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1 Introduction

1.1 Description of the problem

Lack of compactness is the main analytical difficulty in the study of functionals on unbounded
domains. Ever since the Strauss radial lemma [1], it has been well-known that symmetry plays
an important role in understanding the compactness in such problems. For many symmetric func-
tionals, the existence of minimizers can be established by first restricting the problem to radially
symmetric functions with the help of a rearrangement inequality, and then using the additional
compactness of symmetric functions to find a convergent minimizing sequence. Particular exam-
ples where this strategy has been used are the determination of the sharp constants in the Sobolev
and Hardy-Littlewood-Sobolev inequalities [2-4], and the determination of ground states [5]. It is
also known that certain dynamical stability problems can be reduced to the study of related vari-
ational problems [6]. Here, it is the compactness of arbitrary minimizing sequences, not just the
existence of minimizers, that plays the key role. In a series of famous papers [7, 8], a general
abstract concentration compactness principle was introduced which has lead to many applications.
It should be pointed out that in order to apply this principle to establish compactness for a specific
problem, some additional analysis is usually needed.

In a series of recent investigations of stable galaxy configurations and gaseous stars [9-15], a
splitting trick is combined with the crucial scaling property of the energy functional to establish
compactness of all symmetric minimizing sequences. This allows to construct symmetric steady
states, and to show that they are dynamically stable under symmetric perturbations. This restricted
stability problem is of interest in itself and had been open for a long time. In order to show sta-
bility among all possible perturbations, an argument in the spirit of the concentration compactness
principle was employed to allow for possible translations.

The objective of this article is to closely examine the role of translations for minimizing se-
quences via elementary knowledge of their symmetrizations. We demonstrate that the difference
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between a minimizing sequence and the corresponding sequence of symmetrized functions is char-
acterized by appropriate translations. In many cases, this implies that every minimizing sequence
converges strongly modulo scalings and translations. Besides the interest of our results in classical
analysis, this characterization also suggests a a practical two-step procedure for proving compact-
ness on an unbounded domain:Step 1.Show compactness of all symmetric minimizing sequences.
This implies the existence of minimizers; it is also a necessary ingredient in the proof that these
minimizers are dynamically stable under symmetric perturbations.Step 2:Show compactness up
to translations for general minimizing sequences, assuming that their symmetrizations are com-
pact. This implies dynamical stability under more general perturbations. The main part of this
article is devoted to Step 2 for two classes of functionals that appear in many applications of the
concentration compactness principle. We hope that our approach can give another perspective on
concentration compactness for symmetric functionals.

1.2 Main results

The first class of functionals we consider is given by convolution integrals of the form

���� �
� �

�������� ������ ����� (1.1)

where� � ��
�����

�� is a nonnegative symmetrically decreasing function on�
� . Riesz’ rearrange-

ment inequality says that convolution integrals generally increase under symmetrically decreasing
rearrangement [16, 17], in particular

���� � ��� �� � (1.2)

Here,� is a nonnegative measurable function that vanishes at infinity, and� � is its symmetrically
decreasing rearrangement. If either� or � � is known to be strictly symmetrically decreasing, and
��� �� 	�, then equality can occur only if� is a translate of� � [5, 18]. The second class consists
of gradient integrals of the form

� ��� �

�

 ���� �� �� � (1.3)

where
 is an increasing convex function on�� with 
 ��� � �. It is well-known that

� ��� 	 � �� �� (1.4)

for every nonnegative measurable function� on�� that vanishes at infinity. If
 is strictly convex,
� �� �� 	�, and the distribution function of� is absolutely continuous, then equality in Eq. (1.4)
occurs only when� is a translate of� � [19].

We are interested in applying these rearrangement inequalities to sequences of functions. Let��
be a sequence of nonnegative functions on�

� that vanish at infinity, and let� be a symmetrically
decreasing function. We make the additional assumptions that� is positive, strictly symmetrically
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decreasing, and defines a positive definite integral kernel on�
� , and that
 is nonnegative and

strictly convex with
 ��� � �. Then it is easy to see that both inequalities are preserved under
taking limits: Using the continuity of� with respect to the norm defined by the positive definite
quadratic form�, we clearly have

���
���

��� �� � �� � � �
 ���
���

����� � ���
���

��� ��� � ���� � (1.5)

Likewise, combining Eq. (1.4) with Fatou’s lemma shows that

���
���

� �� �� � �� � � �
 ���
���

� ���� 	 ���
���

� �� ��� 	 � ��� � (1.6)

Setting�� � � and� � � �, we recover the rearrangement inequalities in Eqs. (1.2) and (1.4). Our
main result is that equality in either Eq. (1.5) or Eq. (1.6) implies, under suitable assumptions on
�, 
 , and�, that the sequence�� converges to� modulo translations.

Theorem 1 Let� be a convolution functional as given in Eq. (1.1), where� is a strictly symmet-
rically decreasing function that defines a positive definite kernel on�

� . Let� be a symmetrically
decreasing function on�� with � 	 ���� 	 �, and let���
��� be a sequence of non-negative
functions on�� which vanish at infinity, with symmetrically decreasing rearrangements� ��. As-
sume that the sequence of rearrangements� �� approaches� in the sense that

���
���

��� �� � �� � � � (1.7)

If the values of the functional converge to���� along the sequence,

���
���

����� � ���� � (1.8)

then there exists a sequence of translations�� on�� such that

���
���

������ � �� � � �

The positive definiteness of� ensures that��� � �� � � only for � � �. The assumption can
be dropped if���� is replaced by��� � �� in the assumptions and conclusions of the theorem. The
classical equality statement for Eq. (1.2) is recovered by taking�� � � and� � � �.

Theorem 2 Let� be a gradient functional of the form in Eq. (1.3), where
 is a convex, strictly
increasing function on�� with 
 ��� � �. Let � be a symmetrically decreasing function on
�
� that vanishes at infinity and satisfies� 	 � ��� 	 �, and let���
��� be a sequence of

nonnegative measurable functions on�� which vanish at infinity, with symmetrically decreasing
rearrangements� ��. Assume that the symmetrically decreasing rearrangements� �� approach� in
the sense that

���
���

� �� �� � �� � � � (1.9)

and that the values of the functional along the sequence converge to� ���,

���
���

� ���� � � ��� � (1.10)

Then the following statements hold.
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1. If 
 is strictly convex and the distribution function of� is absolutely continuous on the
interval where it is finite and positive, then there exists a sequence of translations�� on��

such that

���
���

�
��
	
����� � ��

�
� � �

2. If 
 �
� � 
, then there exists a sequence of translations�� such that���� is compact in
�

�
��� ���� and������� is tight in ������. If � � �� is a limit of a convergent subse-

quence, then� � � �, and all level sets of� are balls.

