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AbstractWe determine the cases of equality in the Riesz rearrangement inequalityZZ f(y)g(x� y)h(x) dydx � ZZ f�(y)g�(x� y)h�(x) dydxwhere f�, g�, and h� are the spherically decreasing rearrangements of the functions f ,g, and h on Rn. We apply our results to the weak Young inequality.1 Statement of the resultsThe Riesz rearrangement inequality states that the functionalI(f; g; h) := Z f � gh dx = ZZ f(y)g(x�y)h(x) dydx (1.1)never decreases under spherical rearrangement, that is,I(f; g; h) � I(f �; g�; h�) (1.2)�Partially supported by NSF grant DMS-9207703
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for any triple (f; g; h) of nonnegative measurable functions on Rn for which the right handside is de�ned. The spherically decreasing rearrangement, f �, of a nonnegative mea-surable function f is the spherically decreasing function equimeasurable to f . We will de�neit by f �(x) = supns > 0 j �(Ns(f)) � !n jxjno ;where Ns(f) := nx 2 Rn j f(x) > sois the level set of f at height s, and !n denotes the measure of the unit ball in Rn. Thatis, the level sets of f � are the centered balls of equal measure as the corresponding level setsof f . This de�nition makes sense if all level sets corresponding to positive values of f have�nite measure, for example, if f is in Lp for some p <1.In this paper, we determine the cases of equality in (1.2). A triple of functions thatsatis�es (1.2) with equality will be called an optimizing triple, or optimizer, of the inequality.There are many optimizers of (1.2). One reason is that I is invariant under a large groupof a�ne transformations: For any linear map, L, of determinant �1, and vectors a, b, andc = a + b in Rn, we haveI(f; g; h) = ZZ f(L�1y � a)g(L�1(x�y)� b)h(L�1x� c) dydx : (1.3)Additionally there is the permutation symmetryI(f; g; h) = I(g; f; h) = I(h; g�; f) ; (1.4)where g� denotes the function de�ned by g�(x) := g(�x). Clearly, any triple of functionsthat is equivalent to a triple of spherically decreasing functions under these symmetries isan optimizer.There is a second reason to expect many optimizers. Consider the case when f and ghave compact support. Then also the convolution f � g has compact support. If h is thecharacteristic function of a set that contains the support of f �g, then f; g; h produce equalityin (1.2) regardless of the shape of that set. 2



We will show that the non-uniqueness of the optimizers is due only to these two reasons.In particular, we will give conditions on the three functions that guarantee that any optimiz-ing triple either consists of spherically decreasing functions, or is equivalent to such a tripleunder the symmetries given in (1.3).The main result goes back to a conjecture by Lieb and Loss [20]. It describes all casesof equality in (1.2) where f , g, and h are characteristic functions of measurable sets. Thespherical rearrangement, A�, of a measurable set A of �nite measure, is de�ned to be theopen centered ball of the same measure as A. With this de�nition, XA� = (XA)�, andall level sets of a measurable function f and its spherical rearrangement f � are related byNs(f �) = (Ns(f))�. De�ne the functionalJ (A;B;C) := I(XA;XB;XC) = ZZ XA(y)XB(x�y)XC(x) dydx :Naturally, J inherits the symmetries of I.Theorem 1 (Cases of equality, characteristic functions) Let A, B and C be measurable setsof �nite positive measure in Rn. Denote by A�, B�, C� the centered balls of the same measureas A, B, and C, respectively, and by �, �, and 
 the radii of these balls.If j�� �j < 
 < � + �, then there is equality inJ (A;B;C) � J (A�; B�; C�) (1.5)if and only if, up to sets of measure zero,A = a + �E ; B = b + �E ; C = c+ 
E ; (1.6)where E is a centered ellipsoid, and a, b, and c = a + b are vectors in Rn.Otherwise, permute the three sets so that 
 � � + �, using (1.4). Then there is equalityin (1.5) if and only if A, B, and C can be changed by sets of measure zero so thatC � A+B ; (1.7)In particular, for 
 = � + �, there is equality in (1.5) if and only if, up to sets of measurezero, A = a + �M ; B = b+ �M ; C = c+ 
M ; (1.8)where M � Rn is convex and open, and a, b, and c = a+ b are vectors in Rn.3



The set A+ B that appears in conclusion (1.7) of Theorem 1 is called the pointwise, orMinkowski sum of A and B. It is de�ned byA+B := fa+ b j a 2 A; b 2 Bg :We will say that three positive numbers �, �, 
 satisfy the strict triangle inequalityif they could form the lengths of the sides of a nondegenerate triangle, that is, ifj�� �j < 
 < � + � :Note that this formula is symmetric under permutation of �, �, and 
. We will often saythat the strict triangle inequality holds between the sizes of three sets A, B, and C in Rn,if it holds between the radii of the balls A�, B�, and C�.In other words, equation (1.6) says that any optimizing triple (A;B;C) such that theradii �, �, 
 satisfy the strict triangle inequality is (up to sets of measure zero) equivalentunder the symmetries of the functional J to the triple of balls with these radii, centered atthe origin. Equation (1.8) says that any optimizing triple such that �, �, 
 are in the criticalsize relation 
 = � + � is (up to sets of measure zero) of the form (A;B;A + B), where Aand B produce equality in the Brunn-Minkowski inequality.Theorem 1 is the basis for our other results. In principle, it determines all cases ofequality in the full Riesz rearrangement inequality, in the following way: Three functions f ,g, and h produce equality in (1.2) if and only if almost all triples of level sets of the threefunctions produce equality in inequality (1.5). Unfortunately, this condition is hard to checkin general. However, it is easy to recover the result by Lieb [18] that if the middle function,g, is required to be strictly spherically decreasing, then equality in (1.5) occurs only if fand h are common translates of spherically decreasing functions. The next theorem is thecorresponding result in the case where at least two of the three functions are required tohave no 
at spots.Theorem 2 (Cases of equality, two strictly decreasing rearrangements) Let f , g, and h bethree nonnegative measurable functions with spherically decreasing rearrangements f �, g�,and h�. Assume that I(f; g; h) is �nite, and that f , g, and h are not everywhere zero.4



If at least two of the three rearrangements f �, g�, and h�, are strictly spherically decreas-ing, then there is equality in inequality (1.2) if and only if the triple (f; g; h) is equivalent to(f �; g�; h�) under the symmetries (1.3).The following example shows that the hypothesis that the rearrangements of two of thefunctions are strictly decreasing is essential. Letf(x) = X(�2;2);g(x) = X(�1;1);h(x) = 8>>>>>>>><>>>>>>>>:
0 if x < �3,4 + x if �3 � x < �1,4� x if �1 � x < 3,e3�x if x � 3.Then f and g are already spherically decreasing, and h coincides with its rearrangementh�(x) = 8>>>>><>>>>>: 5� 2 jxj if jxj < 1,4� jxj if �1 � jxj < 3,e6�2jxj if jxj � 3,on the union of the two intervals [�3;�1] and [1; 3]. Since the convolution f � g is locallyconstant on the complement of these intervals, it follows thatI(f; g; h) = I(f �; g�; h�) :Note that h� is strictly decreasing, but h and h� are not related by a linear transformation.As an application of Theorem 2, consider the weak Young inequality����ZZ f(y)g(x�y)h(x) dydx���� � C(p; �; n) kfkp kgkw;q khkr ; (1.9)where 1 < p; q; r <1, 1=p+ 1=q + 1=r = 2, and � = n=q. The weak q-norm is de�ned bykgkw;q := sups>0 s �(Ns(jgj))!n !1=q ;and C(p; �; n) is the best constant in the Hardy-Littlewood-Sobolev inequality����ZZ f(y) jx�yj�� h(x) dydx���� � C(p; �; n) kfkp khkr :With Lieb's proof of this inequality in [19], we obtain the following statement.5



Corollary 1 There is equality in the weak Young inequality (1.9), if and only if (f; g; h) isequivalent to (f �; g�; h�) under the symmetries (1.3), and moreoverg�(x) = const: jxj�� ;and f � and h� produce equality in the Hardy-Littlewood-Sobolev inequality.The structure of the paper is as follows. The second section contains an overview over theliterature. We are particularly interested in the questions, which of the proofs of inequality(1.2) can be used to identify the cases of equality. The major part of the paper, Sections 4{9,is dedicated to the proof of Theorem 1. Finally, in Section 10, we prove Theorem 2 andCorollary 1.AcknowledgmentsMany thanks to Michael Loss for the problem, and for many valuable discussions. Manythanks also to Eric Carlen for useful discussions and references.2 The history of the problemThe history of the inequality seems to begin with Poincar�e's work on the problem of thepossible shapes of a 
uid body in equilibrium [11, 12]. If the total angular momentumof the body vanishes, then the energy functional has the form (1.1), where f = h is thecharacteristic function of the body, and g(x � y) = jx� yj�1 is (up to a minus sign) thepotential of the gravitational attraction between two points located at x and y. Poincar�eshowed that, under some smoothness assumptions, the potential energy is minimized if andonly if the body assumes the shape of a ball. Although he quoted Steiner's work on theisoperimetric inequality, his proof contains no concepts of rearrangement.Poincar�e referred to an earlier proof by Liapuno� [16], which apparently did not use theisoperimetric inequality. He pointed out several shortcomings of Liapuno�'s proof, whichapparently did not show that minima of the energy functional existed.6



All later proofs of inequality (1.2) (with or without requiring the middle function tobe spherically decreasing) are based on rearrangement ideas developed by Steiner for theisoperimetric inequality. Using Steiner symmetrization, the proof can be split into twoparts. First, it is proven in one dimension. Applying the inequality to lower-dimensionalcross sections shows that J (f; g; h) never decreases under Steiner symmetrization, while f �,g�, and h� stay the same. Then the spherical rearrangement is approximated with repeatedSteiner symmetrizations. It is a well known problem with Steiner's proof of the isoperimetricinequality that he did not show that such an approximation procedure converges, thus leavingthe possibility open that the functional in question may not attain its extremum. The sameproblem occurs in some of the proofs of the Riesz rearrangement inequality discussed below.The second universal tool is the `layer-cake principle'. Any nonnegative measurablefunction can be represented as a sum of the characteristic functions of its level sets. Theninequality (1.2) follows easily from the corresponding inequality (1.5) for the level sets (see[23, 15, 18, 6]). We will use this technique to prove Theorem 2.Blaschke seems to have been the �rst to consider inequality (1.2) as a geometric inequality,and to use Steiner symmetrization to construct a proof of a special case [4]. With essen-tially the same methods Carleman showed that the inequality holds for any symmetricallydecreasing middle function [8]. Both Blaschke and Carleman used techniques developed byGro� [13] for the isoperimetric inequality to extend the inequality to non-convex sets. Thediscussion of the cases of equality in [4, 8] was not complete, as it was only shown that con-vex optimizers have to be balls, but not that all optimizers have to be convex sets. Finally,Lichtenstein [17] extended the inequality with the `layer-cake principle' to non-homogeneous
uids.Riesz �rst stated the full inequality, where all three functions may vary, in one dimension[23] (see also [15]). It is easy to read o� the cases of equality from a modi�cation of hisproof. Another proof of the inequality in one dimension can be found in Hardy, Littlewood,and P�olya [15]. Since the inequality (1.5) is approximated with a discrete analog, it does notshow the cases of equality.Riesz claimed that the inequality can easily be generalized to several dimensions [23]. Hemay have been thinking of Steiner's methods discussed above. Following work by Lusternik7



on the Brunn-Minkowski inequality [21], Sobolev took this approach for the Riesz inequality[24, 25]. Both proofs are incomplete, since it is not shown that the constructed sequence ofSteiner symmetrizations converges to the spherical rearrangement in some suitable metric(Hausdor� metric for the Brunn-Minkowski inequality, and symmetric di�erence for the Rieszinequality). The cases of equality are not discussed. Sobolev was interested in inequality(1.2) because of an application to an inequality of the type of the Hardy-Littlewood-Sobolevinequality.Inequality (1.5) is closely related to the Brunn-Minkowski inequality. This connection islost, if the middle function is restricted to be strictly spherically decreasing. Incidentally,Hadwiger and Ohmann proved the Brunn-Minkowski inequality and discussed the cases ofequality for measurable sets with more direct geometric methods that do not involve Schwarzor Steiner symmetrization, and thus do not require such a convergence result [14].The �rst complete proof of inequality (1.2) in higher dimensions is due to Brascamp,Lieb, and Luttinger [6]. They also give a new proof of the inequality in one dimension,which calls upon the Brunn-Minkowski inequality in a surprising way. This proof gives themore general inequalityZ � � �Z mYi=1 fi0@ kXj=1 aijxj1A dx1 : : : dxk � Z � � �Z mYi=1 f �i 0@ kXj=1 aijxj1A dx1 : : : dxk : (2.1)The variables xi are vectors in Rn, and (aij) is a m � k matrix of scalars. Inequality (1.2)corresponds to the special casem = 3 ; k = 2 ; (aij) = 0BBBBB@ 0 1�1 11 0 1CCCCCAThe full inequality (1.2), where all three functions are allowed to vary, is needed forapplications to variants of Young's inequality, which relate the value of the functional I tothe norms of f , g, and h in some function spaces. Beckner [3] applied the analog of (1.2) formultiple convolutions, Z f1 � � � � � fkf0 dx � Z f �1 � � � � � f �kf �0 dx ; (2.2)8



(which is the special case of (2.1) with m = k + 1) to a version of Young's inequality.Brascamp and Lieb [5] proved a more general version of Young's inequality and determinedthe best constants, based on (2.1). Since sharp versions of inequalities (1.2), (2.1) and (2.2)were not available, they used other methods to identify the cases of equality.A similar inequality on spheres was proven by Luttinger [22] in one dimension, andby Baernstein and Taylor in connection with subharmonic maps [2]. Here, g is a �xedsymmetrically decreasing integral kernel. The proof relies on a compression procedure thatinvolves re
ections at hyperplanes. Although it is not mentioned in [2], it is easy to identifythe cases of equality from this proof. The same proof applies to inequality (1.2) in Rn incase the middle function is spherically decreasing.In [18], Lieb used inequality (1.2) to �nd solutions of a variational problem with rotationalsymmetry. He proved and used the sharp version with the �xed middle function mentionedabove. The proof in one dimension is interesting, because it uses no approximation argu-ments, but direct geometric considerations for measurable sets. In particular, no regularityis assumed for the optimizers a priori. He also showed that the rearrangement inequality forthe L2-norm of the gradient can be obtained with a limiting argument from (1.2) with theheat kernel as the middle function.Returning to the problem studied by Poincar�e, Auchmuty [1] used the sharp form ofthe inequality with a �xed middle function to show that there are uniquely determinedaxisymmetric equilibrium shapes for rotating 
uid bodies. This inequality also plays a rolein Lieb's work on sharp constants in the Hardy-Littlewood-Sobolev inequalities [19]. Similararguments are needed to identify the optimizers when applying the `Competing Symmetries'method of Carlen and Loss [9, 10] to functionals of the form (1.1).We are convinced that Theorems 1 and 2 can be generalized to include inequality (2.1).The strict triangle inequality in Theorem 1 has to be replaced by a di�erent size conditionwhich depends on the matrix (aij). However, Riesz' proof of inequality (1.5) does not workfor inequality (2.1), and the proof by Brascamp, Lieb, and Luttinger uses approximationarguments in such a way that it seems impossible to read o� the cases of equality. Inequality(2.2) is a simpler special case. Theorem 1 holds for this inequality, with the triangle inequalityreplaced by a condition that the radii form the sides of a polygon with interior. The analogue9



of Lieb's result holds, if one of the functions f0; : : : ; fk is strictly spherically decreasing, andthe analogue of Theorem 2 holds, if at least two of them are strictly spherically decreasing(see[7]).3 Outline of the proof of Theorem 1The proof of Theorem 1 falls into several parts. In case one of the three sets is large enoughcompared to the other two, we deduce Theorem 1 from the result by Hadwiger and Ohmann[14] on the Brunn-Minkowski inequality and its cases of equality for measurable sets in Rnthat was mentioned in the previous section.In the most interesting case, when the strict triangle inequality holds between the sizesof the three sets, we will prove Theorem 1 by induction over the dimension. For the basecase, dimension n = 1, we will modify Riesz' proof to identify the cases of equality.The inductive step is based on the observation that the functional J in Rn+1 is just thefunctional in a lower-dimensional space integrated over the cross sections. It is easy to seethat almost all triples of n-dimensional cross sections of the three sets (at heights satisfying acertain relation) are optimizers of the inequality in Rn. Since J is invariant under rotations,Theorem 1 can be applied to intersections of the three sets with hyperplanes in arbitrarydirections.There are two major di�culties. First, since Theorem 1 only makes a strong statementif the strict triangle inequality holds, it is crucial to �nd su�ciently many triples of crosssections whose sizes satisfy this inequality. Since not much can be said about the measuresof cross sections of general measurable sets, some regularity is needed.Second, the information about the cross sections obtained from the inductive assumptionhas to be pieced together to draw conclusions about the entire sets. In other words, thethree sets have to be identi�ed as ellipsoids by local properties. Eventually, we will deriveand solve a di�erential equation for the boundaries of the three sets of an optimizing triple.Additional regularity will be needed to do this.We will combine a pair of symmetrizations along subspaces with a linear transformationto yield a basic symmetrization operation. The symmetrization procedure (which can also10



be used to prove the inequality [24, 25, 7]) has the following properties.(R1) It transforms optimizers of (1.5) into optimizers of (1.5).(R2) It is rather simple, so that we can show that optimizers that satisfy the conclusions ofTheorem 1 after regularization must have satis�ed them to begin with.(R3) It transforms general measurable sets into sets that are su�ciently regular.Thus we need to prove conclusion (1.6) of Theorem 1 only for optimizing triples consistingof regularized sets. For such triples, we �nd cross sections whose radii satisfy the stricttriangle inequality. We apply the inductive hypothesis and derive some properties of thesecross sections. From these properties, we identify the sets as ellipsoids that di�er only byscale factors. This will complete the proof of Theorem 1.4 Some properties of optimizers of inequality (1.9)In this section, we do those parts of the proof of Theorem 1 that are not related to theinduction over the dimension.Let A;B;C be measurable sets of �nite positive measure in Rn. Clearly, neither thefunctional J , nor the spherical rearrangements A�, B�, and C�, nor the radii �, �, and 
change, if A, B, and C are changed by sets of measure zero. We will often replace the threesets by the sets of their points of density one, or Lebesgue points. It is well known thatany measurable set di�ers by a set of measure zero from the set of its Lebesgue points.We begin with a simple property of optimizers which plays a central role in the inductivestep: It will be used to �nd at least some cross sections of an optimizing triple for whosesizes the strict triangle inequality holds, provided the strict triangle inequality holds for thesizes of the three sets.Fix two sets A and B in Rn. The convolution XA � XB of their characteristic functionsis continuous, even if A and B are only measurable. Fix the measure of the third set, C. Itis easy to see that the functional J is maximized, if C is a level set of XA �XB (this is know11



as the `bathtub principle'). It is the purpose of this section to describe this level set moreprecisely. The number s will be called a degenerate value of XA � XB, if the level `surface'nx j XA � XB = sohas positive n-dimensional Lebesgue measure, and non-degenerate, if it has measure zero.By de�nition, the symmetrized sets A� and B� are the open balls of radius � and �. Theconvolution XA� � XB�(x) = ��B�(0) \ B�(x)�is a nonincreasing function of jxj. It is positive on the open ball of radius � + �, and itachieves its maximum on all points of the closed ball of radius j�� �j. Its maximal valueis either �(A) or �(B), whichever is smaller. It is strictly spherically decreasing for radiibetween j�� �j and � + �. Hence, if �; �; 
 satisfy the strict triangle inequality, then C�is a level set corresponding to a nondegenerate value of XA� � XB� . If 
 � � + �, then C�contains the support of the convolution. If 
 � j�� �j, then C� is a subset of the set wherethe convolution takes its maximal value.The following two lemmas show that similar statements hold for general optimizingtriples. The �rst lemma can be seen as a regularity result { it implies that we can as-sume that the boundary of the three sets have measure zero. In the second lemma, wecharacterize the support of XA � XB.Lemma 1 (Optimizers and level sets) Let (A;B;C) be an optimizing triple of inequality(1.5) in Rn. If �, �, and 
 satisfy the strict triangle inequality, then C di�ers by a set ofmeasure zero from the level set nx j XA � XB > so ; (4.1)where s := infx2C�XA� � XB� (x)is a nondegenerate value of XA � XB. If 
 � � + �, then C contains (except for a set ofmeasure zero) the level set nx j XA � XB (x) > 0o ;12



if 
 = � + �, then the two sets di�er by a set of measure zero. If 0 < 
 � j�� �j, then Cis contained (up to a set of measure zero) innx j XA � XB (x) = min(�(A); �(B))o ;if 0 < 
 = j�� �j, the two sets di�er by a set of measure zero.Proof Assume without loss of generality that �(A) � �(B), that is, � � �. The stricttriangle inequality between �, �, and 
 guarantees that0 < s < maxXA� � XB� :Clearly, s is a nondegenerate value of XA� � XB�. De�ne the setsC+ := C \ nx j XA � XB(x) > so ;C� := C [ nx j XA � XB(x) � so :Then C+ � C � C� ; (4.2)and C+ � nx j XA � XB(x) > so � nx j XA � XB(x) � so � C� :If C di�ers by a set of positive measure from the level set (4.1), or if s is a degenerate valueof XA�XB, then at least one of the sets C nC+, C�nC has positive measure. If �(C nC+) > 0then J (A;B;C) � J (A;B;C+) + s�(C n C+) because XA � XB � s on C n C+� J (A�; B�; C�+)� s�(C� n C�+) by (1.5) and (4.2)< J (A�; B�; C�) because XA� � XB� > s on C� :Similarly, if �(C� n C) > 0 thenJ (A;B;C) � J (A;B;C�)� s�(C� n C) because XA � XB � s on C� n C� J (A�; B�; C��)� s�(C�� n C�) by (1.5) and (4.2)13



< J (A�; B�; C�) because XA� � XB� < s outside the closure of C� :In either case, it follows that (A;B;C) produces strict inequality in (1.5).The proofs in the cases 
 � � + � and 
 � �� � are similar.Lemma 2 (The support of the convolution) Consider two measurable sets, A and B, inRn with characteristic functions XA and XB. Assume that A and B consist exactly of theirLebesgue points. Then nx j XA � XB(x) > 0o = A +B :Proof "�": Suppose that the convolution takes a positive value at the point x. Then�((x� A) \ B) = Z XA(x�y)XB(y) dy = XA � XB(x) > 0 ;that is, the intersection of x � A with B has positive measure. Any Lebesgue point of thisintersection is of the form b = x� a for some Lebesgue points a 2 A, b 2 B."�": Any point of the form x = a+ b 2 A+B is a Lebesgue point of both a+B and b+A,so it is a Lebesgue point of the intersection. Consequently, b = x� a is a Lebesgue point of(x� A) \ B, and the convolution takes a positive value at x.Combining Lemmas 1 and 2 shows that, if (A;B;C) is an optimizer of inequality (1.5) andthe strict triangle inequality holds between �, �, and 
, then A, B, and C di�er by sets ofmeasure zero from open sets satisfying�C � A+B ; (4.3)where �C is the closure of C.The two lemmas also establish a connection between Theorem 1 in case the strict triangleinequality does not hold between the sizes of the three sets, and the Brunn-Minkowski in-equality. The Brunn-Minkowski inequality for measurable sets in Rn as proved by Hadwigerand Ohmann in [14] states that the measure of the pointwise sum of any two nonemptymeasurable sets A and B in Rn satis�es the inequality�(A+B)1=n � �(A)1=n + �(B)1=n : (4.4)14



There is equality if and only if either A is a point, or B is a point, or A and B are of theform A = �A nNA; B = �B nNB (4.5)where NA and NB are sets of measure zero, and �A and �B are convex sets that can be mappedto each other by scaling and translation.Before we turn to the proof of Theorem 1 in case one of the three sets is large comparedto the other two, we would like to remark that conversely, the Riesz rearrangement inequal-ity implies the Brunn-Minkowski inequality for measurable sets, and Theorem 1 impliescharacterization (4.5) of the cases of equality (see [7]).Proof of Theorem 1, 
 � �+� The assertion (1.7) follows immediately from Lemmas 1and 2. If 
 = �+ �, the Brunn-Minkowski inequality (4.4) together with (1.7) implies that�(C)1=n � �(A+B)1=n � �(A)1=n + �(B)1=n ;that is, 
 � � + �. Hence A and B produce equality in (4.5), and C di�ers by a set ofmeasure zero from its subset A + B. By (4.5), A, B, and consequently A + B, are convexsets di�ering only by scaling and translation. This proves assertion (1.8).5 Proof of Theorem 1, n = 1, j�� �j < 
 < � + �In this section, we adapt Riesz' proof of inequality (1.5) in one dimension [23] (see also [15])to general measurable sets, and use it to determine the cases of equality when the stricttriangle inequality holds between the sizes of the three sets.The idea of the proof is to replace two of the three sets by smaller sets, so that the threesets are in the critical size relation 
 = �+�, in which case we have just proved the theorem.Proof of Theorem 1, n = 1, j�� �j < 
 < �+ � For � � 0, de�neA� = nx 2 A j Z x�1XA(s) ds > �=2; Z 1x XA(s) ds > �=2oB� = nx 2 B j Z x�1XB(s) ds > �=2; Z 1x XB(s) ds > �=2o :15



The sets A� and B� are obtained by cutting o� subsets of measure �=2 from both ends of Aand B. In general, �(A�) = (�(A)� �)+. Set� := 12(�(A) + �(B)� �(C)) = � + � � 
:With this choice of �,�(A�) = �(A)� 12��(A) + �(B)� �(C)� = � + 
 � � ;�(B�) = �(B)� 12��(A) + �(B)� �(C)� = � + 
 � � :Both expressions are positive because �, �, and 
 satisfy the strict triangle inequality.Moreover, the measures of A�, B�, and C are in the critical size relation�(A�) + �(B�) = �(C) :To estimate how the value of the functional J changes when A and B are replaced by A�and B�, observe that for any two measurable sets,(A \B)� = nx 2 A \ B j Z x�1XAXB > �=2; Z 1x XAXB > �=2o � A� \B� ;and hence �(A� \ B�) � �((A \ B)�) � �(A \B)� � :Applying this inequality to the intersection of A with x�B and integrating givesJ (A;B;C)� J (A�; B�; C) = ZC �((A \ (x� B))� �(A� \ (x� B�)) dx� ��(C) : (5.1)It is easy to calculate directly, that A�, B�, and C� produce equality in (5.1). It follows thatJ (A;B;C)� J (A�; B�; C) � J (A�; B�; C�)� J (A�� ; B�� ; C�) : (5.2)Adding inequality (1.5) for (A�; B�; C)J (A�; B�; C) � J (A�� ; B�� ; C�) (5.3)to inequality (5.2) gives (1.5) for (A;B;C). 16



It is necessary for equality in (1.5) that A�, B�, and C produce equality in (5.3). Con-clusion (1.8) of Theorem 1, which was proved in the previous section, implies that C di�ersfrom an interval by a set of measure zero. By the permutation symmetry (1.4), the other twosets A and B have to be intervals up to sets of measure zero as well. It is easy to calculatedirectly that the centers must satisfy a+ b = c.6 Steiner and Schwarz symmetrizationThe main tool for the proof of Theorem 1 in higher dimensions is symmetrization alonglower-dimensional subspaces, which we now de�ne. Let A be a measurable set in Rn+1.Write points in Rn+1 as x = (x0; x) with x0 2 R and x 2 Rn. Denote the n-dimensionalcross section of A at x0 = z byA(z) := fx 2 Rn j (z; x) 2 Ag :The Schwarz symmetrization, S1A, of A is de�ned by the property that its n-dimensionalcross sections perpendicular to the x0-axis are centered open balls whose measures equal themeasures of the corresponding cross sections of A. In short, for all z 2 R,(S1A)(z) = (A(z))� ; (6.1)where � denotes symmetrization of the cross section inRn. If a cross section is not measurableor does not have �nite measure, the corresponding cross section of S1A is de�ned to be Rn.Similarly, the Steiner symmetrization, S2A, of A is de�ned by the property thatits intersections with lines parallel to the x0-axis are intervals of the same lengths as themeasures of the corresponding intersections with A. In short, for all x 2 Rn,(S2A)(x) = (A(x))� ; (6.2)where � denotes symmetrization in R of the linear cross section at x. If a cross section isnot measurable, or does not have �nite measure, the corresponding cross section of S2A isde�ned to be R.Schwarz and Steiner symmetrization are uniquely determined by properties (6.1) and(6.2). They preserve the measure of A by Fubini's theorem. Moreover, ifA is changed by a set17



of measure zero, then S1A and S2A change by sets of measure zero. We will write S1(A;B;C)and S2(A;B;C) for the triples consisting of the Schwarz and Steiner symmetrizations of A,B, and C.The key to the inductive step is the observation that these partial symmetrizations trans-form optimizing triples into optimizing triples: The functional J can be written asJ (A;B;C) = ZRZR J (A(w); B(z�w); C(z)) dwdz :Inequality (1.5) applied to the n-dimensional cross sections givesJ (A;B;C) � ZRZRJ ((A(w))�; (B(z�w))�; (C(z))�) dwdz = J (S1(A;B;C)) :Applying inequality (1.5) in Rn+1 givesJ (A;B;C) � J (S1(A;B;C)) � J (A�; B�; C�) :Moreover, almost all n-dimensional cross sections of any optimizing triple (A;B;C) at zA,zB, and zC = zA + zB form optimizing triples for the inequality in Rn. Similar argumentsshow that also Steiner symmetrization transforms optimizers into optimizers.We will use the inductive assumption in form of the following lemma. It says that,provided the sizes of the cross sections of an optimizing triple satisfy the strict triangleinequality, they must be homothetic ellipsoids whose midpoints lie on parallel lines.Lemma 3 (Shape and midpoints of cross sections) Suppose that Theorem 1 has been provenin some �xed dimension n. Let (A;B;C) be an optimizing triple of inequality (1.5) in Rn+1.Assume that there exist nonempty intervals IA, IB, and IC such that for almost all z0 2 ICthere exists w0 2 IA with z0�w0 2 IB so that for almost all (z; w) near (z0; w0), the sizes of then-dimensional cross sections A(w), B(z�w), and C(z) satisfy the strict triangle inequality.Finally, assume that these assumptions also hold for any triple that can be obtained from(A;B;C) by the permutations (1.4).Then there exists a �xed centered ellipsoid Ê in Rn, and vectors â, b̂, and ĉ = â + b̂ in18



Rn, so that for almost all z in IA, IB, and IC , respectively,A(z) = â + zv̂ + �(z)Ê ;B(z) = b̂ + zv̂ + �(z)Ê ;C(z) = ĉ+ zv̂ + 
(z)Ê ; (6.3)except for sets of n-dimensional measure zero.Remark It is easy to see that â = b̂ = ĉ = 0 (6.4)if A, B, and C are symmetric about the origin. In other words, the midpoints of the crosssections of the three sets lie all on one line through the origin.Proof Fix (z0; w0) as in the assumptions. Since (A;B;C) is an optimizer, almost all triplesof cross sections A(w), B(z�w), C(z) are optimizing for inequality (1.5) in Rn. Conclusion(1.6) of Theorem 1 shows that almost all those cross sections with (z; w) near (z0; w0) aregiven by A(w) = a(w) + �(w)E(z; w)B(z�w) = b(z�w) + �(z�w)E(z; w)C(z) = c(z) + 
(z)E(z; w) (6.5)(up to sets of n-dimensional measure zero), where for each (z; w), E(z; w) is a centeredellipsoid in Rn, and the vectors a(w); b(z�w); c(z) 2 Rn satisfyc(z) = a(w) + b(z�w) : (6.6)Clearly, the ellipsoid E(z; w) in (6.5) cannot depend on z or w. Equation (6.6) implies thatfor small jhj d(h) := c(z + h)� c(z) = a(w + h)� a(w) (6.7)is a function of h only, and thatd(h1 + h2) = d(h1) + d(h2) : (6.8)The function d is measurable, because â(z) is the center of gravity of the cross section A(z),a(z) = �(A(z))�1 ZRn xXA(x; z) dx :19



Therefore relation (6.8) implies that d coincides with a linear function except on a set ofmeasure zero. By de�nition (6.7), for almost all values of z near w0, z0�w0, z0, respectively,a(z) = â+ zv̂ ; b(z) = b̂+ zv̂ ; c(z) = ĉ+ zv̂ ;where â, b̂, ĉ, and v̂ are vectors in Rn, and â+ b̂ = ĉ. Since IC is connected, the formula forc(z) holds for almost all z 2 IC . Permute the three sets, using (1.4), to see that the formulasfor a(z) and b(z) hold for almost all z in IA and IB, respectively. This proves the claim.7 RegularizationWe will use the following basic symmetrization operation in the inductive step: Let R be arotation by an angle that is not a rational multiple of �=2 in the x0-x1-plane which leavesthe other coordinates �xed, and de�ne S bySA := S2S1RA : (7.1)It can be shown (see [6, 7]) that for any measurable set A of �nite measure, the sequencenSkAok�0 converges to A� with respect to symmetric di�erence. This suggests that S shouldhave regularizing properties. We now verify that S2 indeed has the properties (R1){(R3)announced in Section 3.Proof of (R1)We already showed in Section 6 that Schwarz and Steiner symmetrization transform opti-mizers into optimizers. By the rotational symmetry of J , the same holds for S and S2.Proof of (R2)We will show that S2 has property (R2) in Lemma 5. In the proof we will use Lemma 4to show that optimizers that can be transformed into ellipsoids by Schwarz symmetrizationhave su�ciently many cross sections whose sizes satisfy the strict triangle inequality.20



Lemma 4 Let �, �, 
 be three positive numbers satisfying the strict triangle inequality.Then for any z with jzj < 
 there exists a nonempty open interval such that for w in thisinterval, the numbers p�2 � w2 ; q�2 � (z � w)2 ; q
2 � z2 (7.2)satisfy the strict triangle inequality as well.Proof Fix z with jzj < 
. We will construct a triangle in the plane with side lengths givenby equation (7.2).Consider a triangle in R3 with side lengths �, �, and 
, and denote the corners byO, P , and Q. Arrange it so that O = (0; 0; 0), and P = (p
2 � z2; 0; z), and that thedistances jQ� Oj and jP �Qj are � and �, respectively. Denote the image of P and Qunder projection onto the x1-x2-plane by P 0 and Q0. The triangle OP 0Q0 is non-degeneratetriangle unless Q happens to lie in the x1-x3-plane, directly above or below the line OP .Let w be the third component of Q, so z � w is the third component of the di�erencevector P � Q. Then (by Pythagoras) the distances of O, P 0, and Q0 are the three numbersof equation (7.2). Varying Q for �xed O, P , �, and �, we see that w can take any value ina certain open interval.Lemma 5 (Optimizers may be regularized) Assume that Theorem 1 has been proven forsome �xed dimension n � 1. Let (A;B;C) be an optimizing triple Rn+1 so that the radii �,�, 
 satisfy the strict triangle inequality.If S2(A;B;C) satis�es conclusion (1.6) of Theorem 1, then (A;B;C) satis�es (1.6) aswell.Proof We will �rst show the claimsA = a+ �E ; B = b+ �E ; C = c+ 
E (7.3)and a+ b = c (7.4)21



under the stronger assumption thatS1 A = a0 + �E 0 ; S1B = b0 + �E 0 ; S1 C = c0 + 
E 0 ; (7.5)where a0, b0 and c0 = a0 + b0 are �xed vectors in Rn+1. By the translation symmetry of J ,we may assume that the centers of gravity of A and B are at the origin, that is,�(A)�1 ZA x dx = �(B)�1 ZB x dx = 0 : (7.6)By (7.5), the ellipsoid E 0 is symmetric under rotation about the x0-axis, soE 0 = nx = (x0; x̂) 2 Rn+1 j jx̂j2 < c21 � c22x20o ;where c1 and c2 are constants. Since Schwarz symmetrization does not change the measureof the cross sections, we have �(A(z))!n !1=n =  �(S2A(z))!n !1=n = q(c21�2 � c22z2)+ : (7.7)It follows that c�11  �(A(zc1=c2))!n !1=n = q(�2 � z2)+ :The same formula holds for for B and C with � replaced by � and 
, respectively. ByLemma 4, A, B, and C satisfy the assumptions of Lemma 3 withIA = (��c1=c2 ; �c1=c2) ; IB = (��c1=c2 ; �c1=c2) ; IC = (�
c1=c2 ; 
c1=c2) :Assumption (7.6) givesâ = �(A)�1 ZA x̂ dx = 0 ; b̂ = �(B)�1 ZB x̂ dx = 0 ;so, by Lemma 3, also ĉ = â + b̂ = 0 :To show that A, B, and C are ellipsoids, write the ellipsoid Ê of (6.3) asÊ = nx̂ 2 Rn j Q̂(x̂) < 1o22



where Q̂ is a positive de�nite quadratic form on Rn. Then, by equations (6.3) and (7.7),conclusion (1.6) holds with the ellipsoidE = nx 2 Rn+1 j Q̂(x̂� x0v̂) < c21 � c22x20o ;and a = b = c = 0.In case (A;B;C) satis�esS2 A = a0 + �E 0 ; S2B = b0 + �E 0 ; S2 C = c0 + 
E 0 ; (7.8)where a0, b0 and c0 = a0+ b0 are �xed vectors in Rn+1, take R0 to be the rotation by �=2 thatmaps the x0-axis to the x1-axis and leaves the other coordinate axes �xed. Since Fubini'stheorem implies that Steiner symmetrization does not change the measures of n-dimensionalcross sections perpendicular to the x1-axis, we haveS1R0 = S1R0S2 :Assumption (7.8) impliesS1R0A = S1R0S2A = �E ; S1R0B = �E ; S1R0C = 
E :Applying the �rst case to R0(A;B;C) shows the claim (7.3).Finally, by de�nition (7.1), the assertion follows from the rotational invariance of J andthe two results just proved.Proof of (R3)We will show that S2 transforms a general measurable set A into the rotational solid of anonincreasing function, S2A = nx 2 Rn+1 j jx̂j < �(x0)o ; (7.9)where � is bounded, even, and nonincreasing for positive arguments. Since a nonincreasingfunction can have at most countable many discontinuities, we can change S2A by a set ofmeasure zero, so that it becomes open, and � becomes lower semicontinuous. The nextlemma deals with the smoothness properties of such sets.23



Lemma 6 (Continuity of intersections) Let A be an open set of �nite positive measure, givenby A = nx = (x0; x̂) 2 Rn+1 j jx̂j < �(x0)o ;where � is an even, nonnegative function that is nonincreasing for positive arguments. Con-sider the intersection of A with hyperplanes of the formx0 = mx1 + t ; (7.10)where m and t are scalars. If m 6= 0 then the n-dimensional measure of the intersections isuniformly bounded in t, and jointly continuous in (m; t) at (m; 0).If additionally � is bounded and continuous at 0, then the measure of the intersections isalso jointly continuous in (m; t) at (0; 0).Proof Write points in Rn+1 as x = (x0; x1; x̂), if n > 1, and points in R2 as x = (x0; x1).The intersection of a hyperplane of the form (7.10) with A is given by the equationsx0 = mx1 + t ; jx̂j2 < �2�x0�� (x1)2 ;for n = 1 set jx̂j = 0. Integrating over x̂, the measure of this intersection is (1+m2)n=2I(m; t),where I(m; t) = !n�1 Z 1�1 ��2(ms+ t)� s2�(n�1)=2+ ds ;with the convention that !0 = 1, and 00 = 0. The integrand cannot be positive unless�(ms+ t) > 1 or jsj < 1 or both. Thus, for m 6= 0, we can decomposeI � I1 + I2 ;where I1 is given by I1 = !n�1m Z s0�s0 ��2(s)� ((s� t)=m)2�(n�1)=2+ ds� !n�1m Z s0�s0 �n(s) dt= !n�1m!n�(A) 24



with s0 = infns > 0 j �(s) � 1o. The other part of the integral isI2 = !n�1 Z 1�1 �n�1(ms+ t) ds :It is easy to see from these representations that I1, I2, and I are bounded uniformly in t,and that limjtj!1 I(m; t) = 0.Continuity for n > 1 follows from the fact that the integrand inI(m; t) = !n�1 Z 1�1m�1 ��2(s)� ((s� t)=m)2�(n�1)=2+ dsdepends continuously on (m; t), and vanishes for �xed (m; t) if s is outside a compact set.To show continuity for n = 1, note that by the monotonicity properties of �, any line (7.10)with m 6= 0, t = 0 intersects the boundary of A transversally.Finally, if � is continuous at 0, then the integrand of I converges pointwise to��2(0)� s2�(n�1)=2+ ;except possibly for n = 1 at s = ��(0). Dominated convergence shows that I is continuousat (0; 0).By construction, S transforms any measurable set A in Rn+1 into a rotational solid,SA = nx 2 Rn+1 j jx̂j < �(x0)o :where � is even, nonnegative, and nonincreasing for positive arguments, so, clearly, S2Asatis�es (7.9). We only need to show that � is bounded. Recall that by de�nition (7.1),S = S2S1R ;where R rotates the x0-axis by a non-integer multiple of �=2. The function � describing thecross sections of S2S1RSA is obtained by symmetric decreasing rearrangement from the func-tion describing the cross sections of RSA perpendicular to the x0-axis, which are uniformlybounded by Lemma 6, because they correspond to intersections of SA with hyperplanes withm 6= 0. So � is bounded. 25



8 Identifying EllipsoidsThe following two lemmas were proven in collaboration with Michael Loss. They providethe criteria we will use to identify optimizers as triples of ellipsoids.Lemma 7 (Ellipses, local) Let A be an open set in R2 of the formA = n(x; y) 2 R2 j jyj < �(x)o (8.1)where � is an even, bounded, nonnegative function which is nonincreasing for x � 0, andcontinuous at 0. Consider the intersections of A with the family of linesx = my + t : (8.2)Assume that there exists a family of linesy = b(m)x (8.3)with the following property: For all m with jmj < ", the intersection of A with almost alllines (8.2) with jtj < " di�ers by a set of one-dimensional measure zero from a line segmentwhose midpoint lies on the line (8.3).Then there exists a constant c, and � > 0 such that for jxj < ��2(x) = �2(0)� c2x2 ; (8.4)that is, the intersection of A with the vertical strip jxj < � coincides with the intersection ofan ellipsoid (c 6= 0) or a horizontal strip (c = 0) with this strip. The shape of the ellipsoidis determined by c2 = �b(m)m (8.5)for any nonzero value of m.Proof We will �rst show thatA� = n(x; y) 2 A j jxj < �o :26
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Figure 1: A property characterizing ellipsesis convex if � is small enough. We need to �nd through each boundary point of A� a line,so that A� is contained in one of the closed half-spaces de�ned by that line. Such a line willbe called a support line of A at the given boundary point.Let Q = (0;��(0)) be the point of the boundary of A with the smallest y-coordinate.Clearly, A does not intersect the lower of the two half-spaces de�ned by the line y = ��(0)through Q. Consider a point of the form P = (x; �(x)) in the boundary of A. The linejoining P and Q is given by equation (8.2) withm = x�(x) + �(0) ; t = �m�(0) : (8.6)If x is close enough to zero, then jtj < ", jmj < ".Fixm as in (8.6), and consider the linear transformation L which �xes the line y = b(m)xpointwise, and maps all points on the line x = my to their negatives. L is conjugate to are
ection. By assumption, for all t with jtj < ", the intersection of A with the lines (8.2)di�ers only by a set of one-dimensional measure zero from a line segment centered on the27



line y = b(m)x. In other words, the intersections of A and LA with the stripn(x; y) j jmy � xj < "odi�er by a set of measure zero. By de�nition, A, and consequently LA consist exactly oftheir Lebesgue points, so the two sets must coincide. In particular, L maps Q to P , and thehalf-space below the line y = ��(0) to a half-space containing P in its boundary which doesnot meet A in a neighborhood of P . It follows that A� is convex provided � is small enough.By construction, L maps support lines at P into support lines at Q, so there is a uniquesupport line at P if and only if there is a unique support line at Q. Since P was an arbitrarypoint on the upper arc of the boundary of A�, and since, by convexity, all but countablymany points on this arc have unique support lines, every such point has a unique supportline. Hence, � is di�erentiable everywhere on the interval (��; �).We will derive a di�erential equation for �. Consider a pair of points P = (x; �(x)) onthe upper arc, and Q = (z;��(z)) on the lower arc of the boundary of A�. By assumption(8.3), the slope of the line though the midpoint of the line segment PQ,b = �(x)� �(z)x+ z ; (8.7)is a function of the slope of the line segment,m = x� z�(x) + �(z) :Both the midpoint and the slope are di�erentiable functions of (x; z) for x + z 6= 0. Sinceb is a function of m, the gradients of b(x; z) and m(x; z) must be linearly dependent. Wecalculate these gradients at (x; 0) (x 6= 0)rb(x; 0) = x�20B@ x�0(x)� �(x) + �(0)��(x) + �(0) 1CArm(x; 0) = (�(x) + �(0))�20B@ �(x) + �(0)� x�0(x)��(x)� �(0) 1CA ;where we have used that �0(0) = 0 since � is even. They are linearly dependent, if�x�0(x)� �(x) + �(0)���(x) + �(0)� = ��(x)� �(0)���(x) + �(0)� x�0(x)� :28



Collecting terms, we see that � satis�es the di�erential equationx(�2(x))0 = �2(�2(0)� �2(x)) :The general solution of this di�erential equation with �(x) � �(0) is given by (8.4). Inserting(8.4) into (8.7) gives the formula (8.5) for c.Lemma 8 (Ellipses, continuation) Let A � R2 be as in equation (8.1) of Lemma 7. Assumethat there exists a number � > 0 with c� < �(0), so that for x 2 [��; �], the function � isgiven by formula (8.4). Let m0 = �q�2(0)� c2�2 :Assume moreover that there exist " > 0 and a function b(m) such for all m with jm�m0j < "and for almost all t with jtj < " the intersection of A with the line given by (8.2) di�ers bya set of one-dimensional measure zero from a line segment whose midpoint lies on the linegiven by (8.3).Then equation (8.4) holds on an open neighborhood of [��; �].Proof For 0 < m < m0 de�ne "0 = � �mq�2(0)� c2�2 > 0Choose m with m0 � " < m < m0 close enough to m0 that "0 < ". By assumption, theintersection of A with lines with parameters (m; t), jtj < " consists of line segments whosemidpoints are given by (8.3). In other words, the intersection of A with the stripn(x; y) 2 R2 j jx�myj < "odi�ers from its image under the skewed re
ection L constructed in the proof of Lemma 7by a set of measure zero. