2e)) fou (e + R (20))
+ Dh*(x.) [Acxc + Ps (xc + hc(xc))fC (xc + hc(xc))]

— Ps ('Tc + hc(xc))fsu (Ic + hc(xC)) —ps(we)g(ze)

=Dhf(x.) [Aca:c + F, (azc + hc(azc))]

This implies that W€ is invariant for Eq.(6.3) by Lemma 6.1. Furthermore, W€ is the center manifold of the
globally defined equation because W° — Q25 = E° — Q25 on which the growth condition (5.2) characterizing
the global center manifold is satisfied.

Finally, to prove W¢ C N;s and the estimates for F', we first collect some order estimates:
(6.40) h(lla = olllzel),  IDAe:)la = o(1), as [lac]l — 0F, and Liphl, = O0(1),
because h(0) = 0, Dh(0) = 0 and h is of class C"T11. And
(6.40) [lg(ze)lla = o(llacll), as [lzell = 0T, and Lip(g,, ) =o(1), Lip(psg) =o(1), as §—0%.

Here, the first two estimates are true because of the definition of g and the preceeding estimates for h together

with the assumption that f(0) = 0,Df(0) =0 and f € C"*1!, The third estimate is true because

Lip(psg) < sup [[|Dps(ae)ll llg(ze)ll + s () Lip(g],,. )],

llzel|<26

where the first term is of order O(§ 1)o(§) and the second O(1)o(1) by (6.1a) and the preceeding estimates

for g. We also claim that the following estimates hold:
(6.5) [|DhE(z.)||a = o(1), LipDh® = 0(1)O(571), as 6 — 0F.

We now estimate F' and W€ by assuming this claim and then prove the claim.

To simplify the notation further, we denote
H(z.) = Az + ps (CUC + hc(:nc))fC (CUC —+ hc(azc)), 0(z.) =z, + h(z).

Thus, G =Dh* H — (pfsu) 00 — psg.
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It is easy to see that ||h°(zc)||la = |ps(z)|||h(z)|la < O(1) sup||h|Q26||a = o(6) by (6.4a). Therefore,
We C Njs for sufficiently small §. Also, ||0(xc)||a = O(]|zc]])-

The fact that ||F(z)|| = o(6) is demonstrated as follows. Starting with the first term in the definition
of F', we have ||psf(z)|| = O(1) ||f|Q25 (@)|] = o(]|z||a) by the hypothesis for the nonlinear term f. For the
second term in the definition of F', we note that the foregoing estimate also implies ||H (x.)|| = O(||z|])-

Since

1G (@)l < NIDR (@)l 1H] g, (we)ll + 11(Bs fou) 0 O(w)]] + [|(psg) (wo)l,

we also have ||G(z.)|| = 0(6) by (6.4b) and (6.5). Therefore, the estimate ||F(z)|| = o(6) follows.
To show LipF = o(1), we also begin with the first term of F', and for which we have

Lip(ps f) < Lipps sup || f|, |l +sup|ps| Lip(f|,, ) = o(1)

because the first term after the inequality sign is of order O(67!)o(6) and the second o(1) by (6.1b) together

with the assumption for f. For the second term of F', we note that the foregoing estimate also implies
Lip[(psf) o8] < Lip(psf) Lipf = o(1)

since Lipf < (1 4 sup||Dh¢||a) = O(1) by the claim. Hence, LipH = O(1) 4+ o(1) = O(1) and Lip(Dh H) =
o(1) because

Lip(Dh H) < Lip(Dh?)sup ||H|,, || +sup || Dh¢||oLipH

for which the first term is of order o(1)O(6§~1)O(§) and the second o(1)O(1) by the claim (6.5). We conclude
from above and (6.4b) that

LipG < Lip(Dh H) + Lip[(ps fsu) © 8] + Lip(psg) = o(1)

and, hence, LipF' < Lip(ps f) + LipG = o(1) as desired.
Finally, we complete the proof by proving claim (6.5). First, we have ||Dh¢(z.)||o« = o(1) because

DR (o)l < 1Dps (e 1A, (el + s (e [DRg,, (o)]lo.

of which the first term is of order O(671)o(6), or O(1)o(1), and the second term O(1)o(1). Next, to show
Lip(Dh¢) = 0(1)O(6~!) we have

Lip(Dh?) < max{Lip(Dh|,_),Lip(Dh°

Qa5-05)}

of which the first element is at most O(1) since A is of class C"T! and the second element can be estimated