The purpose of the factor��	 in the first conclusion of the theorem is to guarantee that the infimum
is finite. The factor can be dropped under additional assumptions on
 , in particular if
 �
� � 
�

for some� � � or if 
 is linearly bounded. The equality statement for Eq. (1.4) due to Brothers
and Ziemer [19] is again recovered by setting�� � � and� � � �.

In many applications to variational problems, assumptions (1.8) and (1.10) hold naturally for
minimizing sequences, while assumptions (1.7) and (1.9) are related to compactness for symmetric
minimizing sequences. Theorems 1 and 2 provide weak bounds on the asymmetry of a function in
terms of the symmetrization deficit��� ��� ���� or � ���� � �� ��: Setting� �� � � for all �, we
see that the symmetrization deficit can be small only when�� is close to a translate of�.

1.3 Description of the proofs

Mathematically, our results are inspired by so-called asymmetry inequalities, which estimate the
difference between a function or a body and a symmetric one by a related geometric quantity.
Classical examples are the Bonnesen-style isoperimetric inequalities, which give lower bounds on
the excess perimeter of a planar set, as compared with the disc of the same area, in terms of geo-
metric quantities such as the in-radius [20] (see [21]). The most powerful result in that direction
is a quantitative isoperimetric inequality due to Hall [22], which bounds the symmetric difference
between a measurable set and a (suitably translated) ball in terms of the isoperimetric deficit (a
recent application of this result appears in [23]). Related statements have been proved for the log-
arithmic capacity in two dimensions and for the capacity of convex sets in higher dimensions [24].
We are not aware of estimates for the difference between the two sides of Riesz’ rearrangement
inequality in the literature, even though such estimates are readily obtained for the simpler two-
point rearrangement [25, 26]. We expect that asymmetry inequalities should hold for large classes
of symmetric functionals, including the Coulomb electrostatic energy.

Our strategy for the proofs of Theorems 1 and 2 is as follows. We first write each function as
the sum of a bounded function supported on a set of finite volume, and a function whose contri-
bution to the functional is negligible (Section 2.2). To ensure that this decomposition commutes
with translations and rearrangements, we use a well-known technique closely related to the layer-
cake principle [27, Theorem 3.9]. In the second step, we consider the symmetrization deficits
��� �� � ���� and� ��� � � �� �� for a bounded function whose support has finite volume (Sec-
tions 3.1 and 4.1). We show that a function with a small symmetrization deficit must be almost
supported on a suitably translated ball whose size we control (Lemmas 3.1 and 4.2). This is a key
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step that provides some basic compactness. It has the role that Lieb’s compactness lemma [28]
has played in many minimization problems (see, for example, [29, 30]). In the third step (Sec-
tions 3.2 and 4.2), we pick subsequences that converge weakly up to translations, and identify their
weak limits with the help of the classical equality statements for the rearrangement inequalities in
Eqs. (1.2) and (1.4). This step is motivated by the characterization of the missing term in Fatou’s
lemma [31] (see [27, Theorem 1.9]). The proof is completed in Sections 3.3 and 4.3 by combining
the three steps. In the final section, we discuss some applications.

2 Preliminaries

2.1 Definitions and notation

Let � be a nonnegative measurable function on�
� . We say that� vanishes at infinity, if for every


 � �, the level set�� � �
� � ���� � 

 has finite measure. Thedistribution functionof � is

given by

��
� �

�
�����	
 �� �

The symmetric decreasing rearrangement, � � of � is the symmetrically decreasing, lower semi-
continuous function equimeasurable to� ,

� ���� � 
��
�

 � � � ��
� � ������

�
where�� is the volume of the unit ball in�� .

2.2 Decomposition into layers

In the proofs of Theorems 1 and 2, we find it useful to write a given function� as a sum oflayers,
� � � � 
 ��, where the middle layer

� � �
�
������ � ������
 � � ����

�
�

(2.1)

is bounded and has level sets of bounded measure, and the sum of the top and bottom layers

�� � � � � � � ������ � ����

 �� � � �������� (2.2)

will be negligible for� sufficiently large (see Fig. 1). If� is equimeasurable to�, then� � and
�� are equimeasurable to�� and��, respectively. In particular, this decomposition commutes with
rearrangements and translations. The following lemma will be used to obtain uniform bounds on
the sequence� �

�.

Lemma 2.1 Let� be a convolution functional of the form given in Eq. (1.1) with� symmetrically
decreasing and not identically zero, and let� be a gradient functional as defined in Eq. (1.3)
with 
 convex, strictly increasing, and
 ��� � �. Fix � � � and��� �� � �. For a nonnegative
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Figure 1:Construction of the layers� � and��.

measurable function� that vanishes at infinity, define the middle layer� � by Eq. (2.1). There exist
constants����� ��� and����� ��� such that

��� ���� � ����� ���

for all functions� with ��� �� � ��, and

��� ���� � ����� ���

for all � with� �� �� � ��.

PROOF. Since��� ���� increases with�, it suffices to prove the claim for large values of�. For
the first claim, we use the fact that� and� � are symmetrically decreasing to estimate

��� �� 	
� �

���
�������

� �������� ��� ���� ����

	 ��	����
�
����

��� ������
	�

	 ��	����
�
����

����� ����
	�
�

In the last line, we have used that��� ���� � ������ by construction. The first claim follows since
��	���� � � for� sufficiently large by assumption. To see the second claim, let� be the function
on�� determined by by��� ����� � ������, and compute in polar coordinates

� �� �� 	
� �

���


 ����������
�����

	 ����
������ ����


�� �

���

����
��

�����

�

	 ����
��� 


� ��� ����
�

�
�

In the second step, we have estimated the factor���� from below by����, then applied Jensen’s
inequality. Since

 ���
� is nonincreasing in
, we can replace� � ��� by � in the third step.
The claimed bound on��� ���� follows since
 is strictly increasing.

It is easy to see that the assumptions in Eqs. (1.9) and (1.10) of Theorem 2 hold also for the middle
layers� �

� and�� of the functions�� and�:
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Lemma 2.2 Let� be a gradient functional of the form in Eq. (1.3) with
 convex, nondecreasing,
and
 ��� � �, and let� be a symmetrically decreasing function with� ��� 	 �. Fix � � �, and
decompose��, � ��, and� into layers as in Eqs. (2.1)-(2.2). If

���
���

� �� �� � �� � � �

then
���
���

� �� ��� � ��� � � � ���
���

� �� ��� � ��� � � �

If, additionally,
���
���

� ���� � � ��� �

then
���
���

� �� �
�� � � ���� � ���

���
� ���

� � � � ���� ��

PROOF. Since
�� ����� � �� ���� ���������� �

we can rewrite the first assumption as

���
���

�� �� ��� � ��� 
 � �� ��� � ���
�
� � �

which clearly implies that both summands converge to zero, as claimed. To see the second claim,
we note that

�� ���� � ����� ������������������� �

and rewrite the additional assumption as

���
���

��� �� �
��� � ����

	


�� ���

� �� � ����
	�

� � �

The claim follows since the limit of each summand is nonnegative by Eq. (1.6).

