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Abstract

We study bounds on the exit time of Brownian motion from a saékirms of its size and
shape, and the relation of such bounds with isoperimetequalities. The first result is an
upper bound for the distribution function of the exit timerfr a subset of a sphere or hyperbolic
space of constant curvature in terms of the exit time fromsa dif the same volume. This
amounts to a rearrangement inequality for the Dirichlet keanel. To connect this inequality
with the classical isoperimetric inequality, we derive anfala for the perimeter of a set in
terms of the heat flow over the boundary. An auxiliary reseheralizes Riesz’ rearrangement
inequality to multiple integrals.

1 Introduction

1.1 Aninequality for exit times

Let M,, be the spherex( > 0), Euclidean space:(= 0), or hyperbolic spacex( < 0) of constant
curvaturex. Denote byX,; Brownian motion oM, (see, e.g., [24, 42]). Thexit timefrom a set
A is defined by

Ty=inf{t >0: X, & A} ; (1.1)

it is a stopping time ifA is Borel measurable. We are interested in bounds on thekdigon
function
UA(tax) = Pa:(TA > t) (12)

in terms of the size and shape 4f We will obtain such bounds by comparing the exit time from
A with the exit time from a disc of the same volume.
If Ais a sufficiently regular open set, then solves the heat equation

Owu(t,x) = Au(t, ) r€eA t>0 (1.3)
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with Dirichlet boundary conditions
u(t,z) = 0 x€0A, t>0 (1.4)

and initial values
u(0,2) = 1 reA. (1.5)

Theorem 1 (Rearrangement for exit times dvi,) Let A C M, be a Borel set of finite volume,
and letA* be an open geodesic disc of equal volumelagdhen, for allt > 0, the exit time from
A is dominated by the exit time froat in the sense that for every convex increasing function

/ F(ua(t,2)) do < / F(ua(t,2)) do (1.6)
A A
wheredz denotes integration with respect to the uniform measurgahticular,
sup UA(tax) S UA*(t,ZU*) ) (17)
TEA

wherez* is the center ofd*. Equality in (1.6) whenF" o uy-«(t, -) iS non-constant, or equality in
(1.7) occurs only when there is a distso thatA\ D has zero volume ant\ A is polar.

The majorization statement in equation (1.6) admits manyvedent reformulations [3, 15].
It implies in particular that, unlesd is essentially a disc, all”-norms ofu 4 (with p > 1) are
strictly smaller than the corresponding normsuqf. Another implication is that fod C M, the
moments
Myu(A) = |E[TS]], (1.8)

are maximized, among sets of a given volume, by geodesis (Bse Corollary 3.2). Such moment
inequalities were established by Aizenman and Simon [2], sy McDonald [39] who showed
furthermore that discs are the only critical points of themnemt functionals. We will prove (1.6)
in the form

/uA(t,x)da: g/ ua-(t,x) dz (1.9)

for any Borel setB C A. If B has positive volume then equality occurs only if there isstdi
so thatA\ D has zero volumeD\ A is polar, andB differs from a disc concentric wit by a
set of zero volume. It is an open question whether inequéli§) can be replaced by the stronger
statement thatu 4 )*(¢, x) < uy-(t, ) for all t andz, or equivalently, whether (1.6) holds for any
nondecreasing, not necessarily convex, funcfion(Such pointwise inequalities were proven for
elliptic equations by Talenti [48]). The special case irYjlasserts the obvious fact that Brownian
motion starting at some point € A tends to leaveld earlier than Brownian motion starting at
would leaveA*. Note that the left hand sides of (refclaim:rearr-F), (1af)d (1.9) can be finite
even whenA has infinite volume [18].

Inequalities analogous to (1.6) were proveiRihby Bandle [6] and by Brock and Solynin [15],
and on Gauss space by Borell [13]. The one-dimensional casgwven by Friedberg and Lut-
tinger [26]. Closely related are geometric inequalitiestfte eigenvalues of the Laplacian, for
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solutions of elliptic boundary value problems [48, 7], fabfiarmonic functions [5], and for har-
monic measure [28]. The point of Theorem 1 is the chara@gada of the cases of equality, which
was not attempted in the above sources. In an independealogevent, Morpurgo has recently
proved rearrangement inequalities for solutions of equmstof the form

ou — Au+V(z)u = 0, (1.10)

where V' is a potential which is bounded below and grows at infinity,[4Q]. These results
contain the analogue of inequality (1.6) for the trace offwgchlet heat kernel as a special case.
We believe that our result remains interesting, as the pymddis a lower bound for the difference
between the two sides of (1.7) and (1.9), expressed as theeWieeasure of a set of paths which
we describe geometrically (Proposition 2.1).

1.2 Aninequality for multiple integrals

The proof of Theorem 1 relies on rearrangement techniquatsetkploit the symmetries of the
spacedV,.. The key observation is that the so-calte-point rearrangementsvhich are simple
geometric manipulations that pushcloser toA*, can only increase the exit time from a sét
(Proposition 2.1). In this context, we call thespherical rearrangemertf A.

For technical reasons, we do not apply rearrangement angisrd@ectly to the proof of The-
orem 1. Instead, we obtain (1.9), via a Trotter product fdap@rom a limit asn — oo of
rearrangement inequalities for multiple integrals

T(fr,s fo) = // I fiw) 1] k(o) de ... do,, (1.11)

1<i<n 1<i<j<n

where all integrations are with respect to the the uniformrRannian measure, eaghis a char-
acteristic function, and;; is the heat kernel at timg/n if j = i + 1 or else identically one. Taking
advantage of the fact that the heat kerneMn s a strictly decreasing function of geodesic dis-
tance, one can use rearrangement techniques to show thamnitteonal 7 is maximized in the
obvious symmetric situation.

Theorem 2 (Rearrangement for multiple integrals bf).) Let.7 be a functional of the form (1.11)
onM,, and assume that all the kernelg are nonincreasing functions of distance. Then, for any
nonnegative measurable functiofis. . . f,, onM,, which vanish at infinity, we have

wheref;, ..., fr are the spherically decreasing rearrangementgof . ., f,, about a pointz* of
M. In particular, the left hand side is finite whenever the tighand side is finite.

Suppose that (1.12) holds with equality for a collectionuwictionsf, . .., f,., where at least
two of thef; are non-constant, and (f1,. .., f,) is finite and nonzero. Le€t, be the graph on
the vertices = 1,...,n which has an edge betweeand j whenever;; strictly decreases with
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distance, and assume additionally tHaf is connected. Then thg are already symmetrically
decreasing about a common point, i.e., there exists an isgmef M, so that

fi = ffoT ae. (1=1,...,n) a.e. (1.13)

Spherically decreasing rearrangements will be definedeabdiginning of Section 2. The as-
sumption that th¢; vanish at infinity guarantees that their rearrangements.gxiis automatically
satisfied iff; € L? for somep > 0.

A more general version of Theorem 2 was proved independbwtiorpurgo [41]. The special
case of (1.12) witm = 2

/f y) dzxdy < /f 9" (y) dzdy (1.14)

is known asRiesz’ rearrangement inequalii#4]. Here,f andg are again nonnegative measurable
functions onM,, that vanish at infinity, an@ is a nonincreasing function of distance. Inequality
(1.12) onR™ is contained in a general inequality of Brascamp, Lieb anttihger which does not
require the kernels on the left hand side to be decreasingfiturs of distance but rather allows
them to be rearranged along with the functions [14]. The £ade2quality are understood only
when the multiple integral is in the form of a convolution [37].

The basic idea of approximating the spherically decreastagrangement with simpler rear-
rangements was proposed by Steiner for a proof of the isoyéric inequality [46]. In his work
on convolution kernels on the unit circle, Ahlfors replacginer symmetrization with the even
simpler two-point rearrangements [1]. Friedberg and Ingiir used two-point rearrangements to
prove Theorem 1 in one dimension [26]. Baernstein and Tgpgave the first proof that the
spherically decreasing rearrangement can be approximatéé-spaces by repeated two-point
rearrangements and proved Riesz’ rearrangement inegualispheres. Similar rearrangements
appear, asompressiondan connection with discrete isoperimetric inequalitié,[25]. Recently,
Brock and Solynin have published a comprehensive study efgeint rearrangements, polar-
izations[15] (see also [29, 5, 9, 8]).

1.3 Relation of Theorems 1 and 2 with isoperimetric inequaties

It is well known that inequalities of the type (1.6) can beadbed via the co-area formula from
isoperimetric inequalities [51, 48, 7]. We are interestedhie converse direction, namely recov-
ering isoperimetric inequalities from estimates for heatnlels. Our approach is motivated by the
work of Ledoux on inequalities in Gauss space [36].

There are many definitions of th@erimeterof a set, which all coincide for open sets with
smooth boundary. We will show that for sufficiently regulabsetsA of a smooth Riemannian

manifold M,
Per(A) = lim ,/ / 1 —wua(t,z) (1.15)
t—0t



(Proposition 4.9). The isoperimetric inequality appearthiet — 0" limit of Theorem 1 in the
following way: Inequality (1.6) with?'(z) = z is equivalent to

/1—uA(t,x)dx 2/ 1 —ug-(t,z) dex, (1.16)
A *

since, by definitionA* has the same volume as If A is sufficiently regular, applying (1.15) to
both sides of (1.16) shows that
Per(A) > Per(A"), (1.17)

which is the isoperimetric inequality. However, inforn@atiabout the cases of equality is lost in
the limit¢ — 0" of (1.15).

