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1 Introduction

1.1 Description of the problem

Lack of compactness is the main analytical difficulty in the study of functionals on unbounded
domains. Ever since the Strauss radial lemma [1], it has been well-known that symmetry plays
an important role in understanding the compactness in such problems. For many symmetric func-
tionals, the existence of minimizers can be established by first restricting the problem to radially
symmetric functions with the help of a rearrangement inequality, and then using the additional
compactness of symmetric functions to find a convergent minimizing sequence. Particular exam-
ples where this strategy has been used are the determination of the sharp constants in the Sobolev
and Hardy-Littlewood-Sobolev inequalities [2-4], and the determination of ground states [5]. Itis
also known that certain dynamical stability problems can be reduced to the study of related vari-
ational problems [6]. Here, it is the compactness of arbitrary minimizing sequences, not just the
existence of minimizers, that plays the key role. In a series of famous papers [7, 8], a general
abstract concentration compactness principle was introduced which has lead to many applications.
It should be pointed out that in order to apply this principle to establish compactness for a specific
problem, some additional analysis is usually needed.

In a series of recent investigations of stable galaxy configurations and gaseous stars [9-15], a
splitting trick is combined with the crucial scaling property of the energy functional to establish
compactness of all symmetric minimizing sequences. This allows to construct symmetric steady
states, and to show that they are dynamically stable under symmetric perturbations. This restricted
stability problem is of interest in itself and had been open for a long time. In order to show sta-
bility among all possible perturbations, an argument in the spirit of the concentration compactness
principle was employed to allow for possible translations.

The objective of this article is to closely examine the role of translations for minimizing se-
guences via elementary knowledge of their symmetrizations. We demonstrate that the difference
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between a minimizing sequence and the corresponding sequence of symmetrized functions is char-
acterized by appropriate translations. In many cases, this implies that every minimizing sequence
converges strongly modulo scalings and translations. Besides the interest of our results in classical
analysis, this characterization also suggests a a practical two-step procedure for proving compact-
ness on an unbounded domatbtep 1.Show compactness of all symmetric minimizing sequences.
This implies the existence of minimizers; it is also a necessary ingredient in the proof that these
minimizers are dynamically stable under symmetric perturbati@tep 2:Show compactness up

to translations for general minimizing sequences, assuming that their symmetrizations are com-
pact. This implies dynamical stability under more general perturbations. The main part of this
article is devoted to Step 2 for two classes of functionals that appear in many applications of the
concentration compactness principle. We hope that our approach can give another perspective on
concentration compactness for symmetric functionals.

1.2 Main results

The first class of functionals we consider is given by convolution integrals of the form

IU)=/]?@M«z—mf@ﬁm@, (1.1)

whereK € L}, _(R™) is a nonnegative symmetrically decreasing functioiR6n Riesz’ rearrange-

ment inequality says that convolution integrals generally increase under symmetrically decreasing
rearrangement [16, 17], in particular

I(f) <T(f). (12)

Here, f is a nonnegative measurable function that vanishes at infinityf amlits symmetrically
decreasing rearrangement. If eitli€ror f* is known to be strictly symmetrically decreasing, and
Z(f*) < oo, then equality can occur only ffis a translate of * [5, 18]. The second class consists
of gradient integrals of the form

7(7) = [ F(Vihds. 13)
whereF is an increasing convex function & with F(0) = 0. It is well-known that

J(f) = T(f) (1.4)

for every nonnegative measurable functfpan R that vanishes at infinity. lF is strictly convex,
J(f*) < oo, and the distribution function of is absolutely continuous, then equality in Eq. (1.4)
occurs only whery is a translate of * [19].

We are interested in applying these rearrangement inequalities to sequences of functigns. Let
be a sequence of nonnegative function®RBnhthat vanish at infinity, and let be a symmetrically
decreasing function. We make the additional assumptiongthsipositive, strictly symmetrically



decreasing, and defines a positive definite integral kern&™nand that/" is nonnegative and
strictly convex withF'(0) = 0. Then it is easy to see that both inequalities are preserved under
taking limits: Using the continuity of with respect to the norm defined by the positive definite
quadratic forniZ, we clearly have

lim Z(f; —g) =0 = Tim Z(f,) < lim Z(f;) = Z(g) . (1.5)
Likewise, combining Eq. (1.4) with Fatou’s lemma shows that
lim J(fi—9)=0 = lim J(f,)> lim J(f;) > T(g) - (1.6)

Settingf, = f andg = f*, we recover the rearrangement inequalities in Eqgs. (1.2) and (1.4). Our
main result is that equality in either Eq. (1.5) or Eq. (1.6) implies, under suitable assumptions on
K, F, andg, that the sequencg, converges tg modulo translations.

Theorem 1 LetZ be a convolution functional as given in Eq. (1.1), whétes a strictly symmet-
rically decreasing function that defines a positive definite kernéR'6n Let g be a symmetrically
decreasing function oR™ with 0 < Z(g) < oo, and let{f, },>1 be a sequence of non-negative
functions onR™ which vanish at infinity, with symmetrically decreasing rearrangemghtsAs-
sume that the sequence of rearrangemejitapproacheg in the sense that

li_)rn I(fr—g)=0. (1.7)
If the values of the functional convergeZ(y) along the sequence,
lim Z(f,) = Z(g) (1.8)

then there exists a sequence of translatidp®n R™ such that
lim Z(T,, f, —g) = 0.
n—oo

The positive definiteness df ensures thal (f — g) = 0 only for f = ¢g. The assumption can
be dropped ifZ(-) is replaced byZ(| - |) in the assumptions and conclusions of the theorem. The
classical equality statement for Eq. (1.2) is recovered by taking f andg = f*.

Theorem 2 Let 7 be a gradient functional of the form in Eq. (1.3), whéfas a convex, strictly
increasing function oR*™ with F(0) = 0. Letg be a symmetrically decreasing function on
R™ that vanishes at infinity and satisfies< J(g) < oo, and let{f,},>; be a sequence of
nonnegative measurable functionsRft which vanish at infinity, with symmetrically decreasing
rearrangementg;’. Assume that the symmetrically decreasing rearrangemgnépproachg in
the sense that

and that the values of the functional along the sequence convergégto
lim J(f.) = J(9)- (1.10)

Then the following statements hold.



1. If Fis strictly convex and the distribution function gfis absolutely continuous on the
interval where it is finite and positive, then there exists a sequence of transl@tjcosR™
such that )

2. If F(t) = t, then there exists a sequence of translatiBhssuch that7,, f,, is compact in
Lm-1(R™) and V(T, f,) is tight in L}(R™). If f € BV is a limit of a convergent subse-
guence, therf* = ¢, and all level sets of are balls.

The purpose of the factdy/2 in the first conclusion of the theorem is to guarantee that the infimum
is finite. The factor can be dropped under additional assumptios amparticular if F'(t) = ¢?

for somep > 1 or if F'is linearly bounded. The equality statement for Eq. (1.4) due to Brothers
and Ziemer [19] is again recovered by settifig= f andg = f*.