The corresponding statement holds for the functional� appearing in Theorem 1.

Lemma 2.3 Let� be a convolution functional of the form in Eq. (1.1) with� positive definite and
strictly symmetrically decreasing, and let� be a symmetrically decreasing function with���� 	�.
Fix � � �, and decompose��, � �� and� into layers as in Eqs. (2.1)-(2.2). If

���
���

��� �� � �� � � �

then
���
���

��� ��� � ��� � � � ���
���

��� ��� � ��� � � �

If, additionally,
���
���

����� � ���� �
then

���
���

��� �
�� � ����� � ���

���
����

� � � ����� �
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The proof requires some auxiliary estimates. The first lemma provides three tail estimates for
symmetrically decreasing functions� in terms of����.
Lemma 2.4 If � and� are nonnegative and symmetrically decreasing, then, for any� � �,

���� 	 ��	��


�
�����

���� ��

��

� (2.3)

���� 	

�

������

���������
�� ��

�
�
�����

���� ��

�
� (2.4)

Furthermore, for every� � ������ supported in the ball��� � ��, and every� � � there exists a
number� � � which depends only on�, ��, and� such that�

�����

����� � ���� �� � �������������� � (2.5)

PROOF. Eqs. (2.3)-(2.4) follow immediately from the fact that both� and� are nonnegative and
symmetrically decreasing. To see the weak tail estimate in Eq. (2.5), we separate two cases. If

������ � ���	����

�
�������

then we have for� � ���
�����

������ � ����� �� � ���������������� ��� � ������ ���	�
������� ���

�
������� �

and Eq. (2.5) follows by choosing� large enough such that��� � ������	�
��� � ��. If, on the

other hand, �
������

���� �� �
���	����

�
�������

for some�� 	 ��, then we estimate for� 	 ���,�
�����

������ � ����� �� � ������
�
�������

��������� ���� �� �

The integral on the right hand side is bounded by�
�������

��������� � ��� �� �
�
�������

���������
���


 ���
 	��

���
����

��

� ���	����
�����

������

���� ��

� �������� �
In the first step, we have estimated���� � ������	��� and changed variables in polar coordinates.
Next, we have used that��� 
 	�� � ���	���� and applied Eq. (2.4). Inserting the last inequality
into the preceding equation again yields Eq. (2.5).
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Lemma 2.5 Let �� be a sequence of be non-negative, symmetrically decreasing functions on�
�

which vanish at infinity, and decompose them into layers by Eqs. (2.1)-(2.2) for some� � �. Let
� be a nonnegative, symmetrically decreasing function on�

� such that���� 	 �, where� is
defined by Eq. (1.1) with a strictly symmetrically decreasing, positive definite kernel�. If

���
���

���� � �� � � �

then
���
���

����� � ��� � � � ���
���

����� � ��� � � �

PROOF. It suffices to establish that a subsequence of�� converges to� pointwise almost every-
where; the claim then follows by applying Fatou’s lemma to� � �

������ 
 ����������� 
 ������ ���� ���� ���������� ���� ������
�
���� �� ����

for � � ��  .
In order to prove pointwise convergence, we first notice that

���
���

����� � ����

by Eq. (1.5). By Cauchy-Schwarz, the assumption implies

���
���

� �
��������� ������ ���� �

� �
�������� ������ ����

for any function� with ���� 	 �. This means that� � �� converges to� � � in the sense of
distributions. The sequence�� is uniformly bounded in��

��� by Eq. (2.3). Since the functions��
are symmetrically decreasing, we can choose a subsequence (still denoted by��� such that

�� ! "Æ� 
 �� in the sense of distributions, and

�� � �� pointwise a.e.�

Here" 	 �, Æ� is the Dirac mass at the origin, and�� 	 � is a symmetrically decreasing function
with ����� 	�. We need to show that" � �. To this end, fix any� � ��

� . Since
����� ����� 	
�, Eq. (2.5) of Lemma 2.4 implies that there exists for each� � � a number� � � such that


��
���

�
�����

������� � ����� �� � � �

It follows that �
�� � ��� � ���

���

�
������ � ���� ��

� ���
���

���
���

�
�����

������ � ���� ��

�

�
� � �"Æ� 
 ��
��� ���� �� �
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where we have used that� � �� and�� converge in the sense of distributions. Since� is arbitrary,
we conclude that

� � �"Æ� 
 ��
 � � � � �
which implies that"Æ� 
 �� � � by the positive definiteness of�, and the desired pointwise
convergence follows. This completes the proof of the lemma.

PROOF OFLEMMA 2.3. Applying Lemma 2.5 to the sequence� �� of symmetric decreasing re-
arrangements, we see that the first assumption implies the first claim. To see that the additional
assumption implies the second claim, we note that

���
���

��� �
�

	 � ����� � ���
���

����
�

	 � �����

by Eq. (1.5). Similarly, using first Riesz’ rearrangement inequality and then the continuity with
respect to the norm defined by the positive definite quadratic form�, we have

���
���

� �
� �
�������� ����

� ��� ���� �
� �

��������� ������� ���� �

Adding these inequalities proves the second claim of the lemma.

3 Convolution integrals

3.1 Confinement to a ball

Lemma 3.1 Consider the convolution functional� defined in Eq. (1.1) with some symmetrically
decreasing, nonnegative integral kernel�. Let� be a nonnegative measurable function that van-
ishes at infinity, and assume that its symmetrically decreasing rearrangement� � is supported on
a ball of radius�� and satisfies��� �� 	 �. Then there exists for any choice of�� � 	�� a
translation� such that

��� ��� ���� 	 �
��	���������

	
�
���	��

����� ��

��

�

PROOF. We decompose the kernel as

� �
�
� ���	���

�
�

���

�
����	���

�
�

Since both summands are nonnegative and symmetrically decreasing, Riesz’ rearrangement in-
equality implies

��� ��� ���� 	
� �

� ����� ������������ ��� ��	���� ����

�
� �

���������������� ��� ��	���� ����

	 � �
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The first integral on the right hand side can be rewritten as� �
� ����� ������������ ��� ��	���� �

�
� ����� ������	��� ����

�

�
����������	��� ���� �

where we have used that� is supported on the ball of radius�� in the first step, and the equimea-
surability of� with � � in the second. We obtain

��� ��� ���� 	
� �

��������
�
��	����������	���� ���� ���

�
����

	 �
��	���������

�� �
�����������������

���� �

Letting���� �
�
�������������

��, we deduce by the mean value theorem that there exists a point
�� so that �

�������� �� 	 �����

�
���� �� �

We have shown that

��� ��� ���� 	 �
��	���������

� �
���� ���

�
��������������

��

	 �
��	���������

�
�
��������������

��

��

�

Setting����� � ���
 ��� completes the proof.

3.2 Identification of the limit

Lemma 3.2 Let�� be a sequence of nonnegative functions in��, and let� be as in Eq. (1.1), with
a nonnegative symmetrically decreasing kernel�. If �� ! � and� �� ! � weakly in�� for some
functions� and�, then

���� � ���� �
If � is strictly symmetrically decreasing and���� 	 �, then equality implies that there exists a
translation� such that�� � �.

PROOF. For any nonnegative function� � ��, we have�
�������� �� � ���

���

�
��������� �� � ���

���

�
� ������

���� �� �

�
��������� �� �

Since� and� � are equimeasurable, it follows from the bathtub principle that�
�����

� � �� � 
��
�	� �����
����

�
�

� ���� �� � 
��
�	� �����
����

�
�

���� �� �
�
�����

���� ��
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for any� � �. Applying the layer-cake principle we conclude that�
� �������� �� �

�
�������� �� (3.1)

for every symmetrically decreasing function�. If � is strictly symmetrically decreasing and the
integrals are finite, then equality in Eq. (3.1) can occur only for� � � �.

It follows with Riesz’ rearrangement inequality that

���� � ��� �� �
�

� ����� � ���� �� � ���� �

where we have applied Eq. (3.1) twice, first with� � � � � � and then with� � � � �. If � is
strictly symmetrically decreasing, then equality in the Riesz rearrangement inequality implies that
there exists a translation� such that�� � � �. Furthermore, since� � � � and� � � are again
strictly symmetrically decreasing, equality in the last step implies that� � � �.

3.3 Proof of Theorem 1

Let ��, �, and� be as in the statement of the theorem, and assume for the moment that the
functions�� are uniformly bounded, and that their symmetrically decreasing rearrangements� ��
are supported in a ball of radius�. By Lemma 3.1, there exists a sequence of translations�� such
that �

������

������� �� �

 ��� ���� �����
��	��������

����

�� � ����� � (3.2)

Since���������� � ��� ������ is uniformly bounded, the sequence���� is weakly compact in��, that
is, there exists a subsequence, again denoted by�� and a function� with

���� ! � ����� (3.3)

weakly in��. In light of Lemma 3.2, the value���� is finite. Our goal is to show that������ �
��� � as���. To this end, fix� � �, and split

� � ������� 
������� � �� 
���

so that

������ � �� �

�
������

����� � ���� � ����� � �� ��




�
������

����� � ���� � ����� � �� ��


�
����� � ���� � ����� � �� �� �

The first integral on the right hand side goes to zero, because the sequence��� ��������������
���
is compact in�� by the Hilbert-Schmidt theorem, and�

�� � ����
	
������� �� �

�� � �	������� ����� �
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For the second integral, notice that�
������

� � ������������ � ���������� ���
�
������

����� �� �� � �����

by Eq. (3.2). The third integral is estimated by�
��������

� � ����� �� � ��������������
�
�����

���� ��

which can be made small by choosing� small. We conclude that������ � �� � �. Since
���� � ����� by assumption, Lemma 3.2 implies that��� � � for some translation��. Thus we
have shown that

���
�
����� � �� � �������� � �� �� � �����

at least along a suitable subsequence. Since the limit does not depend on the subsequence, this
proves the claim in the special case that the rearrangements� �� are uniformly bounded and sup-
ported on a common ball.

Given a sequence of functions��, which satisfy the convergence assumptions of the theorem.
If the functions�� and� are not uniformly bounded or have level sets of large measure, we write
them as a sum of layers,�� � � �

� 
 ��
� and� � �� 
 ��, according to Eqs. (2.1)-(2.2), where

� � � is a large number that will be chosen below. By Cauchy-Schwarz, and using that��� is
equimeasurable with��, we can estimate

���
�
����� � �� � �

�
���
�
���� �

� � ��� 
 ����
� � 
 ������ � (3.4)

By Lemma 2.1, the functions� �
� are uniformly bounded, and by construction, their symmetric

decreasing rearrangements are supported on the ball of radius�. By Lemma 2.3, the functions� �
�

satisfy the assumptions of of the theorem as well, with� replaced by� �. We have shown in the
first part of the proof that

���
���

���
�
���� �

� � ��� � � �

Furthermore, by Lemma 2.3, we have

���
���

����
� � � ����� �

Taking limits in Eq. (3.4), we obtain

���
���

���
�
����� � �� � ������ �

Since the right hand side can be made arbitrarily small by choosing� large enough, this completes
the proof.
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x =t

V(t)

1

V −V(t)0

Figure 2:Proof of Lemma 4.1. The perimeter of the entire set is at least as large as sum of the perimeters of two
balls with volumes� ��� and�� � � ���, minus twice the area of the interface.

4 Convex gradient functionals

4.1 Confinement to a ball

We begin with a lower bound for the isoperimetric deficit in terms of a volume integral. The
following lemma can be obtained as a corollary of a quantitative isoperimetric inequality du to R.
Hall [22]; for the convenience of the reader, we give here a direct proof. Denote by� #$�%� the
�-dimensional Lebesgue measure of a set% � �

� , and by&'��%� its perimeter.

Lemma 4.1 If % � �
� has finite perimeter, then

&'��%�� &'��%��

&'��%��
	 (�

���

�
�

�
�

���������� ����� (4.1)

where� is the radius of%�, (� � �	��� � �������
�, and)� � ���� ������ 	�����.

PROOF. We will use a simplified version of Hall’s argument to show that all but a fraction of the
volume of% can be enclosed in a large box in�� , and use that to bound the integral in Eq. (4.1).
Since the integral is bounded above by�	��� � ������� 	 ��	, we may assume without loss of
generality that�&'��%�� &'��%����&'��%�� 	 ��	. Let � �
� be the volume of% to the left of
the hyperplane�� � 
 (see Fig. 2). We assume that� ��� � � #$�%��	, that is, half of the volume
of % lies in the negative half-space. Applying the isoperimetric inequality to the parts of% on
either side of the hyperplane�� � 
, and subtracting twice the area of the interface, we obtain for
the perimeter of%

&'��%� 	 ���




� �
�

��

������






� #$�%�� � �
�

��

������
�
� 	� ��
� �
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Let ��
� � � �
��� #$�%� be the volume fraction of% to the left of the hyperplane�� � 
. Using
that� #$�%� � ���

�, &'��%�� � ����
���, and solving for��, we obtain

	�

�
���
� 	 ������ 
 ��� ������� � �� &'��%�� &'��%��

&'��%��

Note that���� � ��	 by our choice of coordinates. We next use the concavity of the function
 �  ����� to see that for� � ��	

�� ��� �������

�
� �� ���	������

��	
� 	� 	��� 	 � �

Inserting the last equation into the previous one shows that that

	�

�
���
� 	 ������ � � (4.2)

so long as
&'��%�� &'��%��

�	��� � ��&'��%��
� � � ��	 � (4.3)

Since the right hand side of Eq. (4.2) is strictly positive, we can separate variables and obtain by
direct integration


� � 
� � 	�

� ��

��

�

������ � �
�� � 	�

�
� ������ �

���
� � 
 ������ �

���
� �

�
�

provided Eq. (4.3) holds for
 � �
�� 
��. Plugging in�� � ��������������

	������
�������
� �, �� � ��	 and


� � �, we conclude that all but a fraction�� of the volume of% lies to the right of the hyperplane

 � 	� ����� � 	�����. Repeating the argument for the right half of% and for the other� � �
coordinate directions, we see that all but a fraction	��� of the volume of% is contained in a box
of side length��� ������ 	�����. Since the diameter of this box is)��, it follows that�

�

�
�

���������� ���� � 	�	����� #$�%�
� �

���

(�

&'��%�� &'��%��

&'��%��
�

as claimed.