Lip(Dh* < sup  [[D?ps(xe)l| sup ||h(ze)lla
( |Q26_Q6) z:.E€EQ25—Qs T €Q25

+2 swp |Dps(all sup [IDh(z.)lla + Lin(Dh|,,),
)

zc€Qa5—Qs T EQ2
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which is of order 0o(1)O(6!) because the first term is O(672)o(8), or O(61)o(1), the second O(671)o(1) and
the third O(1) by (6.1a) and (6.4a) respectively. O

A different version of this lemma can be obtained based on the following observations. Note that if Lip f
is not replaced by o(1) in all the estimates above, then the estimates for the extended nonlinear term read
||F(z)|| = o(6) +O(8) Lipf and LipF = o(1) + Lipf. Moreover, if f is of class C™! while W, belongs to the
same C"t1:! class of manifolds as in the lemma, then the same result holds with these modified estimates of
F. This remark will be used in section 7 below.

We are now ready to give a proof for Theorem 3.1.

PROOF OF THEOREMS3.1: It is simply an application of Lemma 6.2 and Theorem 5.2. Indeed, because of
sup,exe ||[F(2)|| = 0o(6), LipF' = o(1) by Lemma 6.2, the conditions that sup,cx« ||[TsuF'(2)]| = 0(6) < m =
O(6) and LipF' = o(1) < e(r) for Theorem 5.2 are satisfied for sufficiently small §. The smooth foliations
for the locally defined equation (2.1) are now obtainted by restricting the smooth foliations of the extended

equation (5.1) to the neighborhood V := Qs, C Q5. O

We end this section with a remark that was used for the proof of Lemma 4.2. Tt is easy to see that for a
given solution of Eq.(5.1) that starts on the global center-stable manifold W¢® constructed from Theorem 5.1,
all the backward extensions must stay on the manifold by the characterization (5.2). Therefore, the same

statement is true for any local center-stable manifold constructed by the Extension Lemma and Theorem 5.1.

7. Final Remarks: (a) From the proof of the theorem and the remark after the Extension Lemma, it is
easy to see that the following theorem is true.

THEOREM 7.1: Assume the hypothesis (2.1a) for Eq.(2.1) and that the nonlinear term f is of class C™!
with f(0) = 0 and Lipf sufficiently small. Then the equations when restricted to two C™t11 local center
manifolds of the origin are C" conjugate.

(b) In practice, there may be no need for the Extension Lemma because all center manifolds in applica-
tions are constructed in the way described in section 6. These manifolds are as smooth as the equation and
the foliations only loose the Lipschitz continuity of the top partial derivative with respect to the base point.
Hence, the conjugating map in this situation looses the top Lipschitz continuity as well. We have proved the
following result.

THEOREM 7.2: Assume the hypothesis (2.1a) for Eq.(2.1) and that the nonlinear term f is of class C™!
with f(0) =0 and Lipf sufficiently small. Then the equations when restricted to two local center manifolds
of the origin that are constructed by the standard method are C™ conjugate.

(c) For other types of infinite dimensional systems, e.g., the elliptic and hyperbolic equations studied
by Vanderbauwhede and Iooss [1990], we believe that invariant foliation theory can also be extended, and
so can Theorems 2.1, 7.1, 7.2. The same result should also be expected for center manifolds of normally

hyperbolic invariant sets of diffeomorphisms and normally hyperbolic invariant manifolds of flows, for which a
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theory of invariant manifolds and foliations has long been established, cf., e.g., Hirsch, Pugh and Shub [1977]
and Fenichel [1974,1977,1979]. The latter includes the case of slow manifolds in the theory of singular
perturbations.

(d) Back to the conjugacy problem for inertial manifolds of an appropriate dissipative evolution equation
discussed in the introduction, we point out that the same result with C° conjugating map applies for C%!
inertial manifolds and C%! equations. Furthermore, for C*! equations, the C° regularity can be improved
to C' when the spectral gap can be cut sufficiently away from the imaginary axis. Indeed, unlike the general
case considered in the proof of Theorem 2.1, two inertial manifolds can be essentially regarded as lying in a
common manifold, the entire phase space, that possesses a stable foliation. Thus, a proof for the C° or C*
conjugacy statement follows directly from the invariant foliation theory proved by Chow, Lin and Lu [1990]
and the argument of Lemma 4.1. We remark that in general inertial manifolds are of class C' at best for
C™!,r > 1 systems under the conditions mentioned above. In fact, an example of an analytic equation having
a C' inertial manifold which is not C* was given by Chow, Lu and Sell [1990]. Note that even though this
result applies only to inertial manifolds that are constructed by the standard method described in section 1,

it might be quite adequate for many practical purposes.
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