In many applications to variational problems, assumptions (1.8) and (1.10) hold naturally for
minimizing sequences, while assumptions (1.7) and (1.9) are related to compactness for symmetric
minimizing sequences. Theorems 1 and 2 provide weak bounds on the asymmetry of a function in
terms of the symmetrization defidt( f*) — Z(f) or 7(f) — J(f*): Settingf} = ¢ for all n, we
see that the symmetrization deficit can be small only whgis close to a translate gf

1.3 Description of the proofs

Mathematically, our results are inspired by so-called asymmetry inequalities, which estimate the
difference between a function or a body and a symmetric one by a related geometric quantity.
Classical examples are the Bonnesen-style isoperimetric inequalities, which give lower bounds on
the excess perimeter of a planar set, as compared with the disc of the same area, in terms of geo-
metric quantities such as the in-radius [20] (see [21]). The most powerful result in that direction
is a quantitative isoperimetric inequality due to Hall [22], which bounds the symmetric difference
between a measurable set and a (suitably translated) ball in terms of the isoperimetric deficit (a
recent application of this result appears in [23]). Related statements have been proved for the log-
arithmic capacity in two dimensions and for the capacity of convex sets in higher dimensions [24].
We are not aware of estimates for the difference between the two sides of Riesz’ rearrangement
inequality in the literature, even though such estimates are readily obtained for the simpler two-
point rearrangement [25, 26]. We expect that asymmetry inequalities should hold for large classes
of symmetric functionals, including the Coulomb electrostatic energy.

Our strategy for the proofs of Theorems 1 and 2 is as follows. We first write each function as
the sum of a bounded function supported on a set of finite volume, and a function whose contri-
bution to the functional is negligible (Section 2.2). To ensure that this decomposition commutes
with translations and rearrangements, we use a well-known technique closely related to the layer-
cake principle [27, Theorem 3.9]. In the second step, we consider the symmetrization deficits
Z(f*) —Z(f)and J(f) — J(f*) for a bounded function whose support has finite volume (Sec-
tions 3.1 and 4.1). We show that a function with a small symmetrization deficit must be almost
supported on a suitably translated ball whose size we control (Lemmas 3.1 and 4.2). This is a key



step that provides some basic compactness. It has the role that Lieb’s compactness lemma [28]
has played in many minimization problems (see, for example, [29, 30]). In the third step (Sec-
tions 3.2 and 4.2), we pick subsequences that converge weakly up to translations, and identify their
weak limits with the help of the classical equality statements for the rearrangement inequalities in
Egs. (1.2) and (1.4). This step is motivated by the characterization of the missing term in Fatou’s
lemma [31] (see [27, Theorem 1.9]). The proof is completed in Sections 3.3 and 4.3 by combining
the three steps. In the final section, we discuss some applications.

2 Prdiminaries

2.1 De€finitions and notation

Let f be a nonnegative measurable function®¥h. We say thalf vanishes at infinityif for every
t > 0, the level sefx € R™ | f(z) > t} has finite measure. Thaistribution functionof f is
given by

p(t) = / 1i(z)>e dx .

The symmetric decreasing rearrangemefit of f is the symmetrically decreasing, lower semi-
continuous function equimeasurablefto

fr(x) =sup{t >0 | p(t) > wnlz|"}

wherew,, is the volume of the unit ball ilR™.

2.2 Decomposition into layers

In the proofs of Theorems 1 and 2, we find it useful to write a given fungtias a sum ofayers
f = f*+ f* where the middle layer

f* = [min{f, f*(R7)} = f1(R)], (2.1)
is bounded and has level sets of bounded measure, and the sum of the top and bottom layers
fr=f—f =min{f, f*(R)} +[f - fF(R7)]4 (2.2)

will be negligible for R sufficiently large (see Fig. 1). If is equimeasurable tg, then f* and

f* are equimeasurable t8 andg®, respectively. In particular, this decomposition commutes with
rearrangements and translations. The following lemma will be used to obtain uniform bounds on
the sequencg®.

Lemma2.1 LetZ be a convolution functional of the form given in Eq. (1.1) witlsymmetrically

decreasing and not identically zero, and |€tbe a gradient functional as defined in Eq. (1.3)
with F' convex, strictly increasing, andi(0) = 0. Fix R > 1 and I, .J, > 0. For a nonnegative

5



709 ) \ 140

X X X

Figure 1:Construction of the layerg? and f*.
measurable functiorf that vanishes at infinity, define the middle layérby Eq. (2.1). There exist
constants”, (R, Iy) andCy (R, Jy) such that
110 < C1(R, o)
for all functionsf withZ(f*) < I, and
1 f*]]o0 < Co(R, o)
forall f with 7(f*) < Jo.

PROOF.  Since||f?||. increases withk, it suffices to prove the claim for large values®f For
the first claim, we use the fact that and f* are symmetrically decreasing to estimate

[ @K ) ey

K2R ") (mw,R " f*(R))?
K(2R™") (mwn R f]]s0)” -

Z(f7)

v

AVARRAVS

In the last line, we have used that®||,, < f(R!) by construction. The first claim follows since
K(2R™') > 0for R sufficiently large by assumption. To see the second clain, lbetthe function
onR" determined by byV f*(z)| = ¢(|x|), and compute in polar coordinates

70 > / F(4(r)) muwnr™ dr

R—l

R
—m — d
> mw,R"™(R—-R1) F( o ¢(7")_R _;%_1>

b
> 2—m m )
> mwyR F( R )
In the second step, we have estimated the factor from below byR!'~™, then applied Jensen’s
inequality. Since F'(z/t) is nonincreasing in, we can replac&? — R~! by R in the third step.
The claimed bound ofif?|| follows sinceF is strictly increasing. L

It is easy to see that the assumptions in Egs. (1.9) and (1.10) of Theorem 2 hold also for the middle
layersf? andg® of the functionsf,, andy:



Lemma 2.2 LetJ be a gradient functional of the form in Eq. (1.3) withconvex, nondecreasing,
and F'(0) = 0, and letg be a symmetrically decreasing function wift{g) < oo. Fix R > 1, and
decompos¢,, f;, andg into layers as in Egs. (2.1)-(2.2). If

lim J(f; =) =0,

then

lim J(f;"—¢") =0, lim J(f;*—g")=0.
If, additionally,
then

lim J(fy) = J(¢"), lim J(f))=T(g") 5

n—o0 n—o0

PROOF Since
Vf*b(l') = Vf*(l') 1R71§‘1"SR s
we can rewrite the first assumption as

lim {J(f;" = ¢") + T(fy" —9")} =0,

n—o0

which clearly implies that both summands converge to zero, as claimed. To see the second claim,
we note that

V' (x) = V@) 1< s@<s- (1)
and rewrite the additional assumption as
Jim {(T(f) = T(6") + (T (f) = T(g")} = 0.
The claim follows since the limit of each summand is nonnegative by Eq. (1.6). =

The corresponding statement holds for the functidhappearing in Theorem 1.