The tail of the distribution function of the exit time frorhdecays asymptotically &@Son.st.e (4
ast becomes large, wherg (A) is the lowest eigenvalue of the (negative) Dirichlet Lafaamon
A. Hence inequality (1.9) implies that

A(4) = M(4A7), (1.18)

which is the Faber-Krahn inequality. The lower bound for difeerence between the two sides of
(1.9) decays sufficiently slowly withto yield a positive lower bound for the differende(A) —
A1(A*) unlessA is essentially a disc (see Proposition 2.1 and the discugsiSection 3.3).

In summary, Theorem 1 contains the isoperimetric inequalitd the Faber-Krahn inequality
on M, as limiting cases. One may wonder in what form Theorem 1 cexteénd to general
Riemannian manifolds. Can one find, for a given4et M, a suitable disci* C M, whose exit
time dominates the exit time from? Is there any hope for rearrangements that can symmetrize
simultaneously the manifold and the functions living onWe offer some speculations along these
lines at the end of Section 4.

Classical comparison theorems on general Riemannian oldsiflue to Malliavin [38], and
Debiard, Gaveau and Mazet [22] (see [42] Section llIb and [3feorem 5.1) give both upper
and lower bounds on the exit time from small geodesic disderims of curvature bounds (see
Section 4). Theorem 1 is restricted to manifolds of constantature, but requires no assumptions
on the size and shape df However, there can be no corresponding lower bound on ti¢ime
in terms of curvature and the volume dfalone, since it is always possible to make the exit time
small by removing a subset of small volume frofn Some intriguing inequalities for Dirichlet
eigenvalues in two dimensions point to possible lower bguiiod the exit time in terms of the
conformal class ofi [43, 34].

The proof of (1.15) relies on the following formula.

Theorem 3 (The heat flow over the boundary as a measure of the perimetdr)/ be a smooth
Riemannian manifold whose curvature is uniformly boundetth above and below, and gt
denote the heat semigroup @i at timet > 0. Then, for any Borel set C M be a Borel set of

finite volume,
P T
Per(A) > i — Pt 1.19
er()_t_lgi\/;/c A (1.19)
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where A¢ is the complement of. In particular, the right hand side is finite for every set ot
perimeter. If the boundary afl is a twice continuously differentiable submanifold, th&rl9)
holds with equality (and the limit on the right hand side &Jis

Theorem 3 was proved for Gauss space by Ledoux [36]. The pebes on the technique
of estimating the heat kernel by the analogue of the Eudlidemat kernel (see, for example, [22,
21, 20]). The connection with the isoperimetric inequaiktyas follows: By Riesz’ rearrangement

inequality (1.14),
/ P'I, > / P, . (1.20)
c (A*)C

Applying (1.19) on both sides of (1.20) yields (1.17) [36].
Formula (1.15) is obtained from Theorem 3 by approximating

wa(t,)) ~ IsP'(I4 — L) . (1.21)

This is exact ifA is a half-space iV, since then both sides of (1.21) solve the same Dirichlet
problem. We will show that, for anyt C M with twice continuously differentiable boundary,

/1—UA(t,l’) de = 2/ P, +o(t'/?) ast —0 (1.22)
A c

(see the proof of Proposition 4.9). Sing¥ is self-adjoint and”!I, + P'I,. = 1, we recognize
(1.22) as an integrated version of (1.21). Inserting (1i2®) Theorem 3 gives formula (1.15).

It is beyond the scope of this paper to discuss how the the higgd sides of (1.15) and (1.19)
relate to the various definitions of the perimeter of a Boedl.4 as given, for example, in [49,
16]. While the right hand side of (1.15) (witim in place oflim) makes sense for general Borel
sets (where it may take the valdex), we do not know whether it has desirable semicontinuity
properties analogous to (4.2).

1.4 Outline of the paper

The paper is organized as follows. Section 2 is devoted tep@int rearrangements. We show
that the distribution function of the exit time generallgigases under two-point rearrangements,
and give an estimate by how much (Proposition 2.1). We thermepa discrete rearrangement
inequality (Lemma 2.6) and use it to obtain Theorem 2. Thelte®f Section 2 are combined
in Section 3 to prove Theorem 1. We indicate how Theorem 1 &nproof yield corresponding
inequalities for exit time moments and the trace of the Dietheat kernel. In Section 4, we prove
Theorem 3. The approximation (1.21) is justified, and usegréwe that formula (1.15) holds at
least for sufficiently regular sets (Proposition 4.9). Wadade with two conjectures regarding
extensions of Theorem 1 to manifolds of non-constant cureat



2 Two-point rearrangements

2.1 Definitions

Let M, be them-dimensional sphere, Euclidean space, or hyperbolic spcenstant curvature
k, and fix a pointt* € M. Denote the geodesic distance of two pointg € M, by d(z,y). The
spherical rearrangement* of a setA C M, of finite volume is the geodesic disc centered-at
that has the same volume Aslf f is a nonnegative measurable function whieimishes at infinity
in the sense that all its positive level sets have finite vauwe define itspherically decreasing
rearrangementf* to be the non-increasing function dfzx, 2*) which is equimeasurable wit
and lower semicontinuous.

The spherically decreasing rearrangement can be apprteghy sequences of two-point re-
arrangements, which are defined as follows [5, 15jefectionon a metric spacé/ is an isometry
o of M which satisfies

1. o?x =xforallz € M;

2. M is the disjoint union of the set of fixed point&’, and two half-spaced ~ and H* which
are exchanged hy, that is,

ox =z xre H?, (2.1)
ocHY = H™; (2.2)
3. d(z,y) < d(z,oy) forall (z,y) € H.
Thetwo-point rearrangemerdf a functionf with respect to a reflection is given by

max{ f(z), f(ox)}, re H"
@) = { min(f(o), flon)},  weH- 2.3
f(z), x € H°.

If Ais alevelsetoff, andA the level set off? at the same height, then
A’NHY = (AUucA)nH?
A"NH- = (ANcdA)NH™ (2.4)
A°NH’ = ANH’.

Clearly, A° has the same volume as which shows thaf? is equimeasurable witfi.

The definition off? in (2.3) does not require any assumptionsforMeasurability and decay
at infinity are needed to show that the spherically decrgasarrangement can be approximated
by repeated two-point rearrangements.

The spaced/,, are characterized by large families of reflections. The céfi@s on a sphere,
seen as embedded® !, are the Euclidean reflections at hyperplanes passingghrthe center
of the sphere. The reflections on a hyperbolic space, sede iRdincaré model as the unit disc in
R™ with the hyperbolic metric, are the inversions at spherasititersect the bounding unit sphere
at right angles. In either case, there exists for each paooftsz, y € M, a unique reflection
with oz = y, and the reflections generate the entire group of isometries
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2.2 Reflections of Brownian paths

Consider a Borel setl of finite volume inM,,. Denote conditional Wiener measure on paths

parametrized ovep), 1] which joinz with y in M, by W, , and let
. _ : t
pA(ta Z, y) - /A OISI;fS‘t IA(XS) dWaz,y (25)

be the conditional Wiener measure of the set of all pathparametrized ove, ¢] which connect
x with y in A. In other wordsp(t; z, -) is the density at time of endpoints of Brownian paths
which start atz and remain inA up to time¢. The associated operatét, has the semigroup
property, and is one of the possible definitions of the Digtheat kernel ond.

Proposition 2.1 (The difference termlrix a reflectiono on M, together with a choice of positive
half-spaceH*. Let A, B C M,, be Borel sets, and let’ and B° be their two-point rearrange-

ments. Then
/ e (T, x) dx—/uA(t,a:) de = //W;y(Et) dydz (2.6)
o B BJA

whereE" is the event that a path does not lea¥eduring [0, ¢] and meets bothl\c A ando A\ A
during some subinterval where it remainshh.

PROOE We write

[uattaras = [ [ pattia) dyas 2.7)
B
-/ > ol a5y ) dyr (2.8)
u+ Ju+
wherez* denotes:t or 2,
. Jx reHT _ Jox reHT
t _{ox ceH " _{x reH ' (2.9)

and the sum is over the four possible choicegsf, y*). We will show that for any pair of points
z,y € H' and any two set®, C', we have

ZIBa Jpas (b0, y ) Low (y5) =L (e )palt; o, y* ZIBa YWas i (E) oo (y7) .

(2.10)
Inequality (2.6) follows from (2.10) by setting = A and integrating over andy.

The first term on the left hand side of (2.10) is the conditidg&ner measure of the set of
paths which start i3 ats = 0, end inC? ats = t, and joinz® with y* within A%, while the
second term is the corresponding quantity ByrC', and A.

We will construct a mag. which assigns to each pafty, in A a corresponding pathX, in
A?. Set

K= A\cA, K* = KnH', andKk~ = KNH" (2.11)
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ty=t

Figure 1: The reflection argument in the proof of Proposition 2.1. Thyaife shows a sett (left, shaded), its
reflectionc A and its two-point rearrangemedt (right). To each pathX, in A parametrized ovelf), ¢] (left, solid
line) we assign a path X in A (solid line, right) by reflectingX; on certain time intervals where it hifs — (right).
The eventt occurs for a path if it visits botti + ando K~ without touchingH © in-between (right, dotted line). The
image ofL consist exactly of those paths #f for which Et does not occur.

(see Figure 1), and define a sequence of stopping tifnas follows.