Lemma 4.2 Let 
 be a nondecreasing convex function on�� with 
 ��� � �, and define� by
Eq. (1.3). Assume that� is a nonnegative function on�� with � ��� 	 �, whose symmetrically
decreasing rearrangement� � is supported in the ball of radius�. Then there exists a translation
� such that, for any� � �,

� ���� � �� �� 	 (�

���� �� ��



� ������ �� ��

	 �
�������

�������� ��

��

�

where(� and)� the constants from Lemma 4.1.
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PROOF. The convexity of
 implies, via the co-area formula and Jensen’s inequality, that

� ��� 	
� �

�

&'���� � �
�* ��������� �� � (4.4)

where*�+� � +
 �+��� is a nonnegative, nonincreasing and convex function on�
� , ���� is the

radius of the ball�� � �
� �� � � �
, and����� is its derivative from the left [19, Eqs. (33)-(35)].

(Note that the convexity of
 ��� assumed there is obsolete, see [32, Proposition 4.1].) We set
* ��������� � � if � is a singular value of� � . Since Eq. (4.4) is an identity when� � � �, we have

� ���� � �� �� 	
� �

�

�
&'���� � �
�� &'���� � � �
��* ��������� �� �

Applying Lemma 4.1 to the integrand results in

� ���� � �� �� 	 (�

� �

�

&'���� � � �
�
������

*���������
�
����	�

�
����	�

���������� ������

�
(�

���

� �
����������

� �
������
����

�

&'���� � � �
�*��������� ������ �

In the second step, we have exchanged the order of integration and used that���� � � by our
assumption on the support of� �. To simplify notation, set

,�
� � � ������ �� 
�� �

� 


�

&'�
��� � � �
	*��������	 �� �

Clearly,

���
�
,�
��� ,�
��

	 � ,�
��,�
��

� �� ��
�

and we arrive at

� ����� �� ������������ ����,������� ,������
 ���� 	 (�

������ ��

� �
,����������������,������ ���� �

We conclude as in the proof of Lemma 3.1 that there exists a translation� such that

� ���� � �� �� 	 (�

������ ��


�
�������

,������� ��

��

�

The claim follows by estimating, for any� � �,�
�������

,������� �� 	 ,���

�
�������

�������� ���
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4.2 Identification of the limit

Lemma 4.3 Let ���
��� be a sequence of nonnegative functions in- �
����� and let� be a
gradient functional of the form given in Eq. (1.3), with
 strictly convex and increasing, and

 ��� � �. Assume that�� � � in ��. Assume furthermore that the rearrangements� �� are
supported on a common ball and converge weakly to some symmetrically decreasing function
� � - �
� with � ��� 	 �. If � ���� � � ��� then � � - �
�, and� ��� � � ���. If the
distribution function of� is absolutely continuous, then�� � � for some translation� .

PROOF. It is well-known that any convex increasing function
 with 
 ��� � � can be written in

the form


 �
� �

� 


�

�
������ �.�/��� �

� �

�

�
� / �� �.�/� �

where the measure. is defined on�� by the derivative of
 from the left,

.
�
��� ��

	
� 
 ���� �

Since
 is strictly convex,. assigns positive weight to every interval of positive length. By as-
sumption,���� ���� � � ���, that is,

���
���

� �

�

� ������ � /
�
�
���.�/� �

� �

�

� ����� � /
�
�
���.�/� �

Since for every/ 	 �,

���
���

� ������ � /
�
�
�� 	

� ����� � /
�
�
��

by Eq. (1.6), we conclude that

���
���

� ������ � /
�
�
�� �

� ����� � /
�
�
�� (4.5)

for almost every/ � � at least along a subsequence (again denoted by��). By continuity and
monotonicity in/ , Eq. (4.5) holds for all/ 	 �. For any" � �, the sequence

�����������

is uniformly bounded in�� � �� and hence weakly compact in��. The remainder is bounded by�
������������� �� � 	

� ������ � "�	
�
�
�� � 	

� ����� � "�	
�
�

����� �

where we have used that
 � 	�
 � "�	� for 
 	 " in the first step, and Eq. (4.5) in the second
step. The last term can be made small by choosing" sufficiently large, and we conclude that the
sequence��� is weakly compact in��. Choosing a subsequence (again denoted by��), we may
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assume that��� ! + weakly in��. By the uniqueness of weak limits, we have��� ! �� ,
proving that� � - �
�. By the continuity of the symmetric decreasing rearrangement in��,

� � � ���
���

� �� � � �

Since
� �� �� � � ��� � ���

���
� ���� � � ��� �

it follows that� ��� � � �� ��. If the distribution function of� is absolutely continuous, then the
Brothers-Ziemer theorem implies that�� � � for some translation� [19].

Lemma 4.4 Let 
 be a strictly convex, increasing function with
 ��� � �. Consider a (vector-
valued) sequence of functions+� � ��

�����
�� such that+� converges to some limit+ weakly in

��
�����

��� If

���
���

�
��


 ��+��� �� �

�
��


 ��+�� �� 	��

then

���
���

�
��


 �
�

	
�+� � +�� �� � �

PROOF. It suffices to show that under the assumptions of the lemma, there exists a subsequence
converging pointwise a.e. to+. This implies the claim by an application of Fatou’s lemma to the
sequence of nonnegative functions


 ��+��� 
 
 ��+��
	

� 

� �+� � +�

	

�
	 � �

By an approximation with bounded sets, we may assume that+� ! + weakly in������. To
show pointwise convergence, fix" � �, and consider the restriction of the functions+� to the set
�� � �

� � �+���� � "
. It follows from the convexity of
 that

���
���

�
� ������


 ��+��� �� 	
�
� ������


 ��+�� �� �

���
���

�
� ����	�


 ��+��� �� 	
�
� ����	�


 ��+�� �� �

Adding the two inequalities, we deduce from the assumption of the lemma that

���
���

�
� ������


 ��+��� �� �

�
� ������


 ��+�� �� �

On the other hand, since+� converges to+ weakly in��,

���
���

�
� ������


 ���+�� +

�+� � �+� � +� �� � �
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everywhere. We conclude that

���
���

�
� ������


 ��+���� 
 ��+��� 
 ���+�� +

�+� � �+� � +� �� � ��

Since the integrand is nonnegative by the convexity of
 , it converges to zero pointwise almost
everywhere in the region where�+���� � ". By strict convexity, the same is true for the sequence
�+� � +�. The proof is completed by taking"��.