Lemma 2.3 LetZ be a convolution functional of the form in Eq. (1.1) withpositive definite and
strictly symmetrically decreasing, and lgbe a symmetrically decreasing function wiity) < oc.
Fix R > 1, and decompos§,, f andg into layers as in Egs. (2.1)-(2.2). If

n—00

then
lim Z(f* —¢") =0, lim Z(f* —¢*) =0.
n—oo n—oo
If, additionally,
Jlim Z(f.) = Z(g) ,
then

lim Z(f2) = Z(g") . lim Z(f2) = Z(g") .

n—00 n—0o0



The proof requires some auxiliary estimates. The first lemma provides three tail estimates for
symmetrically decreasing functiogsn terms ofZ(g).

Lemma 24 If K andg are nonnegative and symmetrically decreasing, then, forfany0,

1) > KeR)| /| e dx)2 , (2.3)

o) > ([ IRCLEER ) ( /| e i) . (2.9)

Furthermore, for every, € L'(R™) supported in the ballr| < Ry, and every > 0 there exists a
numberR > 0 which depends only o', R,, ande such that

/| | I =) dr < <l T (2.5)

PROOF Egs. (2.3)-(2.4) follow immediately from the fact that bdthandg are nonnegative and
symmetrically decreasing. To see the weak tail estimate in Eq. (2.5), we separate two cases. If

(3/2)""

T 1/2
. (9)

gl <

then we have folR > R,

I(g)'*,

/>R9(:1:)|K*h(a:)|d:v < |Al]lg|LK (R — Ry) < ||h||1(3/2) - [z(R_RO)

and Eq. (2.5) follows by choosing large enough such thaf (R — R)(3/2)™ ! < 2. If, on the

other hand,
/ g(x)dx >
|z|<R1

for someR; > R,, then we estimate fak > 4R,

/>R9(I)IK* h(z)| dz < ||h||1/ g9(@)K(|z] = Ry)dz .

lz|>4R:

(3/2)m_11-(g)1/2

The integral on the right hand side is bounded by

|+ 2R\
/ g(@)K(|lz| — Ry)dr < / 9(@)K(|z| + Ry) (||71> dx
i jal>2 R ]

< (3/ 2)’"’1f—

le|<Rry I
< eI(g)'?.

In the first step, we have estimated) < ¢(|z|—2R;) and changed variables in polar coordinates.
Next, we have used that| + 2R, < (3/2)|z| and applied Eq. (2.4). Inserting the last inequality
into the preceding equation again yields Eq. (2.5). u
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Lemma?25 Letg, be a sequence of be non-negative, symmetrically decreasing functi@®i% on
which vanish at infinity, and decompose them into layers by Egs. (2.1)-(2.2) for/ame. Let

g be a nonnegative, symmetrically decreasing functioR&nsuch thatZ(g) < oo, whereZ is
defined by Eq. (1.1) with a strictly symmetrically decreasing, positive definite kiErnél

lim Z(g, —g) =0,

n—oo
then
lim Z(g, — ¢") =0, lim Z(gy — ¢") =0,
n—oo

n—o0

PROOF It suffices to establish that a subsequence,ofonverges tg pointwise almost every-
where; the claim then follows by applying Fatou’s lemma to

[ [ Hionte) + 5@t + 9001 - 6 (2) — * ig? ) — 4* K o — ) day

for # = b, u.
In order to prove pointwise convergence, we first notice that

lim Z(g,) = Z(g)

n—00

by Eq. (1.5). By Cauchy-Schwarz, the assumption implies

i [ [ (@) (@~ i) dedy = [ [ @K@~ 9)hio) dody

n—o0

for any function with Z(h) < oco. This means thak’ = g, converges td\ * g in the sense of
distributions. The sequengg is uniformly bounded in.; by Eq. (2.3). Since the functiong,

loc

are symmetrically decreasing, we can choose a subsequence (still dengtgdsbgh that

g, — ady+ go Inthe sense of distributions, and
Jgn — ¢go pointwise a.e.

Herea > 0, 4, is the Dirac mass at the origin, aggl > 0 is a symmetrically decreasing function
with Z(go) < oo. We need to show that= 0. To this end, fixany, € C'¢°. Sincesup,,»; Z(g,) <
o0, EQ. (2.5) of Lemma 2.4 implies that there exists for each(0 a numberR > 0 such that

sup/ gn(2)|K x h(x)| de < e .
jo|> R

n>1

It follows that

/(K*g)h = lim [ go(2)K * h(z)dx

n—oo
= lim lim gn(2)K * h(x) dz
R—00 n—00 ng ( ) ( )
= /K x {ady + go } () h(z) dx ,

9



where we have used that « g,, andg, converge in the sense of distributions. Sinds arbitrary,
we conclude that

K x{ady+ go} = K *x g,
which implies thatad, + g9 = ¢ by the positive definiteness df, and the desired pointwise
convergence follows. This completes the proof of the lemma. [

PROOF OFLEMMA 2.3. Applying Lemma 2.5 to the sequengg of symmetric decreasing re-
arrangements, we see that the first assumption implies the first claim. To see that the additional
assumption implies the second claim, we note that

lim Z(f;) <Z(¢"), lim Z(fy) < Z(g")

n—0o0

by Eg. (1.5). Similarly, using first Riesz’ rearrangement inequality and then the continuity with
respect to the norm defined by the positive definite quadratic grwe have

I [ [ foKe- e < [ [ g"(y) dady

Adding these inequalities proves the second claim of the lemma. u

3 Convolution integrals

3.1 Confinement to a ball

Lemma 3.1 Consider the convolution functiondl defined in Eg. (1.1) with some symmetrically
decreasing, nonnegative integral kerrf€l Let f be a nonnegative measurable function that van-
ishes at infinity, and assume that its symmetrically decreasing rearranggiensupported on

a ball of radiusR, and satisfie<(f*) < oco. Then there exists for any choice Bf > 2R, a
translationT’ such that

I(f) ~ I(f) > (K(2Ro) - K(R,)) ( [ 1w dx)2 .

I‘>R1

PROOF We decompose the kernel as
K = [K — K(2Ry)], +min[K, K(2R)] .

Since both summands are nonnegative and symmetrically decreasing, Riesz’ rearrangement in-
equality implies

Z(f*) = Z(f)

v

[ £ @8 ) minl (@ - ). K (2R dady
/ / [(2) fy) minlK (z — y), K (2Ry)] dady

v
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The first integral on the right hand side can be rewritten as
//f y)min[K(z —y), K(2Ry)] = /f K(2Ry) dzdy
— [ F@F K @R dsdy

where we have used thatis supported on the ball of radiug, in the first step, and the equimea-
surability of f with f* in the second. We obtain

()~ I(f) > / / F(2) f(W){ K (2Ry) — min[K (2R,), K (z — y)]} dzdy
[K(2Ry) — K(Ry)) / / F@) f @) Loy, didy

Lettingh(y) = [ f(2)1},—y>r, dz, we deduce by the mean value theorem that there exists a point
o SO that

[t dy = hw) [ 1)
We have shown that

I(f*) —I(f) > {K(?RO R1 }/f dyx /f 1‘,; zo|>R1 dx

v

> {K(2Ry) - K(Ry)} (/f(x)lw—xoz& dfc)z :

Setting? f(x) = f(z + zo) completes the proof. n

3.2 ldentification of the limit

Lemma 3.2 Let f, be a sequence of nonnegative functionsinand letZ be as in Eq. (1.1), with
a nonnegative symmetrically decreasing kerRellf f,, — f and f* — g weakly inL? for some
functionsf andg, then

Z(f) <Z(g) .