0, if v € B\oB
Ty = ¢ inf{0 <s<min{t, T4} | X, € K}, ifreBNnoB (2.12)
+00, else

with the convention that the infimum of an empty set-fo. GivenTy, ..., Tj, set

if Xr, € H" andX; € (C\eC)NH~ andX, € A\K~forT; <s <t

Ty =1 or Xy; € H™ andX; € (C\oC)NH" andX, € A\K" forT; < s <1,
(2.13)
otherwise set
po_ [ f{T <s<min{t,Ta} [X, e K} if Xoy € HY, (2.14)
LT inf{7) < s <minf{t, T4} | X, € K} if X;, € H™. '

Denote byN the number of these stopping times upnim{¢,74}. By Lemma 2.2\ is almost
surely finite. LetS, be the set of sample pathsinwith N = n. (Figure 1 shows an example with
B = C = A, andn = 2.) By the Intermediate Value Theorem, every pathin S, with n > 2
must hit/{° at least once betwedh}_, and7} (j = 2,...,n). Let

t; = supl{t € (-, 1) | X e HY (j=2,....n) (2.15)

be the last time beforg; that X, hits H°, and set, = 0, ¢,,1 = min{¢,74}. Note that though
t; is not a stopping time (since it depends 8nfor s > ¢;), it is measurable with respect to the
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filtration associated with Brownian motion up to timeFor each path\; in S,,, the timest; cut
the interval0, ¢] into n subintervals, where(, hits K and K~ on alternating subintervals. For
X, €S8, define

LX, = { X, fors e [tj,tj+1] if XT] e K~ (216)
X, else.
By construction, maps a path iml which joinsz with y on [0, ¢] to a path inA? which joins
x or ox with y or oy. SinceL is one-to-one and preserves Wiener measure, the left hdadsi
(2.10) is nonnegative. By continuity, every path in the imaf L meetsH° on any interval where
it hits bothK+ ando K —, so
LS, NE" = 0 (2.17)

by definition of the event’. Conversely, ifE* does not occur for a path, in A7, then one can
construct an inverse image ' X, in A by reflecting the path on certain subintervals where it hits
oK. This implies (2.10) follows. n

Lemma 2.2 The numberN of stopping times defined in the proof of Proposition 2.1 gt
surely finite.
PROOF. Fixn > 1, and choose an index sétC {1,...,n}. LetS; be the set of paths with = ;

as in the proof of Proposition 2.1, and consider the image; of S; under the map$ ; defined by

LX, - { o X, forse[t; 1,¢;] ifjed (2.18)

X, else

Clearly, eachL; preserves Wiener measure. Since the paths;inS; avoido K C A7\ A, the
images undef ; and L are disjoint for.J # J'. In summary,

Zwti UjisnSj) < 27> pt o™,y (2.19)
+

wherep(t; x, y) is the heat kernel o, . It follows that the expected value ¥ is finite, and
henceN is finite almost surely. n

2.3 Positivity of the difference term

Proposition 2.1 is used to analyze the cases of equality @ofdm 1 in Section 3. We will need to
know that the right hand side of (2.6) is strictly positivetle cases of interest.

Proposition 2.3 Let A C M,, be a Borel set of finite positive volume with the property that

/ / pa(t;x,y) dady > 0 (2.20)
K, J Ky

for all pairs of subsetds;, K, C A of positive volume. Then the right hand side of (2.6) is 8yric
positive unles$A, B) = (A7, B?) or (A, B) = (0 A?,0B?) up to sets of zero volume.
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For an open sed, condition (2.20) is equivalent to requiring thatis connected. TheA” and
A’ N H™ are connected as well, ard¢f occurs with positive probability whenevdr differs from
both A ando A by sets of positive volume. The next two lemmas generaliesdlstatements to
Borel sets.

Lemma 2.4 Let A be a Borel set, and suppose that (2.20) holds for sbme, > 0 and two given
setsK,, K, C A of finite positive volume. Then (2.20) holds forzat 0.

PrROOE Fort > t,,

| [ pattsmdeay = [ (P5tn) (o) (2.21)
K1 J Ko A

> (V(K,)™ (/K /KlpA(t—to;x,y) dxdy) (/K /szA(to;;v,y) dxdy(>.22)

where we have used the semigroup property and the selfrdid@sis of the heat kernel, and inserted
the projection onto the characteristic function/of in the second step. The second double integral
on the right hand side of (2.22) is strictly positive by asgtion. For the first integral, we use the
positive semidefiniteness of the heat kernel to see that

(/Kl /KIPA(s;a:,y) dxdy> (/A/Am(s;x,y) da:dy> > (/KI/ApA(S;x,y) d:cdy>2 (2.23)

for all s > 0. Since the right hand side of (2.23) is analytic and noniasireg ins, it vanishes
identically if it vanishes for one value 6t Condition (2.20) implies that it is positive at least for
s = t,, and hence for alt > 0. Combining inequalities (2.22) and (2.23) shows that (pids
forall t > t,, and hence, by analyticity for all> 0, as claimed. n

Lemma 2.5 Fix a reflectionc on M, with positive half-spacé/°(o). LetA C M, and K, K> C
A be Borel sets, with two-point rearrangements, K7 and K. If A, K, and K, satisfy (2.20)
for somet > 0, then

/ / Pacnu+(t;z,y) dedy > 0 (2.24)
enH+ J KgnH+
forall t > 0.

PROOF We may assume without loss of generality thigt/K’,, and K, are symmetric undes.
Furthermore we may assume that U K, = A, otherwise we replacé’; by

K, U {x | / panm+(t;x,y) dy >Oor/ Panm-(t;x,y) dy >0}, (2.25)
K1 K

andK, by K, U (A \ K,). We may also assume by monotone convergencedtiwbounded.
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Finally, we may assume that the diameterfois as small as we please: Covémwith a finite
collection of ballsB; of radiusr > 0, and letA4; be the intersection afl with the ball of radiugr
concentric withB;. Then

/K/KpA(t;x,y)dxdy = /IKI (PAIKZ) (2.26)
< /IK1<<(IK1+IK2)ZPZH)RIK2) (2.27)

o [ W (X ] X X = ) i,

where the last term estimates the contribution of the pdithisare not contained in one of the
in some intervaltj/n,t(j — 1)/n|. Choosen so large that

/ / WE, (X, | d(Xoppm Xiyryn) > 1)) dyde < / / paltia,y) dedy.  (2.28)
K1 J M, Ky J Ky

Then N
(e + 1) o PLM) ) > 0 (2.29)

expanding the product, we see that

/ / pa,(t/n;z,y) dedy > 0 (2.30)
K1 J Ko

for at least one value of By Lemma 2.4 4;, K, N A; and K, N A; satisfy (2.20) for allt > 0.
Conversely, it suffices to prove the conclusion (2.24) fesththree subsets.
Let nowo’ # o be a reflection oM, with the property that

H*(oYNA Cc H ()N A (2.31)

(see Figure 2). In the case of Euclidean or hyperbolic spane, easily find reflections with
H*(0") ¢ H* (o). On the sphere (2.31) can be satisfied when the diametéi®tmall enough.
Setr = ¢'0. By the continuity of Wiener measure with respect to spataislation, we have

/ / parealti,y) dady > 0, (2.32)
KiNnTtK, J KoNTK>

provided that' is close tos in the sense that

supd(ox,o'x) < ¢ (2.33)

reA

for some sufficiently smali > 0. Note thatA N 7 A is symmetric undes’, sinceA is symmetric
undero.
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Figure 2: The reflection argument in the proof of Lemma 2.45is symmetric undes, andA N 7A is symmetric
undero’ with H*(¢')N A C H* (o) N A. A pathinA N 7A (solid polygon) is mapped to a path fi* (o) N A by
reflecting it witho' (dotted polygon) on certain subintervals where it mdéts(o).

Similar to the proof of Proposition 2.1, we construct a tfan®ation L which maps paths in
AN 1A to paths inA N H* (o) by reflecting them at{°(¢’) on subintervals where they meet
H~(0). Define two sequences of stopping times by

T, = inf{0<s<min{t, T4} | X, € H’(c) UTH(0)},
ti = inf{t; < s <min{t,Ta} | X; € H(0")}, (2.34)
Tivn = inf{t; <s <min{t,Ts} | X; € H°(c) UTH(0)},

with the convention that the infimum of an empty seiis For: > 1, set
s; = sup{0 < s < T;| X, € H°(0")}, (2.35)

with the convention that the supremum of an empty sét iBorJ C {1,...,n}, letS, , be the
set of paths irC' with T), <t < T, butT,,,; >t and such thak';, € H°(o) exactly whenj € J.
(Figure 2 shows an example with= 2 and.J = {2} C {1,2}.)

For X, € S, s, define

X, - { o' X, for s & [s;, 1;] with j € J (2.36)

X, else.