4.3 Proof of Theorem 2

Assume for the moment that the functions�� are uniformly bounded and that their symmetric de-
creasing rearrangements� �� are supported on the ball of radius� for some� � �. By Lemma 4.2,
there exists a sequence of translations�� such that for any choice of� � �,

� ����� � �� ��� 	
(�

���� �� ���



� ������ ��� ��

	 �
�������

���������� ��

��

�

where(� and)� depend only on the dimension.
The sequence���� is clearly bounded uniformly in- �
�. It follows from the Sobolev embed-

ding theorem that the sequence������������ is compact in�! for � 	 0 	 ���� � ��. More-
over, since���� is uniformly bounded pointwise, a simple interpolation implies that������������

is compact in�! for all � 	 0 	 �. Choosing a further subsequence, we may assume that
����������� � � in ��. To estimate the part of���� outside the ball of radius)��, we use that
for any� � �, � ������ ��� ��

	� � ������� ��
	 �� �, and

���
���

�
�������

��������	� �� � � �

On the other hand, �
�������

���������� �
�

��������� � ����
� �

Taking first��� and then�� � shows that

���
���

�������� ����	������ � � �

thus���� is compact in�� (and by uniform boundedness, also in�! for � 	 0 	�). This implies
the claim in the case when
 �
� � �
�. If 
 is strictly convex, then we may apply Lemma 4.3 to the
sequence���� to see that implies that there exists a translation�� such that��� � �. We conclude
with Lemma 4.4 that

���
�
�
��
	
��� � ��

�
� �

��
	
������ � ��

�
�� � ����� �

This completes the proof in the case where the functions�� are uniformly bounded and their
rearrangements are supported in a common ball.
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Consider now the general case of a sequence of functions�� that satisfy the assumptions in
Eqs. (1.9) and (1.10). For� � � to be determined below, decompose the functions into layers,
�� � � �

� 
 ��
� , � � �� 
 ��, as in Eqs. (2.1)-(2.2). By Lemma 2.2, the functions� �

� also satisfy the
assumptions of the theorem, with�� in place of�. By Lemma 2.1, they are uniformly bounded,
and by construction, their symmetric decreasing rearrangements� ��� are supported in a common
ball.

If 
 is strictly is strictly convex, we estimate, for any translation� ,

�
��
	
���� � ��

�
� �

��
	
��� �

� � ���
�

 �

��
	
����

� � ���
�
�

We showed in the first part of the proof that

���
���

���
�

�

	
��� �

� � ��� � � �

For the second term we use

���
���


��
�
�
��
	
����

� � ���
�
� �

	

�
���
���

� ���
� � 
 � ����

�
� ����� �

It follows that

���
���

���
�
�
��
	
���� � ��

�
� � ���� �

which can be made as small as we please by taking���.
If 
 �
� � �
�, we have shown in the first part of the proof that there exists a sequence of

translations such that� �
� is compact in������ and����� is tight in��. Moreover, as� goes to

infinity, �������� becomes arbitrarily small. Hence���� �
� ��� are uniformly small, which implies by

Sobolev’s inequality that��� �
� ������� are uniformly small. We thus conclude that���� is compact

in ������, and����� is tight in��. This completes the proof.

5 Applications

In this section, we illustrate how to use Theorems 1 and 2 to establish that all minimizing sequences
for some variational problem converge up to the symmetries of the functional.

5.1 Dynamical stability of a gaseous star

As a first example, we will give a proof of the recent nonlinear stability results of G. Rein [15]
on gaseous stars. Consider a self-gravitating star, as described by the compressible Euler-Poisson
system:

1
2
� � �2 � � ��
21
 
 2� � �� � ��& �2�� 2��

�� � �32
(5.1)
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with the boundary condition�������� � �
� �� � �. Here,2�
� �� 	 � and �
� �� � �
� are the

mass density and velocity field of a gaseous star at time
 and position� � �
� , and

�"�
� �� � �
�
��� ����2�
� �� �� (5.2)

is the corresponding gravitational potential. For simplicity, we assume that the pressure is given
by& �2� � 2# . The energy functional

��2�  � � �

	

�
� ��2 ��


�

4 � �

�
2# ��� �

	

� �
2������ ����2��� ����

is formally conserved under the motion generated by Eq. (5.1). The first term in the energy func-
tional represents the kinetic energy, the second term is the contribution of the pressure, and the
third term is the gravitational potential energy. A family of steady states is obtained by minimizing
the time-independent functional

��2� �
�

4 � �

�
2#��� �

	

� �
2������ ����2��� ���� (5.3)

subject to the mass constraint
�
2����� � 5 . A symmetric minimizer is given by

2���� � 6�4� �7� � �"�����
��#��
� (5.4)

where7� � � is a Lagrange multiplier associated with the mass constraint, and�"���� is the
potential induced by2� through Eq. (5.2). The minimizer is unique up to translation. The main
result in [15] is the following.

Theorem [15] For 4 � ���, the symmetric steady state solution2���� is dynamically stable up to
translations, among possible weak solutions which satisfy the mass constraint and whose energy
does not exceed the energy of the initial values.

Here, the distance from2� is measured by

��2� 2�� �
�

4 � �

�
2# � 2#� 
 ��"� � 7���2� 2�� �� �

Notice that since4 � ���, the integrand above is non-negative, by a Taylor expansion around
2���� in 5.4. The crucial part is to establish that for any minimizing sequence2�� there exists a
sequence of translations�� on�� such that

������"� ���"� ��� � � � (5.5)

see Theorem 1 in [15], and similar arguments for stable galaxy configurations in [9-14].

PROOF. Denote by

��2� �
� �

2������ ����2��� ���� � ����"����
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the gravitational potential energy associated with the mass distribution2.

Step 1. The compactness of symmetric minimizing sequences follows from [15, Lemma 4.1].
It is shown there that (5.5) holds with no translations needed for any symmetric minimizing se-
quence, that is,

���
���

��2� � 2�� � � �

As a matter of fact, the splitting and scaling argument used in the proof leads to an a priori estimate
for the radius of2����, of the form��� � �$�

���
, with an explicit constant�$ .

Step 2.Given a general minimizing sequence2� with ������

�
2� � 5 . Using the equimea-

surability of2� with 2�� and the Riesz rearrangement inequality, we see that the sequence of sym-
metrizations2�� is again a minimizing sequence, and that

���
���

��2�� � ���
���

��2��� � ��2�� �

By Step 1,
���
���

��2�� � 2�� � � �

Since the Coulomb kernel���� �� � ��� ���� is strictly symmetrically decreasing and positive
definite, Eq. (5.5) follows directly from Theorem 1.

5.2 Stability in galactic dynamics

As a further illustration, we present an argument for the stability of symmetric steady states in
galactic dynamics which was communicated to us by Rein [33]. Consider a large ensemble of stars
(e.g. a galaxy) interacting by the gravitational field that they create collectively. In contrast to the
gaseous star problem in the last section, it is impossible now to study the dynamics of each indi-
vidual star. The most fundamental physical model for describing the dynamics of a galaxy is based
on kinetic theory, in which the ensemble is described by a phase space density��
� �� 8� rather
than by the particle density2�
� �� and velocity field �
� ��. Here��� 8� � �

� � �
� denote the

position and (independent) momentum variables. In astrophysics the dynamics of typical galaxies
or globular clusters is then described by the Vlasov-Poisson system.

1
� 
 8 � ��� ���� � �%� � �
�� � �32

(5.6)

where

2�
� �� �

�
��
� �� 8� �8 (5.7)

is the particle density corresponding to� , and the gravitational potential� again satisfies Eq. (5.2).
The sum of the kinetic and potential energies

���� � �kin��� 
 �pot�2� �
�

	

� �
�8������ 8� �8 ��� �

	

� �
2������ ����2��� �� ��
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is conserved under the dynamical system generated by Eqs. (5.6). The rare collisions between
stars are neglected in such a model. As a consequence, the Vlasov-Poisson system has an addi-
tional scaling symmetry and a continuum of conserved quantities given by the so-called Casimir
functionals

���� ��
� �

������ 8�� �8�� �

where� is a convex function satisfying appropriate growth conditions. For simplicity, we assume
here that���� � � ����& with � 	 9 	 ��	. Steady states can be obtained by minimizing

���� 
 ���� (5.8)

under the constraint that the total mass
��

� �8�� � 5 is a prescribed positive constant.
The machinery of the present paper does not apply directly to the variational problem in

Eq. (5.8). It was pointed out by Rein [33] that the problem can be reduced to one in terms of spatial
densities2 � 2���. We gratefully reproduce his argument here; details can be found in [14].

The idea is to perform the minimization problem in Eq. (5.8) in two stages,

���
� 	

��
���
%� �%��
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����� 
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�
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�

 �pot�2�
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The inner minimization amounts to computing for a given particle density2 the composition�Æ2,
where for� 	 �

���� � ���

��
����8�� 


�

	
�8����8� �8

��� � � � � �������

�
��8� �8 � �

�
� (5.9)

By the strict convexity of�, the minimizer in Eq. (5.9) is uniquely determined by�, and thus any
minimizing phase space density for Eq. (5.8) is uniquely determined by the corresponding particle
density. The relationship between� and� can be made explicit by noting that the their Legendre
transforms�� and �� satisfy ���
� �

�
���
 � �8���	� �8. In particular, for���� � � ����& we find

that up to a multiplicative constant��2� � 2# with 4 � � 
 ���9 
 ��	� � ����� ����.
The outer minimization problem is thus reduced to minimizing

��2� �

�
��2���� ���

� �
2������ ����2��� ���� (5.10)

over particle densities2 satisfying the mass constraint
�
2��� �� � 5 . This problem has precisely

the form of Eq. (5.3) considered in Section 5.1. In particular, there exist symmetric steady states
with the particle density given by Eq. (5.4). The corresponding symmetric minimizing phase space
density is given by

����� 8� �
�
7� � �8���	� �"����

�&
�
� � 	 9 	 ��	�

We claim that from the point of view of stability for the Vlasov-Poisson system all the rele-
vant knowledge for the variational problem in Eq. (5.8) can be extracted from its reduced form in
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Eq. (5.10). To see this, let�� be a minimizing sequence for Eq. (5.8), and let2� be the correspond-
ing sequence of particle densities determined by Eq. (5.7). Since2� is a minimizing sequence for
the reduced problem in Eq. (5.10), we conclude from Section 5.1 that2� converges (up to suitable
translations��) to some particle density2� and����"� � ��"� in ��. Choosing a subsequence
and using the special form of�, we may assume that the sequence of phase space densities����
converges weakly in�����& to some limiting function��. Since������ is compact in��, the
energy-Casimir functional� 
 � is lower semicontinuous, and its values must converge along the
sequence, and we conclude that���� � �� strongly in�����&. It follows that�� is the unique min-
imizer for the full problem in Eq. (5.8) determined by2����. In summary, there exists a sequence
of translations�� such that���� � ��.

5.3 Maximizing sequences for the HLS functional

We will show how to use Theorem 1 to verify that all maximizing sequences for the Hardy-
Littlewood-Sobolev inequality converge up to scalings, translations, and phase factors, as first
proved by Lions [7, 8]. The Hardy-Littlewood-Sobolev inequality states that

���� ��
� �
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� 	

for any complex-valued� in ������. Both the functional� and the�-norm are invariant under
the translation by vectors" � �

� and scaling by factors; � �
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�
�� "
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The sharp constant
���� �� � 
��

��� ����
�

���� (5.11)

was determined by Lieb in [4]. It is achieved for

���� �



	

� 
 ����
����

� (5.12)

in fact,� is the unique symmetrically decreasing optimizer of Eq. (5.11) with
�
�����

����� �� � ��	
[27, Theorem 4.3 and Lemma 4.8].

Lieb’s identification of the optimizers combined the conformal invariance of Eq. (5.11) and
the sharp Riesz rearrangement inequality with a subtle compactness argument. The most direct
proof of the sharp Hardy-Littlewood-Sobolev inequality uses the competing symmetries technique
to construct special maximizing sequences with good convergence properties, thus sidestepping
the compactness issue [34, 35], (see [27, Theorem 4.6]). In fact, all maximizing sequences for
Eq. (5.11) converge to� up to suitable scalings, translations, and multiplication by phase factors:

Theorem [7] For every sequence of functions�� on�� satisfying

������� � � � ���
���

����� � ����
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where� is given by Eq. (5.12), there exist sequences of scalings<�, translations��, and phase
factors'()� such that

���
���

��'()���<��� � �� � � � ���
���

��'()���<��� � �� � � �

PROOF. Step 1.Although it is not explicitly stated there, Lieb shows in his proof of the maximality
of � that every maximizing sequence of symmetrically decreasing functions�� for converges to�
up to scalings [4, p. 536]. In other words, there exists a sequence of scalings<� such that

���
���

��<��� � ���� � � �

Since� is continuous in�� by the (non-sharp) Hardy-Littlewood Sobolev inequality, it follows
that

���
���

��<��� � �� � � �

The compactness of symmetric minimizing sequences up to scaling can also be shown directly, by
using the splitting and scaling technique developed in [12].

Step 2. Consider a general maximizing sequence of nonnegative functions��. Clearly� �� is
again a maximizing sequence. By Step 1, there exists a sequence of scalings such that

���
���

��<��
�
� � �� � � �

Since�� is a maximizing sequence, we have

���
���

����� � ���
���

��� ��� � ���� �

The kernel��� � �� � �� � ���' is positive definite and symmetrically decreasing, and we may
apply Theorem 1 to the sequence<��� to obtain a sequence of translations such that

���
���

����<��� � �� � � �

in particular,��<��� � � pointwise almost everywhere at least along suitable subsequences.
Since������ ������� � ������, it follows from the characterization of the missing term in Fatou’s
lemma that

���
���

����<��� � ���� � � �

Conclusion. For a general maximizing sequence of real-valued functions, it is easy to see
that there exists a subsequence along which either the positive parts����� or the negative parts
����� form again a maximizing sequence, and that the other part converges to zero. Similarly,
Schwarz’ inequality implies that the real and imaginary parts of a complex-valued sequence are
again optimizing sequences, and that their ratio converges to a constant.
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5.4 Minimizing sequences for the Sobolev constant

Finally, we show the corresponding compactness result for minimizing sequences of the Sobolev
inequality . The Sobolev inequality bounds the norm of a function in������ by a corresponding
gradient norm,

� ��� ��

�
��� �� �� 	 ���� ����� ����� � �� �

��

�� �
� � � � 	 ��

The functional and the��-norm are invariant under translation by vectors" � �
� and scaling by

dilation factors; � �

����� � ���� "�� <���� � ;���������;� �

The sharp constant
���� �� � ���

��� ���
�

��

�

� ��� (5.13)

was determined by Talenti [2] and Aubin [3]. For� � � it is assumed for the function

�*
���� �



�

( 
 )����������
�����

� (5.14)

where( and) are positive constants determined by the values of������� and
�
�����

��
�

. For� � �,

���� �� is the isoperimetric constant in�� , which is assumed not in- �
� but by the characteristic
function of a ball in�� . The optimizer is unique up to scaling, translation, and multiplication by
constants.

In the proof, Talenti uses the rearrangement inequality for convex gradient functionals and
Aubin uses the isoperimetric inequality to reduce the variational problem to radially decreasing
functions. Then they analyze the ordinary differential equation associated with the resulting one-
dimensional problem. In the special case� � 	, Eq. (5.13) is again conformally invariant, and
the competing symmetries technique quickly yields the optimizers. A recent proof, using optimal
transportation techniques, avoids compactness issues altogether [36]. We will give a proof that for
� � �, all minimizing sequences converge up to scalings, translation, and multiplication by phase
factors. In the case� � �, the minimizer is a function of bounded variation, but the minimizing
sequence still has some tightness properties.

Theorem [7] Given a sequence of functions�� � - �
����� with

������� � � � ���
���

� ���� � ���� �� �

1. If � � � , there exist sequences of scalings,<�, translations��, and phase factors'()� such
that the sequence defined by satisfies

���
���

��'()���<��� � ���� � � � ���
���

� �'()���<��� � �� � � �

26



2. If � � �, there exist sequences of scalings<�, translations��, and phase factors'()� such
that the sequence of gradients��'()���<���
 is tight in�� and the sequence'()���<���
is compact in�

�
��� �

PROOF. Step 1.Let �� be a sequence of symmetrically decreasing functions with�������� � � and
���� ���� � ���� ��. By scaling, we may assume that�

�����

��
�

� �

�
�����

��
�

� �
�

	
�

Choosing a subsequence, we may assume that�� converges weakly in- �
� (or in �� if � � ���
and in��� to some symmetrically decreasing limit function� � - �
�. Since the�� are sym-
metrically decreasing, they also converge pointwise almost everywhere. Clearly,��������� � � and
� ��� � ���� ��.

We want to show that the sequence�� can concentrate neither at��� � � nor at��� � �. Let
� be a symmetrically decreasing smooth cutoff function with values in��� ��, satisfying� ��� � �
for ��� 	 � and� ��� � � for ��� � 	. For� � 	, we split�� into three parts,

�+��� � � �������� � ����� � � ��������� � �� � � � �+ � �� �

and correspondingly for the functions��. It follows from the uniform bounds in Lemma 2.1 and
the pointwise convergence that��� � �� strongly in�! for all 0 	 �, and that�+� � � strongly in
�! for all 0 	 ��. Let

=+���� � ���+����
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We compute
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Using the product rule and the definition of� , the first term on the right hand side is estimated by�
�� ������� ��������� �� 	 � ������
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where the constant� depends only on the cutoff function� . We have used the definition of the
sharp Sobolev constant���� �� to estimate the first term, H¨older’s inequality for the second, and
the fact that�� is symmetrically decreasing for the third. The second and third terms on the right
hand side of Eq. (5.15) are similarly bounded below by�
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=+����

	����
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�
���� � ����������� �� 	 �

=�����
	����

���� ��� �	�����	�� �

27



Inserting these estimates into Eq. (5.15) and taking limits, we deduce that

���
���

�
��

��
�� =+����� =�����
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�
=�����

	������� � ����� �

We have used that���� ���� � ���� ��, and that�� converges to� pointwise. Since=+���� � ��	
and =����� � ��	 for all � � 	 by our choice of scaling, the strict convexity of the function

� 
���

�

implies that
���
���

�
=+���� 
 =�����

�� � ��� �� �

It follows that �� � � strongly in���, and consequently������� � �. By the definition of the
optimal constant���� �� and Fatou’s lemma, we have�������� � � ��� � ���� ��, and���
converges to�� strongly in��. Thus� is an extremal for the Sobolev inequality, and is given by
Eq. (5.14), with the scaling parameters( and) determined by

������� � � �
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�����

��
�

�
�

	
�

Since all suitably scaled subsequences converge to the same limit, the entire sequence converges
to � in ���� � ��, as claimed. For� � � we use that��������� � � and���� ���� � ���� �� which
��� ��� weakly in measure.

Step 2. Consider a minimizing sequence of nonnegative functions��. Clearly the symmetric
decreasing rearrangements� �� form again a minimizing sequence, If� � �� by Step 1, there exists
a sequence of scalings<� such that������ ��<��

�
� � ����� � � � ������� �<��

�
� � �� � � �

For � � �, the limiting function� is strictly symmetrically decreasing, strictly positive, and has
a continuous distribution function. By Theorem 2 applied to<���, there exists a sequence of
translations�� such that

���
���

� ���<����� � �� � � �

It follows from the Sobolev inequality that

���
���

����<����� � ����� � � �

On the other hand, if� � �� we then have� �<��
�
��� � ��� and������ ��<��

�
� � ����� � �, and

we can apply the second part of Theorem 2.
Conclusion.For a general complex-valued minimizing sequence, the claim follows by splitting

the sequence into its real and imaginary parts and using the convexity inequality for gradients [27,
Theorem 7.8].
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