If K is strictly symmetrically decreasing afidg) < oo, then equality implies that there exists a
translation?” such thatl'f = g¢.

PROOF. For any nonnegative functione L?, we have

/f(x)h,(x dr = lim /fn dr < lim [ fr(2)h*(x )dx:/g(x)h*(x)da:.

n— 00

Sincef and f* are equimeasurable, it follows from the bathtub principle that

/ frdr = sup /f*(:v)dx: sup /f(x)d:vg/ g(x)dx
|z|<R A:Vol(A)=wm R™ J A A:Vol(A)=wm R™ J A |z|<R

11



for any R > 0. Applying the layer-cake principle we conclude that

[ ra@n s < [ g@hie) ds (3.1)

for every symmetrically decreasing functién If A is strictly symmetrically decreasing and the
integrals are finite, then equality in Eq. (3.1) can occur onlyffoe g.
It follows with Riesz’ rearrangement inequality that

I(f) < T(f*) < / f*(0)K + g(x) dv < I(g)

where we have applied Eq. (3.1) twice, first with= K x f* and then withh = K x g. If K is
strictly symmetrically decreasing, then equality in the Riesz rearrangement inequality implies that
there exists a translatidfi such thatl'f = f*. Furthermore, sinc& x f* and K x g are again
strictly symmetrically decreasing, equality in the last step impliesfthat g. n

3.3 Proof of Theorem 1

Let f,, g, and K be as in the statement of the theorem, and assume for the moment that the
functions f,, are uniformly bounded, and that their symmetrically decreasing rearrangelfijents
are supported in a ball of radiug By Lemma 3.1, there exists a sequence of translafigraich
that "
Tofn(x)dr < 1 — 0(n — 00). 3.2
[ Tdteie< (Zam =Tl (n = o0) 32)

Since||T,.f.|3 = || /1|3 is uniformly bounded, the sequen€gf, is weakly compact in’?, that
is, there exists a subsequence, again denotef layd a functionf with

Tofn = [ (n— 00) (3.3)

weakly in Z2. In light of Lemma 3.2, the valugé( f) is finite. Our goal is to show th&(7,, f,, —
f) — 0asn — oo. To this end, fixx > 0, and split

K= Kl\z\<e+K1\z\25 =K°+ K°,

so that
I(Tofu—f) = / (Tufu — FIK® % (Tofo — ) de
|z|<3R
+ / (Tfu — FYK® % (Tofo — f) dar + / (Tufu— FYK* % (T fo — f)dar .
ol >3R

The firstintegral on the right hand side goes to zero, because the sequatied’, /)1 ,<3r }n>1
is compact inZ? by the Hilbert-Schmidt theorem, and

(K * Tnfy) Ligjesk —> (K f) Lgj<sr  (n — 00).

12



For the second integral, notice that
J T T U < Wl [ fuli)ds =0 ()
z|>3R

by Eq. (3.2). The third integral is estimated by
/Rh@K%n@MwQMMMhm/|K@Mx
z|<e

which can be made small by choosiagsmall. We conclude thaf(7,, f, — f) — 0. Since
Z(f) = Z(g*) by assumption, Lemma 3.2 implies tl@atf = ¢ for some translatioffy. Thus we
have shown that

infZ(Tfn = 9) S (ToTufu —9) — 0 (n = o0)

at least along a suitable subsequence. Since the limit does not depend on the subsequence, this
proves the claim in the special case that the rearrangenfgraiee uniformly bounded and sup-
ported on a common ball.

Given a sequence of functiorfs, which satisfy the convergence assumptions of the theorem.
If the functionsf,, andg are not uniformly bounded or have level sets of large measure, we write
them as a sum of layerg,, = f° + f*andg = ¢° + ¢*, according to Egs. (2.1)-(2.2), where
R > 1 is a large number that will be chosen below. By Cauchy-Schwarz, and using fhas
equimeasurable witli,, we can estimate

inf Z(Tfu — g) < 3{inf Z(Tf, — ¢") + Z(f) + Z(9")} - (34)

By Lemma 2.1, the functiong’ are uniformly bounded, and by construction, their symmetric
decreasing rearrangements are supported on the ball of ladBg Lemma 2.3, the functiong’
satisfy the assumptions of of the theorem as well, witieplaced byy®. We have shown in the
first part of the proof that

lim inf Z(Tf° — ¢") = 0.

n—oo T

Furthermore, by Lemma 2.3, we have

lim Z(f2) = 7(g") .

n—o0

Taking limits in Eq. (3.4), we obtain

lim inf Z(T'f, — g) < 6Z(g") .

n—oo T

Since the right hand side can be made arbitrarily small by chodsiagge enough, this completes
the proof. [
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Figure 2:Proof of Lemma 4.1. The perimeter of the entire set is at least as large as sum of the perimeters of two
balls with volumed/ (¢) andV,, — V' (¢), minus twice the area of the interface.

4 Convex gradient functionals

4.1 Confinement to aball

We begin with a lower bound for the isoperimetric deficit in terms of a volume integral. The
following lemma can be obtained as a corollary of a quantitative isoperimetric inequality du to R.
Hall [22]; for the convenience of the reader, we give here a direct proof. Denct&kiyl) the
m-~dimensional Lebesgue measure of a4$et R™, and byPer(A) its perimeter.

Lemmad4.l If A C R™ has finite perimeter, then

Per(A) — Per (A*)

whereR is the radius of4*, o, = (21/’” — 1)/4mw?,, andB,, = —4y/mlog(l —271/m),

ProoOF We will use a simplified version of Hall's argument to show that all but a fraction of the
volume of A can be enclosed in a large boxi®i*, and use that to bound the integral in Eq. (4.1).
Since the integral is bounded above @y/™ — 1)/(4m) < 1/2, we may assume without loss of
generality tha{ Per(A) — Per(A*))/Per(A*) < 1/2. LetV (t) be the volume ofd to the left of

the hyperplane; = ¢ (see Fig. 2). We assume tHat0) = Vol(A)/2, that is, half of the volume

of A lies in the negative half-space. Applying the isoperimetric inequality to the pattsaf
either side of the hyperplang = t, and subtracting twice the area of the interface, we obtain for
the perimeter ofd

T { (@) 1-1/m N (Vol(A)m— V(t))lum} .

Wi w
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Lety(t) = V(t)/Vol(A) be the volume fraction of to the left of the hyperplane,; = . Using
thatVol(A) = w,, R™, Per(A*) = mw,, R™!, and solving for/’, we obtain
Per(A) — Per(A*)

Per(A*)

2R

—y ) Zy () -

Note thaty(0) = 1/2 by our choice of coordinates. We next use the concavity of the function
u — u'~1/™ to see that foy < 1/2

1— (1 - y)l—l/m - 1— (1/2)1—1/m

—2-2/m <1,
y - 1/2 <
Inserting the last equation into the previous one shows that that
2R /m
Y=y -y (4.2)
so long as
Per(A) — Per(A*
er(d) — Per(4") _ y<1/2. (4.3)

(21/m — 1) Per(A*) —
Since the right hand side of Eq. (4.2) is strictly positive, we can separate variables and obtain by
direct integration

Y2 1
t?"flﬁm/ J=Tm

dy =2R —logl—yl/m + log ?Jl/m ;
= {~10g(1 = 55/™) + 1og(1 — 1™ }

provided Eq. (4.3) holds for € (t,t,). Plugging iny, = % > 0,y = 1/2 and
to = 0, we conclude that all but a fraction of the volume ofA lies to the right of the hyperplane
t = 2Rlog(1 — 27'/™). Repeating the argument for the right half.éfand for the othern — 1
coordinate directions, we see that all but a fractlony; of the volume ofA is contained in a box

of side length—4 R log(1 — 2'/™). Since the diameter of this box i, R, it follows that

R?" Per(A) — Per(A*
//193 Y|>Pm rdrdy < 2(2my1)Vol(A) o (P)eT(A*) ( ) J

as claimed. ]

Lemma4.2 Let F' be a nondecreasing convex functionl®h with 7'(0) = 0, and define7 by
Eg. (1.3). Assume thgtis a nonnegative function dR™ with 7(f) < oo, whose symmetrically
decreasing rearrangemelit is supported in the ball of radiuB. Then there exists a translation
T such that, for any > 0,

(07

2
2 Wm(f*) (j (min(f*,¢)) /|m - 17 f(a)ze dw) :

whereq,,, andj3,, the constants from Lemma 4.1.

J(f)=T(f)
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PROOF The convexity ofF' implies, via the co-area formula and Jensen’s inequality, that

OE / " Per({f > h))G (' ()]) dh. (4.9)

whereG(z) = zF(z~') is a nonnegative, nonincreasing and convex functio®on(h) is the
radius of the balfz € R™|f* > h}, andr’(h) is its derivative from the left [19, Egs. (33)-(35)].
(Note that the convexity of''/? assumed there is obsolete, see [32, Proposition 4.1].) We set
G (]r'(h)|) = 0if his a singular value of * . Since Eq. (4.4) is an identity whefh= f*, we have

o0

J(f)=T(f) = /0 [Per({f > h}) — Per({f* > h})]G (Ir'(h)]) dh .
Applying Lemma 4.1 to the integrand results in

J(f) =T = am/oo P”%;; e / >h/ 1aeyispo i dadydh

= 2o [ s /mm " per(7* > WG (h)) dhrdy

In the second step, we have exchanged the order of integration and usethjhat R by our
assumption on the support 6f. To simplify notation, set

i(t) = T (min(f*,1)) = /0 Per({f* > h})G ("' (h)]) dh

Clearly, ‘
min(j(t),j(t2)) <

and we arrive at

T =Ty mindi (F@) 500N b dody > g [ [ 50@e ypani () dady.

We conclude as in the proof of Lemma 3.1 that there exists a translatsoch that

70 =712 g ([ i) w)

The claim follows by estimating, for arey> 0,

[ i@z [ s
|z[>Bm R |z]>Bm R
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4.2 I|dentification of the limit

Lemma4.3 Let {f,}.>1 be a sequence of nonnegative functiongiit'(R™) and let.7 be a
gradient functional of the form given in Eq. (1.3), with strictly convex and increasing, and

F(0) = 0. Assume thaf,, — f in L'. Assume furthermore that the rearrangemefitsare
supported on a common ball and converge weakly to some symmetrically decreasing function
g € Whtwith J(g) < oo. If J(fn) — J(g) thenf € Whi and J(f) = J(g). If the
distribution function ofy is absolutely continuous, thénf = ¢ for some translatiorT'.

PROOF. It is well-known that any convex increasing functiéhwith F(0) = 0 can be written in

the form . N
Ft) = / / Locr e du(r)dh = / it — ], du(r)
0 0
where the measureis defined orR™ by the derivative of' from the left,
v([0,h)) = F'(h) .

SinceF is strictly convex,v assigns positive weight to every interval of positive length. By as-
sumptionlim 7 (f,) = J(g), thatis,

nh_)r{.lo/ooo/UVfﬂ — T]+d$dV(T) = /OOO/[|Vg| — T]+dxd1/(7') )

Since for everyr > 0,

lim [[|Vf,— 7], do> /[|Vg| 7], do

n—o0

by Eq. (1.6), we conclude that

n— 00

lim [ [|[Vfa - 7']+ drx = /[|Vg| — T]+d$ (4.5)

for almost everyr > 0 at least along a subsequence (again denotef, hy By continuity and
monotonicity inr, Eq. (4.5) holds for alr > 0. For anya > 0, the sequence

Vinlvsi<a
is uniformly bounded in.! N L* and hence weakly compact iit. The remainder is bounded by
/|an|1vfn|2adx < 2/[|an| —a/2], dv — 2/[|vg| —a/2], (n—o0),
where we have used that< 2(¢t — a/2) for t > a in the first step, and Eq. (4.5) in the second
step. The last term can be made small by choosisgfficiently large, and we conclude that the

sequencd’ f, is weakly compact irl.!. Choosing a subsequence (again denoted, bywe may
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assume thaV f, — z weakly in L'. By the uniqueness of weak limits, we havef,, — V/,
proving thatf € W1, By the continuity of the symmetric decreasing rearrangemeht in

ff=lim fr=g.
n—00

Since
T < T < lim T(f) = T(9),

it follows that 7 (f) = J(f*). If the distribution function of is absolutely continuous, then the
Brothers-Ziemer theorem implies tHAf = ¢g for some translatiofi’ [19]. u

Lemma4.4 Let F be a strictly convex, increasing function wi{0) = 0. Consider a (vector-
valued) sequence of functions € L (R™) such thatz, converges to some limit weakly in
Li (R™).If

loc

lim F(|zn|)dx:/ F(|2)) d < oo,

n—00 Jpm
then )
lim F(§|zn—z|)dx:0

n—00 Jpm

PROOF. It suffices to show that under the assumptions of the lemma, there exists a subsequence
converging pointwise a.e. ta This implies the claim by an application of Fatou’s lemma to the
sequence of nonnegative functions

F(lzn]) + F(2) F(IZn — 2|

>0.
2 )2

By an approximation with bounded sets, we may assume:that » weakly in L' (R™). To
show pointwise convergence, fix> 0, and consider the restriction of the functionsto the set
{z € R™ : |2(z)| < a}. It follows from the convexity of” that

lim Pzl de > / F(l2))de,
|z(z)|<a

n=00 Jz(z)|<a

Jim Fls)) de > / F(l2)) ds
|z(z)|>a

n—00 J|z(z)|>a

Adding the two inequalities, we deduce from the assumption of the lemma that

lim F(|zn|)d:v:/ F(|z]) dx .
|2(z)|<a

0 Jx(e)|<a

On the other hand, sincg converges ta weakly inL!,

lim F’(|z|)i (zn — 2)dz =0

n=00 J|,(z)/<a Z|
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everywhere. We conclude that

lim Fz]) — F(|2]) — F'(|2]) = - (2 — 2) dz = 0.
=% Jiz(@)|<a 2]

Since the integrand is nonnegative by the convexity'pft converges to zero pointwise almost

everywhere in the region whefe(z)| < a. By strict convexity, the same is true for the sequence

|z, — z|. The proof is completed by taking— oc. n

4.3 Proof of Theorem 2

Assume for the moment that the functiofisare uniformly bounded and that their symmetric de-
creasing rearrangemernyts are supported on the ball of radifisfor someR > 0. By Lemma 4.2,
there exists a sequence of translatidhsuch that for any choice af > 0,

Qg

2
T =T 2 s (7 mint.2) [t &)
whereq,,, andj,, depend only on the dimension.

The sequencé, f, is clearly bounded uniformly i -1, It follows from the Sobolev embed-
ding theorem that the sequentgf, 1;/<s,,r is compact inL? for 1 < ¢ < m/(m — 1). More-
over, sincel, f,, is uniformly bounded pointwise, a simple interpolation implies that, 1, <s,.
is compact inL? for all 1 < ¢ < oo. Choosing a further subsequence, we may assume that
T folig<g.r — f N L. To estimate the part df, f,, outside the ball of radius,, R, we use that
for anye > 0, 7 (min(f;,)) — J (min(g,)) # 0, and

lim 1Tnfn($)>6 der =0.
n—oo |x|26m,R

On the other hand,

/ 17, fu(@)<e < / 1s(2)<e < cwmR™ .
|z[>Bm R

Taking firstn — oo and there — 0 shows that
T [[(T fn) Yyaf>pmrlh =0,

thusT;, f,, is compact inL' (and by uniform boundedness, alsdlififor 1 < ¢ < o). This implies
the claim in the case whefi(t) = |t|. If Fis strictly convex, then we may apply Lemma 4.3 to the
sequencd, f,, to see that implies that there exists a translafipsuch thafl, f = g. We conclude
with Lemma 4.4 that

int 7 (577 ~9)) < T(5TTf —9) —0 (1)

This completes the proof in the case where the functignare uniformly bounded and their
rearrangements are supported in a common ball.
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Consider now the general case of a sequence of funcfiptisat satisfy the assumptions in
Egs. (1.9) and (1.10). Fak > 1 to be determined below, decompose the functions into layers,
fo=f0+ ", g=¢"+ g* asin Egs. (2.1)-(2.2). By Lemma 2.2, the functigijsalso satisfy the
assumptions of the theorem, wigf in place ofg. By Lemma 2.1, they are uniformly bounded,
and by construction, their symmetric decreasing rearrangenjfghtee supported in a common
ball.

If F'is strictly is strictly convex, we estimate, for any translation

1 b 1 u u
I(5f~0)) < T(5T8~ ) + T (5T~ a9)
We showed in the first part of the proof that

1
lim inf — (be ) =0.

n—oo T

For the second term we use

T sup 7 (5 (772 — ") < 3 {Tm 70+ 76} < 766

n—oo T

It follows that
lim mfj( (Tfn — )) < J(g"),

n—oo T

which can be made as small as we please by takirg oc.

If F(t) = |t|, we have shown in the first part of the proof that there exists a sequence of
translations such that’ is compact inL'+'/* andV f,, T, is tight in L'. Moreover, ask goes to
infinity, becomes arbitrarily small. Hen¢év f*||; are uniformly small, which implies by
Sobolev’s inequality that /||, 1/, are uniformly small. We thus conclude tHg} f,, is compact
in L'*1/7 andVT, f, is tightin L'. This completes the proof. n

5 Applications

In this section, we illustrate how to use Theorems 1 and 2 to establish that all minimizing sequences
for some variational problem converge up to the symmetries of the functional.

5.1 Dynamical stability of a gaseous star

As a first example, we will give a proof of the recent nonlinear stability results of G. Rein [15]
on gaseous stars. Consider a self-gravitating star, as described by the compressible Euler-Poisson
system:
Op+V-(pu) = 0,
pou+ p(u-Viu = —=VP(p)—pVV (5.1)
AV = dmp
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with the boundary conditiotim ;.. V (t,z) = 0. Here,p(t,z) > 0 andu(t,z) € R* are the
mass density and velocity field of a gaseous star at tiavel positionr € R?, and

Vi(tx) = - / gyt ) dy (5.2)

is the corresponding gravitational potential. For simplicity, we assume that the pressure is given
by P(p) = p”. The energy functional

1 1 1 _
) =5 [NuPpdet — [ o= [ [ oo~ oto) dsy

is formally conserved under the motion generated by Eq. (5.1). The first term in the energy func-
tional represents the kinetic energy, the second term is the contribution of the pressure, and the
third term is the gravitational potential energy. A family of steady states is obtained by minimizing
the time-independent functional

1 1 _
Hip) = " prdr — 3 // p(x)|z =y~ ply) dudy (5.3)
subject to the mass constraifip(z)dz = M. A symmetric minimizer is given by

po() = c(7) [Bo = Vo ()]} (5.4)

whereE, < 0 is a Lagrange multiplier associated with the mass constraint,lg(d) is the
potential induced by, through Eq. (5.2). The minimizer is unique up to translation. The main
resultin [15] is the following.

Theorem [15] For v > 4/3, the symmetric steady state solutjgyiz) is dynamically stable up to
translations, among possible weak solutions which satisfy the mass constraint and whose energy
does not exceed the energy of the initial values.

Here, the distance from, is measured by

1
o) = = [ 7 = 75+ (V= B = o)

Notice that sincey > 4/3, the integrand above is non-negative, by a Taylor expansion around
po(x) in 5.4. The crucial part is to establish that for any minimizing sequencéhere exists a
sequence of translatiofi$ onR? such that

IVVi 0 — ViV ll2 = 0, (5.5)
see Theorem 1 in [15], and similar arguments for stable galaxy configurations in [9-14].

PROOF Denote by
2(p) = [ [ plole = ol oly) dady = |V, 2
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the gravitational potential energy associated with the mass distribution

Step 1. The compactness of symmetric minimizing sequences follows from [15, Lemma 4.1].
It is shown there that (5.5) holds with no translations needed for any symmetric minimizing se-
guence, that s,
lim Z(p, — po) = 0.

n—00

As a matter of fact, the splitting and scaling argument used in the proof leads to an a priori estimate
for the radius ofy (), of the form|z| < % with an explicit constant ;.

Step 2. Given a general minimizing sequenggewith lim,,_,, [ p, = M. Using the equimea-
surability of p,, with p’ and the Riesz rearrangement inequality, we see that the sequence of sym-
metrizationg;, is again a minimizing sequence, and that

lim Z(p,) = lim Z(p;,) = Z(po) -

n—0o0
By Step 1,
lim Z(p; — po) = 0.
n—00
Since the Coulomb kernél (z — y) = |x — y|~" is strictly symmetrically decreasing and positive
definite, Eq. (5.5) follows directly from Theorem 1. [ |

5.2 Stability in galactic dynamics

As a further illustration, we present an argument for the stability of symmetric steady states in
galactic dynamics which was communicated to us by Rein [33]. Consider a large ensemble of stars
(e.g. a galaxy) interacting by the gravitational field that they create collectively. In contrast to the
gaseous star problem in the last section, it is impossible now to study the dynamics of each indi-
vidual star. The most fundamental physical model for describing the dynamics of a galaxy is based
on kinetic theory, in which the ensemble is described by a phase space démsityv) rather

than by the particle density(¢, z) and velocity fieldu (¢, z). Here(z,v) € R* x R* denote the
position and (independent) momentum variables. In astrophysics the dynamics of typical galaxies
or globular clusters is then described by the Vlasov-Poisson system.

Ouf +v-Vof —VoV-Vof = 0

AV = Axp (5.6)

where
olt,z) = / £(t,2,0) dv (5.7)

is the particle density correspondingftpand the gravitational potenti&l again satisfies Eq. (5.2).
The sum of the kinetic and potential energies

£(F) = Ekin(5) + Epoto) = 5 [ [ 1P p(ae,0)dvde = 5 [ [ plwle = ol oty) dwdy
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is conserved under the dynamical system generated by Egs. (5.6). The rare collisions between
stars are neglected in such a model. As a consequence, the Vlasov-Poisson system has an addi-
tional scaling symmetry and a continuum of conserved quantities given by the so-called Casimir
functionals

()= [ [ @tw)) v,

where® is a convex function satisfying appropriate growth conditions. For simplicity, we assume
here thatb(f) = f'*'/F with 0 < k < 3/2. Steady states can be obtained by minimizing

C(f)+&(f) (5.8)

under the constraint that the total mggsf dvdz = M is a prescribed positive constant.

The machinery of the present paper does not apply directly to the variational problem in
Eq. (5.8). It was pointed out by Rein [33] that the problem can be reduced to one in terms of spatial
densities» = p(x). We gratefully reproduce his argument here; details can be found in [14].

The idea is to perform the minimization problem in Eqg. (5.8) in two stages,

inf C(f)+¢& = inf inf C(f) + Ei + & )
J: [ f o) ter A C) +EWD] e dzM{f:fﬂ-,u) du:p{ (£)+ &)} + Epotle )}
The inner minimization amounts to computing for a given particle depgitg composition o p,
where forr > 0

W(r) = inf{/@(g(v)) + %|v|29(v) aw|0<ger'(®) /g(v) dv = r} . (59)

By the strict convexity ofb, the minimizer in Eq. (5.9) is uniquely determined-hyand thus any
minimizing phase space density for Eq. (5.8) is uniquely determined by the corresponding particle
density. The relationship betweé@nandW¥ can be made explicit by noting that the their Legendre
transformsd and ¥ satisfy ¥(t) = [ ®(t — |v|?/2) dv. In particular, ford(f) = f'*/* we find
that up to a multiplicative constafit(p) = p” withy =1+ 1/(k + 3/2) € (4/3,5/3).

The outer minimization problem is thus reduced to minimizing

H(p) = / () dir — / / o)z — y) " ply) dedy (5.10)

over particle densities satisfying the mass constraifito(z) dz = M. This problem has precisely
the form of Eq. (5.3) considered in Section 5.1. In particular, there exist symmetric steady states
with the particle density given by Eq. (5.4). The corresponding symmetric minimizing phase space
density is given by
folx,v) = [Eo — [v]/2 = V(@))% , 0<k<3/2
We claim that from the point of view of stability for the Vlasov-Poisson system all the rele-
vant knowledge for the variational problem in Eq. (5.8) can be extracted from its reduced form in
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Eqg. (5.10). To see this, I¢t, be a minimizing sequence for Eq. (5.8), anddgbe the correspond-

ing sequence of particle densities determined by Eq. (5.7). $incea minimizing sequence for
the reduced problem in Eq. (5.10), we conclude from Section 5. bthetnverges (up to suitable
translationsl},) to some particle density, andVVr, ,, — VV,, in L?. Choosing a subsequence
and using the special form df, we may assume that the sequence of phase space defsities
converges weakly ir.'*'/* to some limiting functionf,. SinceVVz,;, is compact inL?, the
energy-Casimir functiondl + C is lower semicontinuous, and its values must converge along the
sequence, and we conclude tiialf, — f, strongly inL'*'/%. It follows that f, is the unique min-
imizer for the full problem in Eq. (5.8) determined py(x). In summary, there exists a sequence
of translationdl;, such thafl}, f, — fo.

5.3 Maximizing sequences for the HL S functional

We will show how to use Theorem 1 to verify that all maximizing sequences for the Hardy-
Littlewood-Sobolev inequality converge up to scalings, translations, and phase factors, as first
proved by Lions [7, 8]. The Hardy-Littlewood-Sobolev inequality states that

1) = [ [ f)le = ol f0) dody < T )1 2+ 2 =2

for any complex-valued in LP(R™). Both the functionall and thep-norm are invariant under
the translation by vectors € R™ and scaling by factors > 0

Tf(x)=f(z—a), Sf(z) zo_m/pf(x/o) .

The sharp constant
I(m,p) = sup Z(f) (5.11)

IIFl[p=1

was determined by Lieb in [4]. It is achieved for

2 m/p
g(z) = (W) ; (5.12)

in fact, g is the unique symmetrically decreasing optimizer of Eq. (5.11) Mﬁﬁl g(x)Pde =1/2
[27, Theorem 4.3 and Lemma 4.8].

Lieb’s identification of the optimizers combined the conformal invariance of Eq. (5.11) and
the sharp Riesz rearrangement inequality with a subtle compactness argument. The most direct
proof of the sharp Hardy-Littlewood-Sobolev inequality uses the competing symmetries technique
to construct special maximizing sequences with good convergence properties, thus sidestepping
the compactness issue [34, 35], (see [27, Theorem 4.6]). In fact, all maximizing sequences for
Eqg. (5.11) converge tg up to suitable scalings, translations, and multiplication by phase factors:

Theorem [7] For every sequence of functiofison R™ satisfying

||fn||p:17 JLIEOI(fn):I(g)
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whereg is given by Eq. (5.12), there exist sequences of scalifjgsranslations?),, and phase
factorse’ such that
lim Z(e“"T,Spfn —g) =0, lim ||"T,,S,fn —g) =0.
n—0o0

n—0o0

PROOF. Step 1.Although itis not explicitly stated there, Lieb shows in his proof of the maximality
of ¢ that every maximizing sequence of symmetrically decreasing funcgipf® converges tg
up to scalings [4, p. 536]. In other words, there exists a sequence of scéirsgeh that

SinceZ is continuous in? by the (non-sharp) Hardy-Littlewood Sobolev inequality, it follows
that

lim Z(S,g9, —g) =0.

n—oo

The compactness of symmetric minimizing sequences up to scaling can also be shown directly, by
using the splitting and scaling technique developed in [12].

Step 2. Consider a general maximizing sequence of nonnegative function€learly [ is
again a maximizing sequence. By Step 1, there exists a sequence of scalings such that

lim Z(S, fr —¢g) =0.

n—o0

Sincef, is a maximizing sequence, we have

lim Z(f,) = lim Z(f;) = Z(g) .
n—0o0 n—00
The kernelK (z — y) = |z — y|  is positive definite and symmetrically decreasing, and we may
apply Theorem 1 to the sequenggf,, to obtain a sequence of translations such that

lim Z(T,,Spfn — 9) =0;

n—0o0
in particular, 7,,S,, f, — ¢ pointwise almost everywhere at least along suitable subsequences.
Sincelim,, .« || full, = |9, it follows from the characterization of the missing term in Fatou’s
lemma that

lim [|T,Snfn —gll, =0.
n—oo

Conclusion. For a general maximizing sequence of real-valued functions, it is easy to see
that there exists a subsequence along which either the positive] fdrtsor the negative parts
[f»]— form again a maximizing sequence, and that the other part converges to zero. Similarly,
Schwarz’ inequality implies that the real and imaginary parts of a complex-valued sequence are
again optimizing sequences, and that their ratio converges to a constant. n
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5.4 Minimizing sequencesfor the Sobolev constant

Finally, we show the corresponding compactness result for minimizing sequences of the Sobolev
inequality . The Sobolev inequality bounds the norm of a functiohA(R™) by a corresponding
gradient norm,

b TP
*, —
p m —

T(f) = / VP dr = Tom.p)|lf

1< p<m.
p

The functional and thg*-norm are invariant under translation by vectars R™ and scaling by
dilation factorss > 0

Tf(x) = f(x—a), Sf(x)=0"" f(z/0).

The sharp constant
J(m,p) = inf J(f) (5.13)

11 =1
was determined by Talenti [2] and Aubin [3]. Fer> 1 it is assumed for the function

1 p*/p
9o,5(1) = (a_'_/BHpr/p—l) ; (5.14)

wherea andj are positive constants determined by the valuggggff,- and fm <1 gP" . Forp =1,

J(m, 1) is the isoperimetric constant ®R™, which is assumed not itV 1! but by the characteristic
function of a ball inBV'. The optimizer is unique up to scaling, translation, and multiplication by
constants.

In the proof, Talenti uses the rearrangement inequality for convex gradient functionals and
Aubin uses the isoperimetric inequality to reduce the variational problem to radially decreasing
functions. Then they analyze the ordinary differential equation associated with the resulting one-
dimensional problem. In the special cgse= 2, Eq. (5.13) is again conformally invariant, and
the competing symmetries technique quickly yields the optimizers. A recent proof, using optimal
transportation techniques, avoids compactness issues altogether [36]. We will give a proof that for
p > 1, all minimizing sequences converge up to scalings, translation, and multiplication by phase
factors. In the casg = 1, the minimizer is a function of bounded variation, but the minimizing
sequence still has some tightness properties.

Theorem [7] Given a sequence of functiofis € W' (R™) with
fallp=1,  lim F(fa) = J(m,p).

1. If p > 1, there exist sequences of scalings, translationsT’,, and phase factors’*» such
that the sequence defined by satisfies

lim || T, S fn — gll, =0,  lim J(e“" 1,5, fn —g) =0.
n—00 n—00
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2. If p = 1, there exist sequences of scalirfjs translationsZ,,, and phase factors* such
that the sequence of gradie®(c¢*"T, S, f, } is tight in L! and the sequenc€?-T, S, f,
is compact inL=—7.

PROOF Step 1.Let g, be a sequence of symmetrically decreasing functions|jith|,- = 1 and
lim 7 (g,) = J(m,p). By scaling, we may assume that

Choosing a subsequence, we may assumejthevnverges weakly i’} (or in BV if p = 1),
and in L”" to some symmetrically decreasing limit functigne W?. Since theg, are sym-
metrically decreasing, they also converge pointwise almost everywhere. Cleﬁt&, < 1land
T(g) < J(m,p).

We want to show that the sequenggecan concentrate neither faf = 0 nor at|z| = co. Let
X be a symmetrically decreasing smooth cutoff function with valug ifj, satisfyingX'(z) = 1
for |x| < 1andX(x) = 0 for |z| > 2. For R > 2, we splitg, into three parts,

g'(x) = X(Rr)g(z), ¢'(z)=X(z/R)g(x), ¢°=g—g"—4g .

and correspondingly for the functiogg. It follows from the uniform bounds in Lemma 2.1 and
the pointwise convergence thgt — ¢° strongly inL? for all ¢ > 1, and thaty’ — ¢ strongly in
Liforall g < p*. Let

0n(R) = |lghlln- . 05 (R) = l|gnllE- .
We compute

o) = [ IValde > [126/R- (R0 Vg, ds (5.15)
+/ |X(Rx)V g,|P dx + / (1= X(z/R))Vg,|P dz .
Using the product rule and the definition @f the first term on the right hand side is estimated by
[12a/B) - ¥RV, dz = T(67) - [(RIVA(Re)|+ R VA (/B))g, da

> (1 0%(R) — 6,(T))""" T(m,p) — C (RV"" + 2™wpmgn(R))

where the constartt’ depends only on the cutoff functioli. We have used the definition of the
sharp Sobolev constati{m, p) to estimate the first term, dider’s inequality for the second, and
the fact thaty, is symmetrically decreasing for the third. The second and third terms on the right
hand side of Eq. (5.15) are similarly bounded below by

[ 1XETapdr = @R Tmp) - CRY

[10- X/ RVl s > (@ R) Sonp) - CIung(2R).
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Inserting these estimates into Eq. (5.15) and taking limits, we deduce that

tim {1 = [(1=04(R) = 05(R)"” + (0L(R)""™ + (0,(m)"™ [} 50 (R— o).
We have used thdim 7 (g,) = J(m, p), and thay,, converges tg pointwise. Sinc#’ (R) < 1/2
and@’ (R) < 1/2 for all R > 2 by our choice of scaling, the strict convexity of the function
t — tP/P" implies that o

lim {05(R) + 0, (R)} -0 (R—0).

It follows thatg, — ¢ strongly inL?", and consequentlyfg||,- = 1. By the definition of the
optimal constant/(m, p) and Fatou’s lemma, we hawgvg||? = J(g) = J(m,p), andVy,
converges to/ g strongly inL?. Thusg is an extremal for the Sobolev inequality, and is given by
Eq. (5.14), with the scaling parametersaind 3 determined by

|
ol =1, [ =5
! lal<1 2

Since all suitably scaled subsequences converge to the same limit, the entire sequence converges
togin LP(p > 1), as claimed. Fop = 1 we use that|g||§: = 1 andlim J(g,) = J(1,p) which
Vg, — Vg weakly in measure.
Step 2. Consider a minimizing sequence of nonnegative functignsClearly the symmetric
decreasing rearrangemerffsform again a minimizing sequencef> 1, by Step 1, there exists
a sequence of scalings, such thatim,, ., |[S.fr — gl =0, lim, oo T(Sufi—9) =0.
Forp > 1, the limiting functiong is strictly symmetrically decreasing, strictly positive, and has
a continuous distribution function. By Theorem 2 appliedStof,,, there exists a sequence of
translations,, such that
lim J(T,Su|ful —9) =0.
n—oo
It follows from the Sobolev inequality that
lim [|T,Sn|fnl — g
n—0o0

On the other hand, i = 1, we then have7 (S, f,5) — J(g) andlim, o |[Snfr — ¢
we can apply the second part of Theorem 2.

Conclusion.For a general complex-valued minimizing sequence, the claim follows by splitting
the sequence into its real and imaginary parts and using the convexity inequality for gradients [27,
Theorem 7.8]. [

p=0.

»~ = 0,and
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