Although L is clearly not one-to-one, its restriction to each of 8¢, is measure-preserving and
one-to-one ontd&, y. Furthermore, paths iA N 7A are mapped to paths in N H* (o) by (2.31).
Since the paths joining(; with K, in A form a set of positive Wiener measure, so do their images
underL. This completes the proof. n

PROOF OFPROPOSITION2.3 Suppose that? differs from bothA and fromo A by sets of positive
volume. ThenK* ando K~ have positive volume. Applying (2.10) (withB = B = K™,
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C = o0C? = K7) to assumption (2.20) implies that

/ / pac(t;x,y) dedy > / / pa(t;z,y) dxdy > 0, (2.37)
Kt JoK— -

and hence, by Lemma 2.5,

|| pwonttag)dody > o (2.38)
K+ JoK~—

forall ¢t > 0. It follows with the semigroup property that

W, ,(EY) > / / Pas (t/3; 2, 21)pacnm+ (/35 11, 2)pa- (t/3; 22, y) dridrs > 0. (2.39)
K+ JoK-

We conclude that the right hand side of (2.10) can vanish whign either both terms on the left
hand side of (2.10) vanish, of = A° (up to a set zero volume)," € B,yt € C,or A = g A°
(up to a set of zero volume);t € 0B, y* € oC' . Integrating over: € B,y € C° withC = A
gives the claim. n

2.4 Rearrangements for multiple integrals

It is tempting to try to prove Theorem 1 directly from Propasi 2.1 by approximating the spher-
ically decreasing rearrangement with a sequence of twotpearrangements. The difficulty is
that the exit time does not depend continuouslyfwith respect to symmetric difference. We
avoid this issue by using rearrangement methods only toepidveorem 2, and then taking an
appropriate limit to get (1.9).

We first prove a discrete version of Theorem 2. Consider tleepiaint spacg+, —}, with the
metric defined byl(+, —) = 1. The mapo that exchanges and — is a reflection, with no fixed
points, andd* = {+} andH~ = {—} as the positive and negative half-spaces. For any function
¢ on{+, —}, lety’ be the corresponding two-point rearrangement:of

¢7(+) = max{¢(+),¢(=)}, ¢7(=) = min{p(+),¢(-)} . (2.40)

Lemma 2.6 Let ¢, ..., ¢, be nonnegative functions on the det,—}. For each pairij, let
ki;(,<") be a decreasing function of the distance betweand<’, i.e.,

kij(e, ") = aij + bijl—e

with a;;, b;; > 0. Consider the function

J(f1,. .. bn) = Z I ¢ic) [ Fislenen) (2.41)
1<i<n 1<i<j<n
Then
‘](¢17---7¢n) S J( (177"'7¢Z)' (242)
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Suppose that both sides of (2.42) take the same positive ¥@lw,, ..., ¢,. Letl’, be the
graph on the vertices = 1, ..., n formed by the edgeg with b;; > 0, and assume additionally
thatI', is connected. Then either

(i) gy =07 fori=1,...,n,0r

(i) pp=¢700 fori=1,...,n.

PROOE We write

T ) = Y K ] e (2.43)
I ccr
wherel" runs over all graphs on the verticés= 1,...,n, the indexC runs over the connected

components of’,

Kr = H ij H bij , % :H¢i(+) + H¢i(_)7 (2.44)

ijge(l)  ijee(l) icC icC

ande(I) is the set of edges df. Defining®Z accordingly, we may factor

LD = I ++- ]I @()H I «-- 11 ¢i(+)],
i€C:i(+)>¢i(—) 1€C:9i(+)>¢i(—) i€C:¢; (+)<¢i(—) 1€C:0i(+)<¢i(—)
(2.45)
which is clearly nonnegative. It follows from (2.43) thatloes not decrease under rearrangement.

Moreover,
J(qﬁflf’ ceey ¢Z) - J(¢17 R ¢n) Z KFo (q)({rl,...,n} - (p{l ----- Tl}) ) (246)

wherel’, is the connected graph appearing in the statement of thed&emm

To see the claim about the cases of equality, note that thé mand side of (2.45) is positive
unless one of the factors vanishes. If none ofith®r ¢, vanishes identically, thef, is positive,
and the right hand side of (2.46) vanishes onlyjf+) — ¢;(—) does not change sign as=
1,...,n. |

Lemma 2.7 (Two-point rearrangement inequalityet 7 be a functional of the form (1.11) dvi,.,
where for each paitj, the kernek;;(z, y) is a nonincreasing function of the distance between
andy. Leto be a reflection, with a choice of positive half-spdée&. Then, for any collection of
nonnegative measurable functiofis. . ., f, onM,, we have

T(frseosfu) < TUT 0 fa) - (2.47)

Suppose that (2.47) holds with equality for some functins. ., f,,, where the value of the
right hand side is finite and positive,> 1, and at least two of th¢; are non-constant. Ldt, be
the graph on the verticess= 1, ..., n which has an edge betweéand; whenever the kernéi;
is strictly decreasing with distance, and assume additigribat I, is connected. Then either
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() fi= fr foralli, or
(i) fi=f7 oo forallq.

PROOFE Rewrite 7 as an integral over the positive half-spdéé:

T (frses fn /H+ /H+Z I 75 I kel a))de .. de,,  (2.48)

1<i<n 1<i<j<n

where ther; are as in (2.9). For every fixed choiceof, ..., x, in H™, the integrand is of the
form (2.41), with

di(+) = f(l’j) ai; = kij(;
¢i(=) = fla;7) bij = kij(z;

It follows directly from Lemma 2.6 that inequality (2.47) lds as claimed. Moreover, equality
occurs only if for each collection of points,, ..., z,, the differencef(z;) — f(z, ) does not
change sign as = 1,...,n. But then the sign cannot change either if theare varied, which
proves the claim about the cases of equality. n

Y

]
) j_) - kl](xj—ax]_)

~—

(2.49)

@+N+

PROOF OFTHEOREM 2 We want to show that functionals of the form (1.11) can onlgrease
under spherically decreasing rearrangement. Supposé¢jthat, f,, are nhonnegative measurable
functions that vanish at infinity. By monotone convergemnee,may assume that thg bounded
and integrable, and thaf (fi, ..., f,) is finite. By a result of Brock and Solynin ([15], Theo-
rem 6.1), there exists a sequence of reflectigng ;> so that

fo’l...O']' _} f* (j _) OO)
uniformly in L' wheneverf € L. It follows from Lemma 2.7 that

T(fry-oonfu) < TUTT 00 f2%) = T(ff o fr) (5 — ), (2.50)

which proves the inequality.

Equality in (1.12) implies, by (2.50), thaf does not increase under any two-point rear-
rangement of the;. By Lemma 2.7, for every and every collection of points,, ... z,, either
[ (x;) = fi(a;) forall 4, or f7(x;) = fi(ox;) for all i. Varying thez;, we see that eithef? = f;
forall ¢, or f{ = f,o0 forall i. Lemma 2.8 (proved below) shows that egg¢ls already spherically
decreasing about some pointof M,.. Using Lemma 2.7 once more, we see that all the paints
must coincide. n

The following lemma strengthens Lemma 6.3 of [15], whichssthatf = f*, if and only if
[ = f? whenever:* is contained in the positive half-spage (o).
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Lemma 2.8 Let f be a measurable function &v,, and assume thayf| vanishes at infinity. If for
every reflectiow, either f7 = f (a.e.) orf° = foo (a.e.), thenf is either spherically decreasing
or spherically increasing about some pointME. (possibly after a change on a set of measure
zero).

PROOF. We consider only the case whevk, is a hyperbolic space of dimension as the case of
the sphere is similar. Without loss of generalifyis bounded and integrable; otherwise we replace
itby G o f, whereG : R — R is strictly increasing, bounded, and sufficiently smallmga

Fix a reflectiono a positive half-spacé& (o), and consider

5(0) = /H+( )~ f o) d (2.51)

By assumptionf — f o o does not change signs in each of the two half-spategr) andH (o).
It follows that

é(o) >0 = f°=f(ae) d(o) <0 = f7=foo(ae) (2.52)
By continuity of the integral with respect to translations,
d(o) =0 < f=foo(ae) (2.53)

thatis, f is symmetric undes.

Form = 1, we viewM, as the line segmerit-1, 1) with the hyperbolic metric. Each point
a € (—1,1) determines a (hyperbolic) reflection having that point agedfipoint. We specify the
interval to the right as the positive half-space. The irabgity of f implies thati(o) — £ [ f as
the fixed point approachesl. By the intermediate value theorem, there exists a refleetiavith
d(o1) = 0. Then= f ooy by (2.53). Using the isometries of the hyperbolic space, seeime that
o1 is the Euclidean reflection at the origin, aifids even. If f is symmetric under a sequence of
reflectionso; with fixed pointsa; — 0, but witha; # 0, thenf is constant (a.e.). Otherwisgo)
has a definite sign (say(c) > 0) whenever its fixed point is negative and sufficiently clasée
origin. By (2.53),f = f, thatis, f(ox) < f(x) forall z > 0. Lety > = > 0, and leto be the
reflection mapping to —y. The fixed point ot lies to the left of the origin. It follows that

f@) = fly) = fl@) = f(=y) = f(z) = flox) =20 (ae) (2.54)

atleastwheny > z is close enough to. We conclude thaf is increasing oif0, 1). This completes
the proof in dimensiom: = 1.

Form > 1, we viewm-dimensional hyperbolic space as the unit dis®thwith the Poincaré
metric. A reflection is given by a sphere which intersectsltbendary of the disc at a right angle,
together with a choice of a positive half-space. Considefdmily of such spheres with centers on
thez;-axis. The intermediate value theorem implies as in the gase1 that the family contains a
reflections; with 6(o;) = 0. Using the symmetries of hyperbolic space, we may assunetlis
the Euclidean reflection at the hyperplane= 0. Repeating the argument with families of spheres
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centered on the other coordinate axes yields a collection obmmuting reflections, ..., 0,,,
which we may take to be the Euclidean reflections at the coatdiaxes. Thereforé(o) = 0 for
any reflection at a hyperplane through the origin. It follaat f is rotationally symmetric. The
proof is completed by using the one-dimensional case to ghaithe restriction off to a line
segment passing through the center of the unit disc dependstonically on the distance from
the center. n

3 Exittimes and Dirichlet problems

3.1 Trotter products

We mentioned in the introduction that for a sufficiently regwopen setd, the distribution func-
tion of the exit timeu (¢, z) solves the heat equation (1.3)-(1.5) drwith Dirichlet boundary
conditions. There are several meaningful definition®ofchlet boundary conditionsvhich all
coincide for sufficiently regular open sets, but may diff@riinore general measurable sets.

The kernelp4(t; z, y) was defined in (2.5) as the conditional Wiener measure ofehefsall
paths on0, t] connectingr with y in A. The corresponding heat semigrofffy is both positivity
preserving and positive definite aff!(A) (the closure ofC°(A) in H'), and vanishes on its
complement.

Following Stroock [47], we define thigst penetration timef X, into the complement afl by

Ty = inf {t >0 /Ot I4(X,) < t} : (3.1)

ThenT, is a stopping time. Its distribution function
dalt,w) = Po(Ta > 1) (3.2)

solves the heat equation (1.3)-(1.5) in the sense that

ialta) = [ paltso)alw) dy, (3:3)
wherep,(t; x, y) is the kernel of the Trotter product
PY = lim (I,P'™)" (3.4)
n—oo

andI, is the indicator function ofd (see [30]). The existence of the limit in the strohfrsense

is guaranteed by a theorem of Kato [32], since both muligpion with 7, and the heat semigroup
P! define contraction semigroups @A(M,, ). The semigroug; defined by (3.4) is positivity pre-
serving and positive definite on the intersectioBf{M,, ) with the set ofZ?>-functions supported

on A (which generally containg/!(A)), and vanishes on its orthogonal complement. We note that
P!, is another candidate for the Dirichlet heat semigroupdonin contrast withp 4(t; =, y) and

18



ua(t, z), the functionsi, (¢, x) andpa(t; z,y) are not affected ifd is changed by a set of zero
volume. .
Since, by definition7y > T4 for any Borel set4, the inequality

walt,z) < dalt, o) (35)

holds for allt > 0 and allz, y € M. If A is an open set with smooth boundary, tHéncoincides
with P} as a semigroup of?(M, ) and (3.5) holds with equality a.e. . In particular

ﬂ/A* = Up* , (3.6)

so that an upper bound far, such as

/aA(t,x)da: g/ Ua-(t,x) dz (3.7)

implies the corresponding upper bound (1.9) fior. The point is that the Trotter formula (3.4)
exhibits (3.7) as a limit of inequalities of the form congiglgin Theorem 2.

On the other hand, let be the set of all points of Lebesgue density onelofBy a theorem
of Stroock [47], any path that hits the complementiodlmost surely spends a positive amount of
time outsideA, so that

fLA = uyj-. (38)
SinceA differs from A by a set of zero volume, one can see (3.7) as a special cas@pf (1
Equation (2.6) ford implies that
Ujo < Upe, (3.9)

since every point ofl° has density one. In fact,
/ Uao(t,x) do — / Uao(t,x)de > / /W;y(Et) dydz (3.10)
a B B

whereE! is the event that a path does not penetrate into the compteshetf during[0,¢] and
spends positive time in bothA\ A and A\ o A during some subinterval ¢, t] where it remains in
H™. Alternately, this can be shown by applying Lemma 2.7 toferts formula, and estimating the
contribution of various sets of paths with Varadhan's ireddy (4.61) for the small-time behavior
of the heat kernel.

3.2 Proof of Theorem 1

The following lemma allows to reformulate (1.6) in the forin9). It is due to Alvino, Trombetti,
and Lions ([3], Proposition 2.1).

Lemma 3.1 Let f and g be nonnegative measurable functionsMp that vanish at infinity, and
suppose thay is symmetrically decreasing abaut € M,,. The following statements are equiva-
lent.
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1. For every Borel seB:
[ teris < [ g, (3.11)
B B*
with equality only ifB has zero volume.

2. For every nonnegative convex functibrior which the integrals are finite,

/ F(f(2)de < / Flg(z)) dr | (3.12)

with equality only iff’ o g = const..

PROOF OFTHEOREM 1 Let A, B C M, be Borel sets of finite volume. Then

/ﬂA(t,x) dr = / 5(@)palt, 7, 9)La(y) dyda (3.13)
B
= nh_}rgo/ /IB x)p(t/n; xy, x9)la(xs) ... p(t/n;x0 1, 20) L a(2) dxy . . . d3.14)
< nll_}r{.lo /.../IB*(xl)p(t/n;xl,xg)IA*(xz)...p(t/n;xn1,xn)IA*(xn)dx1..(3.'zElﬂ5)
— / Ly (@)pa- (8,0, y) La- () dyd (3.16)
= / Ua-(t,x) dx (3.17)

where we have used (3.3) in the first and last lines, the diefindf 5 4(¢; z, y) in the second and
fourth lines, and Theorem 2 in the third line. We concludehw8.5) that

/ ua(t,x)ds < / ua-(t,x) de . (3.18)
B *
By Lemma 3.1, this proves (1.6). Inequality (1.7) followsd®ttingF'(y) = y? in (1.6) to obtain

fualt,)ll, < llua-( )], (1 <p<oo) (3.19)

and then lettingg — oo.

To discuss the cases of equality in (1.6), supposefhat 4+ (¢, -) is non-constant, and assume
for the moment thatl satisfies condition (2.20). Sinc& andB° are equimeasurable with and
B, inequality (3.18) implies that

/ ua-(t,x)de — /uA(t,:U)dx > sup/ e (t, ) de — /uA(t,:L’)dx. (3.20)
B B o B

o
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If A differs from every disc by a set of positive volume, then, leyrima 2.8, there exists a reflection
o so that4? differs from bothA ando A by a set of positive volume. Propositions 2.1 and 2.3 imply

that
/Ba uae (t,x) do — /BuA(t ) de > // (BN dydz > 0 (3.21)

for any Borel setB C A of positive volume, so the right hand side of (3.21) is pusiti By
Lemma 3.1, inequality (1.6) is strict. Inequality (1.6) Is@strict if A differs from a discD by a
set of zero volume bub\ A is not polar, since a path i has positive probability of hitting\ A
before leavingD. This settles the case where (2.20) holds.

On the other hand, if (2.20) does not hold, we can wAdte- A; U A,, whereA; and A, are
disjoint, both have positive volume, and

/ / pat;z,y) dady = 0. (3.22)
Ay J A
Then
/F(uA(t;x))dx = / F(uy, (t;x))dx +/ F(ug,(t;x))dx (3.23)
A A A
< / F(u ) dz + / F(u dz (3.24)
i A3
< / ua-(t;x) de . (3.25)

Here, the first line follows from (3.22), the second followsrh (1.6), and the last line follows
since the disjoint union of two discs cannot produce equaiit(1.6): Position the two discs so
that they touch but their interiors do not intersect, andhtperform a two-point rearrangement
such that the resulting is connected. We conclude again that (1.6) is strict.

For the analysis of the cases of equality in (1.7) we use [2flProposition 2.1 (withB = {x},
C = A) in place of (2.6). n

3.3 Some applications

We briefly indicate how Theorem 1 and the rearrangement ndstiiged in the proof can yield
inequalities for exit time moments and the spectrum of Diet heat kernels.

Corollary 3.2 [39] (Moment inequalities)Let A C M, be a Borel set of finite volume. Then the
moments of the exit time frorhdefined by

Mpn(A) = |E[TH]]], (3.26)

satisfy
Mpn(A) < Mpp(A7) (3.27)

forall 1 <p < oo, andn > 0. Equality in (3.27) for some value pfandn implies that there is a
disc D so thatA\ D has zero volume ant\ A is polar.
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ProOOF. We will show that, if £ is nonnegative and convex with(0) = 0 andG is nonnegative
and increasing witld7(0) = 0, then

[ rEG@ @ < [ FEiGE) (3.28)

SettingF'(y) = y? andG(T) = T™ yields (3.27).
By Lemma 3.1, the proof of (3.28) amounts to showing that

/ E,[G(T) dr < / E,[G(T4)]da (3.29)
for all Borel setsB C A. We write
BAG(TA] = [ PG> ddt = [ PuLa > g0)de = [ utat)0) it (330)

whereg(t) is the inverse function aff andu(¢, x) is the distribution function of the exit time. With
Fubini’s theorem we see that

/BEx[G(TA)]dJJ = /Ooo/Bu(g(t),:U) dxdt . (3.31)

Applying Theorem 1 to the inner integral completes the proof n

The next inequality is a by-product of the proof, rather tkize statement of Theorem 1.

Corollary 3.3 Let A C M, be a Borel set of finite volume. Then
[P < [Py (3:32)
for any pair of nonnegative measurable functighand g which vanish at infinity.
If A neitherf nor g vanish almost everywhere, then equality occurs only wheretis a disc

D sothatA \ D has zero volumd) \ A is polar, and the restrictions of andg to D coincide a.e.
with nondecreasing functions of the distance to the cerftér.o

PROOF. For characteristic functiong = I, g = I the claim is obtained by replacing (¢, x)

with P! (and correspondinglyi4 with P!I) in the proof of Theorem 1. The general claim
(3.32) follows by writingf andg with thelayer-cake principleas

f(z) :/ If@yssds, g(x) :/ Iy)>sds . (3.33)
0 0
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Corollary 3.3 immediately implies the Faber-Krahn inedfyalLet \;(A) and\;(A*) be the
first Dirichlet eigenvalues ofi and A*, respectively, and lep, and ¢ 4~ be the corresponding
eigenfunctions. Then

N / p4(Phor) dr < / (6)° Phu(da) de < e M), (3.34)

where the first equation is the definition @f, the second is (3.32), and the third uses the varia-
tional characterization of, (A*). Equality occurs only wher is essentially a disc.

As in the proof of Theorem 1, one can combine Propositionsafd 2.3 with Lemma 2.8 to
estimate\;(A) — A\ (A*) from below. If (2.20) holds ford, and A° differs from bothA and A”
by a set of positive measure, then for latgéhe eventt* occurs for most paths that remain.if
up to timet. More precisely, a Borel-Cantelli argument implies that thtegrals in (2.6) which
involve A decay at a faster exponential rate than the integrals whiaive A°.

An estimate for the perimeter cannot be obtained in this si@ge in general,

IVfll, = IVf7]l, and Per(4) = Per(4°). (3.35)

The reason is thg¥ f7| is equimeasurable witfV f| by construction. This implies, in particular,
that the approximation of the spherically decreasing esggement by sequences of two-point
rearrangements cannot convergéiit->.

Statements analogous to Theorem 1 hold for the trace of titkkenel. We refrain from stating
the most general results here and refer the interestedmtatieo recent papers of Morpurgo [40,
41].

Theorem 3.4 For any Borel setd C M, of finite positive measure,
trace P < trace P}. , (3.36)
with equality only if there is a dis® so thatA\ D has zero volume, anB\ A is polar.

As in the case of Theorem 1, inequality (3.36) is a direct egagnce, via Trotter’'s formula
(3.4), of Theorem 2). To analyze the cases of equality, re t

trace PY. — trace P > sup trace P}, — trace P}, (3.37)

g

since A’ is equimeasurable witld. The right side of (3.37) can be estimated by modifying the
map L in the proof of Proposition 2.1 so that it takes closed loopstered at a point to closed
loops centered at or ox. This shows that

ZIBU )pae (t; 05, 2F) — Ig(aF)pa(t; 25, 2™ ZIBa Wiwi, (3.38)

whereFE! is the event defined in Proposition 2.1. Integrating avet A results in

trace P}, — trace P} = /W;m(Et) de (3.39)
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which is the analogue of Proposition 2.1. Under the addii@ssumption (2.20), the right hand
side of (3.39) vanishes only whehcoincides with eitherl” or 0 A” (up to a set of zero volume).
We conclude as in the proof of Theorem 1 that equality occalgwhen A is essentially a disc.

We add a corollary of (2.10) and (3.38) which was suggestes oy Laugesen [35].

Corollary 3.5 Let D be a disc inM,, centered at:*, with D # M,.. Then the functionsp (¢, )
andpp(t; z, x) are strictly decreasing functions dfz, z*) for¢t > 0, x € D.

PROOF By symmetry, botty ), (¢; x, ) andu(¢; ) depend only onm andd(x, 2*). Letx andz be
two points inD with d(x, 2*) < d(z, z*). We want to show that

up(t,z) < wup(t,z), and (3.40)

po(t;2,2) < pp(tz, ), (3.41)

Assume without loss of generality thaties on the shortest geodesic that conneatsth x*. Let

o be the reflection which mapsto z, let H° be the hypersurface of fixed points ef and let
H™ be the half-space containing andz. Clearly, D" = D. To see the first inequality, choose

A =C = DandB = {z} in (2.10) and integrate over € D. Similarly, settingA = D and
B =C ={z}in(3.38) implies (3.41). |

4 Perimeter and heat flow

In this section we prove Theorem 3 and inequality (1.15).c8ithe right hand side of (1.15),
which involves only the heat kernel d¥i, is more manageable than the right hand side of (1.15),
we prove Theorem 3 first.

4.1 Definitions

Theperimeterof a setA is the total variation of its characteristic function, that

Per(A) := sup /divY(a;) dr , (4.1)
A

Y: |Y|<1

where the supremum is over all smooth compactly supportetbréelds with|Y| < 1, anddiv Y
denotes the divergence bf(see [49, 16]).
In general, the inequality

Per(A) < lim sup/gn(:v) divY(z)de = lim ||Vg,|, (4.2)

n—oo Y n—00
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holds for any sequence of smooth functigpsonverging ta/ 4 in L} . In particular, the perimeter

loc*

is lower semicontinuousith respect to convergence in measure4 lias finite perimeter, one can
choose the approximating sequemngeso that

Per(A) = li_)m IVanll, (4.3)
and consequently
/ W(@),Y (@) dS = lim | (=Vgu(2),Y(z)) de (4.4)

exists for every smooth bounded vector fiélcbn M.

If A has smooth boundary, then (4.1) coincides with the defmitiche perimeter as a surface
integral. Furthermore, the right hand side of (4.4) coiesidvith the usual formula for the flux
of Y across the boundary of, wherev(x) is the outward unit normal to the boundary 4fat a
boundary pointz, the pairing( , ) denotes the inner product on the tangent spac¥ @ft =, and
dS is integration with respect ton — 1)-dimensional surface measure.

We will frequently use geodesic polar coordinates for cotapans (see [42, 20, 11] for a
more detailed description). Every point in a smooth congoRtemannian manifold/ can be
represented as = exp, (rw), wherew is a unit tangent vector at,, the functionexp, is the
exponential map from the tangent spaceléfat z, into M, andr = d(z,z,) > 0. This repre-
sentation is unique in a neighborhood:qf and we refer tqr, w) asgeodesic coordinatesbout
z,. ldentifying the unit sphere in the tangent spacelbfat =, with S, we may express the
Riemannian measure af in terms of Lebesgue measure Bn and the standard surface mea-
sure onS™ ! asdx = 6(r,w) dr dw. The gradient and Laplacian ofz) = d(z,x,) at a point
r = exp, (rw) can be written as

Vp(x) = 0rexp,, (rw) , Ap(x) = 0, logf(r,w) . (4.5)

For the manifolds of constant curvatuv&,, one can explicitly compute

. m—1
(L“ﬁ)) if > 0

r
0.(r) = rmet if k=0 (4.6)
- m—1
()T i k<0

(see Theorem I11.5.1 of [20].
Consider the Dirichlet problem (1.3)-(1.5) on a diBoof radiusR, centered at* in M,.. By
symmetry we can write the solutiary, as

UD(t,.T) = hli(ta d(l‘,x‘*)), (4.7)

whereu ) (t, ) is defined by (1.2), the functioly, (¢, ) is nonnegative and vanishes fo> R. By
Corollary 3.5,h,(t, r) is strictly decreasing in bothandt for 0 < r < R, and allt > 0.
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Two classical inequalities relate the Laplacian on a cote@enooth Riemannian manifold
near a point, € M with the Laplacian oM,,. Let A be a geodesic disc of radidscentered at
z, in M, and letD be a disc of the same radidscentered at* in M. If R is small enough we
can use geodesic coordinates to define a diffeomorpliismt — D by settingy(z) = y when
v = exp, (rw) andy = exp,.(rw).

1. Gunther’'s comparison theoresays that, if the sectional curvature &f is bounded above

by «, then
0(r, w)
O 000 >0, (4.8)
that is,
Ap(z) > Apu(P(2)) - (4.9)

One implication is that the volume cf is at least as large as the volumelo{27] (see [20],
I11.2). Furthermoreup(t, 1 (x)) is a supersolution of (1.3)-(1.5) o, that is

UA(ta I) < hn(ta d(x, xo))? (4.10)
with equality only whenA is isometric to a disc iV, [38, 22, 31, 42].

2. Bishop’s comparison theoreasserts that the reverse inequalities hold if if the Ricecvau
ture of M is bounded from below bym — 1)x:

O(r, w)
0, 00 <0, (4.11)
or, equivalently,
Ap(@) < Apelit(a)) (4.12)

whereA, is the Laplacian o, [11], Theorem 11.15 (see [20], 111.3). Consequently, the
volume of A cannot exceed the volume 6f, and

ualt,x) > hy(t,d(z,z,)), (4.13)
with equality only whenA is isometric to a disc itMk. [22, 31].

In other words, ifx is a bound for the curvature @ff, then the solution of the Dirichlet problem
(2.3)-(1.5) on a small disc is bounded by the solution of threesponding problem on a disc of the
same radius iV, . Analogous comparison results are known for the heat k¢seel [20], VIII.3).

4.2 A simple perimeter estimate on spheres

The following inequality will not be needed below. We presiere to introduce, in a simpler
setting, the idea for the proof of Theorem 3.
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Proposition 4.1 LetM,, be a sphere of constant curvatute> 0, and letP! be the heat semigroup
onM,. For everyA C M,,

1 1
Pl dx < PIyd 4.14
Per(A)/c ”Ax_Per(H)/c R (4.14)

whereH is a hemisphere.

REMARK Passing to the limit — oo in (4.14) results in
V(A V(AY)
V(H)?
whereV (A) denotes the volume of, and correspondingly fod© andH. This inequality is related

with Cheeger’s inequalitysee [20]). The right hand side of (4.15) is maximized ¥ofA) =

V(H) = V(M,)/2, when the statement becomes a special case of the classiparimetric
inequality.

Per(A) > Per(H), (4.15)

PROOF. By symmetry, the heat kernel dvi,, can be written in the form

pe(tsz,y) = qu(t d(z,y)), (4.16)

whereg,(t, r) is a strictly decreasing function of effor each fixedt > 0. For any pair of smooth
nonnegative functiong andg on M, , we compute

. f(Plg—g)de = /Ot /w fP:Agdxds (4.17)
_ / t / (Vg, V(PF)) duds (4.18)
- / / / (Ve Vap (st ) S9) dydods (4.19)

where (-, -) denotes the inner product on the tangent spac&/pfat . We have used the heat
equation in (4.17), integrated by parts in (4.18), and sgetiut the heat kernel in (4.19). Setting

/CP,ﬁg—gdx = / / / (Vg(x), Vipe(s;z,y)) dydzds . (4.20)

For fixeds > 0 andxz € M, the inner integral can be estimated by taking the negaaveqs the
integrand,

—/C (Vy(@), Vapa(s;z,y)) dy
V.0, d 4.21
< /m P(si@,y))_ dy (4.21)
— /Sm 1 L dw /0 |0,qi (s;7)| O, (1) dr . (4.22)
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We have switched to geodesic coordinajes exp,(r, w), computedV ,d(z,y) = —w, and used
the fact that, does not depend on the direction vectdo separate the integrals. Clearly, the right
hand side of (4.22) is a constant multiple|8f¢(x)|, where the constant depends only Qrihe
dimensionm, and the curvature. Performing the integrations overands in (4.20), we obtain

| Pla—gdr < Cmn) |9l (4.23)
Using an approximating sequence as in (4.3), we conclude tha
/ Pl dx < C(t,m,k)Per(A) . (4.24)

We claim that for a hemisphe##, inequality (4.24) holds with equality. Inserting an appro
mating sequence in (4.20), taking limits, and using (4.4) see that

/Hc Pilyde = /Ot /aH/ (v(2), Vepe(s; z,y)) dydrds (4.25)

wherev(zx) is the outward normal tOH atx. It is a special property of the hemisphere that the
outward normab/(z) at a pointz € 9H forms an acute angle with the shortest geodesic fram
y, ifand only ify € H¢. Sincep,(s; x, y) increases along that geodesic, it follows thatfar 0H,

| @ Vase ) d = [ @), do [T oasnlomd. @20

Integrating overy; ands in (4.25) we see thall satisfies (4.24) with equality. This completes the
proof. [

4.3 Proof of Theorem 3

The special case of inequality (1.19)®4* can be obtained by computing the const@ift, ., 0)

in (4.23) and studying its asymptoticsias> 0. On a general manifold, such a computation has to
be replaced by estimates, as explicit formulas for the hesaiek are not available. We approximate
the heat kerneb(¢; z, y) on M by ¢(t; d(z, y)), where

1
q(t;r) = (47rt)m/2€ /(4 (4.27)

is the function defining the heat kernel & .

The integral operator®’ given by the kernelg(¢; d(x,y)) can be used to construct the heat
kernel on)M exactly (see, for example, [10, 45]). Here, we mainly need ¢achy)’ is a bounded
linear operator orl.? and thatQ'f — f ast — 0 pointwise at least for smooth functiorfswith
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compact support. Another useful observation is thatfos 0 and¢ sufficiently smallg(¢; d(x, y))
is concentrated on the diagonal in the sense that the cotitibof

//d( )>Rf(I)CI(t; d(z,y))g(y) dedy < || fl| llgll; ¢(t; R) (4.28)

is exponentially small in—! ast — 0, uniformly for R bounded away from zero. The next lemma
shows that)! f almost solves the heat equation.

Lemma 4.2 Assume that the Ricci curvature bf is bounded below, and the sectional curvature
is bounded above. Then there exists a constafdepending only oid/) such that fort < 1:

18 = 2)Q'f||, < Cllfll (4.29)

PROOF Let p(z) = d(z,y), fix y, and letw be a unit vector. Using geodesic coordinates-
exp, (pw) abouty, we calculate

(m—1)
p(z)

It is easy to see from the explicit formulas in (4.6) thatMp,

(0, — A)q(t; pla)) = 22 (Apm -

Ao ) at; () (4.30)

m‘l‘ < CW) pla) . (4.31)

p(x)

By our assumptions on the curvature and the inequalitid®j4nd (4.9) of Bishop and Gunther,
a statement of the form (4.31) holds also/an and we conclude that

‘Aﬁp(x) -

2

00— Matts )| < o) 2

for 2 in a neighborhood of where geodesic coordinates are valid. It follows that

q(t; p(w)) (4.32)

R(y,w) ,.2
O-a@7]@ < conlfl [ [T Tattnpe e, @39

where R(y, w) denotes the maximal length of a distance-minimizing geiedtarting aty in di-
rectionw. We have used the fact that in a complete manifold, the cuisibas zero volume. We
claim that the last integral is finite. Indeed, using Bislsdpequality (4.11), we see that fore M
andw € S™ 1,

R(yaw) 7«2 OO,,,.?
[ Sanseeyar < [ et ar (4.3
0 0
0 20, (rv/1)
= /0 q(l,r)it(mﬂ)/2 dr, (4.35)
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wherek is determined by the lower bound on the Ricci curvatur@/ffSince the right hand side
of (4.35) is an increasing function ofand takes a finite value far= 1, it is uniformly bounded
fort <1. [}

Inequality (4.29) implies a corresponding bound for thdedénce betweerd)! and the true
heat kernelP:

Lemma 4.3 Under the assumptions of Lemma 4.2, we have forl
1@ = PYf||l. < Cllfllet, (4.36)
where( is the constant of Lemma 4.2.
PROOF. By Lemma 4.2, the function
v(t,z) = (P'=Q)f(2) — CIfllot (4.37)

satisfies
(O —A)u(t,z) < 0 (E<1). (4.38)

Sincewv (0, z) = 0, we conclude by the maximum principle thdt, ) < 0. Repeating the argu-
ment for

it,z) = =(P'=Q)f () = Cllfllt

gives the claim. [
Inequality (1.19) holds withP! replaced byQ*:

Lemma 4.4 If A C M is a bounded set with finite perimeter, then

Per(A) > lim \/? Q' dx (4.39)
Ac

t—0t

PROOF. Lemma 4.2 implies that for any two smooth nonnegative flomstf andg with compact
support,

[r@y-gar - / /M § 0,Q°g deds (4.40)
= [ [ ra@gdsds + 11 lol 0w (¢-0). @4
0 M
Hence we may repeat the computation in (4.17)-(4.20) toimbta
t
tg— g)de = — Vo(z), Vaqls: d(z, y))) dyded o). (4.42
| @g-ade = [ [ [ (Sala), Tuatos dle.)) dudeds + gl 00) . @42)
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The inner integral on the right hand side can be estimated @eiproof of Proposition 4.1
~ [ (Vo). Vaats e ) dy

< /M (Vo(a), Voals; d(z, ) dy (4.43)

R(z,w)
= / (Vg(x),w>+/ 10,q(s;7)|6(r, w) drdw. (4.44)
gm—1 0

In the first step, we have taken the negative part of the iatedyr In the second step, we have
switched to geodesic coordinates- exp, (r, w); hereR(z, w) is the maximal length of a distance-
minimizing geodesic starting atin directionw. Sinceg is compactly supported, we have

R, = inf inf R(z,w)>0. (4.45)

xesupp g weSm—1

For givens > 0, there exists a positive numbgr € (0, R,) such thatf(r, w) — r™~*| < ¢ for all
r < R, and allw € S™ 1. On the other hand, using Bishop’s inequality (4.11) agaimsee that

/ |0rq(s;7)| 0(r,w)dr < / Lq(s;r) 0, (r) dr (4.46)
[Re,R(z,r)] R. 28
1 o0
< — q(1,7)rf_ ., (r) dr, (4.47)

which is exponentially small in=! ass — 0. It follows that

R(z,w) T 00 )
/ |0rq(s;0)[ 0(r, w)dr = \ﬁ/ (47s) ~mAD/2e=r s pm g (1 4 0(1)) (4.48)
0 S Jo
— \/g ((m + 1)wm+1)71 (14 0(1)) (4.49)

uniformly for z in the support ofy andw € S™~!. The value of the spherical integral on the right
hand side of (4.44) is easily computed as

/Sm_l (Vg(z),w), dw = wn_1|Vg(z)| (4.50)

wherew,,_, is the volume of the unit disc in dimension — 1. Combining equations (4.49) and
(4.50) with (4.44) yields

—/C<V9(9€),V$q(8; d(z,y))) dy < \/g(L Vg (z)] (1 +0(1)) (4.51)

m~+ 1)wmi1
We perform the integrations overands in (4.42) to obtain

lim g 5 Qty(x) do (4.52)
WL/ Vg(z)| dz lim i/ti (1+o0(1) ds (4.53)

(m + Dwmir Sy =0t VT Jo /5
= [[Vgll, (4.54)
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The claim follows by approximating, with a suitable sequence of smooth functions and applying
(4.4). n

Lemma 4.5 If the boundary ofd is twice continuously differentiable, then the limit in3@) exists,
and the inequality holds with equality.

PROOF We approximatd 4 with a sequence of smooth compactly supported functignas in
(4.3), and use equations (4.40)-(4.42) from the proof of ren#.4). Taking the limih — oo
yields, with (4.4),

t
Qads = [ [ [ @) Vaalsidla,) dydads + gl 00, @55)
Ac 0 JoA ¢
wherev is the outward unit normal td at the boundary point. Similarly, (4.43) becomes
[ @) Valside) v < [ @), Vaalsdw)), do. (4560
c M

We need to estimate the difference between the two sides.56)4 Consider first, for given
x € 0A, the set of pointy € A° where the tangent to the shortest geodesic fiaimy atx forms
an obtuse angle with(z) (i.e., it points intoA). The smoothness and compactnes8.4fimply
that forz € 0A, the(m — 1)-dimensional surface measure of the set

S (z,r) = {weS™ ! exp,(rw) € A, (v(z),w) < 0} (4.57)

is of the order? uniformly in z € @A, which shows that

/C(V(:U),qu(s;d(:c,y))>_dy . /OOOQLSQ(S;T)QK(T)/S( {0

< Const. /000 ;—ZQ(SE r)8,(r)dr
— o).

Similar considerations for the set of point& A where the shortest geodesic franandy forms
an acute angle with the norma{z) show that

[ Faatssdla).v(@) - dy = 013 (4.58)
uniformly for x € 0A. Thus, the difference between the two sides of (4.56) is 0€10D(\/s).
The claim follows by integrating over € 9A ands € [0, t] . n

PROOF OFTHEOREM 3 By Lemma 4.3,

/ (P'— Q"I dr = /(Pt — QNI < CV(A)L (4.59)

c A

for 0 < ¢t < 1, with a constant” which depends only od/. Hence it is sufficient to prove the
claims for@! in place of P!, which was done in Lemmas 4.4 and 4.5. n
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4.4 Proof of formula (1.15)
As discussed in the introduction, (1.15) is related to Thao8 via the the approximation
UA(t, 1‘) ~ IAPt(IA — IAc)(l‘) = IA (1 — QIAPtIA) (1‘) (460)

(recall thatP'I, + P'I, = 1). It remains to prove that (4.60) is justified for sufficigntegular
sets. By a theorem of Varadhan [50], the heat kernelbgatisfies

lim —4tlogp(t;z,y) = d(z,y)?. (4.61)

t—0t+

This suggests that both sides of (4.60) should be expotigraaall in dist (z, A)?/4t ast — 0,
which would justify (4.60) in the interior ofA. Lemma 4.7 proved below contains a weaker
statement which suffices for our purposes. We first consliespecial case of a half-space.

Lemma 4.6 Let H C M, be a half-space. Then
uH(ta l‘) = IHPt(IH - IHC) ) (462)

and the inequality ' ‘
1—uy(t,z) < Cre WH@HVA L Oy (4.63)
holds uniformly fol0 <¢ <1,z € H.

PROOF. The two sides of (4.62) agree, since they solve the samelietiproblem or.
For the second claim, we write

1 —ug(t,z) = 20gP'Iy(x) (4.64)
= 2I43Qye(z) + O(t) (4.65)
< 2wm_1/ q(t, )04 (r) dr + O(t) (4.66)

R

where we have used Lemma 4.3 in the second line, and repldcky a disc of radiusk =
dist (z, H¢) in the third. The last integral is estimated by

00 o0 re" 313 mel
/Rq(t,r)eﬁ(r)dr < /qu(l,r) (T) dr (4.67)
< C(m,r)q(1,R/V1), (4.68)

where we have used (4.6) in the first line, and used that tbgrand increases within the second.
Combining (4.66) and (4.68) gives the claim. [
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Lemma 4.7 Assume that the Ricci curvature &f is bounded below bftn — 1)« (wherem is the
dimension ofl/), and letA C M be a Borel set. Then for every fix&J > 0, there exist constants
Cl, 02, 03 such that

Plac(z) < 1—uy(t,z) < Cre(CAs @ADL oy (4.69)
holds for allz with dist (x, A) < R,, and allt > 0.
PROOF The first inequality in (4.69) is just the fact that
us(t,r) < Ply(z) < 1. (4.70)

To prove the second inequality, sSRt= dist (x, A¢). Clearly, replacingd by a disc of radius?
aboutr only decreases the exit time. By inequality (4.13),

UA(tax) > uD(tax,) (471)

whereD C M, is a disc of radiugz centered at’, andx is determined by the lower bound on the
Ricci curvature.

Next, we choose a collection of+1 half-spacedi; C M, such that their intersection contains
2" and is contained i®. Then

1 —up(t,z") < Z(l —uy,)(t,2") . (4.72)

i

It can be arranged thalist (z', Hf) > CR, where the constant depends ©nm, and (in case
k < 0) on R,. We complete the proof by combining inequalities (4.71) @hd2) with Lemma 4.6
and adjusting the constants. [

The next step is an estimate near the boundary.

Lemma 4.8 Assume that the boundary df C M is compact and twice continuously differen-
tiable. Then there exists a constarisuch that

sup |P'(In — Ixe) —u(t,z)| < CVt (4.73)
€A
forall t > 0.
PrROOE The restriction of
v(t,x) = Pt(IA — Ie) —u(t, ) (4.74)

to A satisfies the heat equation dnwith zero initial values, and boundary conditions

v(t,r) = P'(Ip — I4)(x) x € 0A. (4.75)
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By the maximum principle, it suffices to prove thasatisfies the claimed bound on the boundary
of A. By Lemma 4.3 we may replade’ with Q! in (4.75). We compute

Q'(Iy—I4) = /000 q(t,r) /Sm_1 Ia(exp,(rw)) — Iac(exp,(rw)) 8(r,w) dwdr . (4.76)

The inner integral on the right hand side is the differencevben the areas occupied byand
A€, respectively in the geodesic sphere of radiuasboutz. Since the boundary afl is twice
differentiable, the fraction of the area of the geodesicesplof radius- occupied byA and A€,
respectively]l /2+O(r). It is easy to compute from there thdt, x) = O(+/t) ast — 0 uniformly
fort < 1andx € 0A. [

Proposition 4.9 If A C M is a bounded set with twice continuously differentiablerimtary, then
Per(A) = lim (/— / 1 —ual(t, o) 4.77)
t—0+

PROOF. By Lemma 4.8, the function

\/4Et (1 —ua(t,z) — 2P Lx) (4.78)

is bounded uniformly fof < ¢ < 1 andx € A. By Lemma 4.7, it converges to zero pointwise
almost everywhere as— 0. Lebesgue’s dominated convergence theorem implies that

lim\/ /l—uAt:U = lim \/7/P1Acd$ (4.79)
t—07t t—07t

Due to the regularity assumptions oh the limit on the right hand side exists and equals the
perimeter ofA. n

4.5 Concluding remarks

We close by formulating two plausible generalizations oéditems 1 and 2 to manifolds of non-
constant curvature. The first extends a long-standing came due to Aubin [4] that on simply

connected manifolds of non-positive curvature, the isopetric inequality should hold with the

sharp Euclidean constants, with equality only for flat disé¢hile significant progress has been
made in recent years [23, 33, 19], the conjecture appearg topkn for smooth manifolds of

dimension larger than four.
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Conjecture 4.10 Suppose that/ is a simply connected, complete smooth manifold of nortipesi
sectional curvature. For a gived C M of finite volume, le#* be the Euclidean disc centered at
x* so that the Euclidean volumé(A*) agrees with the Riemannian volurti¢A). Then

/ Flua(t, z)) dz < / Flua(t,)de (¢ 0) (4.80)
A A*
for all nonnegative convex functio#swith £'(0) = 0, and allt > 0. Furthermore,
[pus | @ wzo, (4.81)
A A*

where(! is the Euclidean heat kernel.
By formula (1.15) and Theorem 3, either (4.80) or (4.81) vdauhply
Per(A) > Per(A"), (4.82)

which is the isoperimetric inequality conjectured by Aubilthe assumption that/ is simply
connected is crucial, since otherwisemay be compact, in which case= M, uy, = 1, P'I,, =

1, andPer(A) = 0 would contradict (4.80), (4.81), and (4.82). Note that ie $ipecial case where
Ais adisc of radiugk, the discA* has larger radius thanA by Bishop’s comparison theorem, and
inequality (4.80) is weaker than (4.10).

Let now M be a smooth compaet-dimensional Riemannian manifold whose Ricci curvature
is bounded below bym — 1)k, wherex > 0, and set
V(M) <1,
V(M) —

whereV andV, denote the Riemannian volumes &h andM,, respectively. FordA C M, let
A* C M, be adisc with

= (4.83)

V(A) =BV, (AY). (4.84)
The Gromov-Levy isoperimetric inequaligays that
Per(A) > [Per(A") (4.85)

at least for sufficiently regular sets (see [20], IV.2, Rekri@).

Conjecture 4.11 Let M be a compact smooth manifold whose Ricci curvature is balibdew
by (m — 1)k withk > 0, and letA C M, 3, andA* C M, as in (4.84). Then

/Pwm@x»m:Sﬂ Fug(t,x))dz  (t>0) (4.86)
A A*
for all nonnegative convex functions wit0) = 0, and

[Pu<s [ P wzo), (4.87)
A A*
whereP! denotes the heat kernel &, .
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Inequality (4.85) is contained in the— 0 asymptotics of either (4.86) or (4.87). Note that
(4.86) and (4.87) are saturated for= 0 and in the limitt — oo by definition of 5. For M = M,
we haves = 1, so that (4.86) reduces to (1.6) of Theorem 1, and (4.87)aeslto (1.20). IfM is
not isometric taVl,, then the Gromov-Levy inequality (4.85) is strict. In thase, formula (1.15)
and Theorem 3 imply that Conjecture 4.11 holds at least fallsvalues oft.
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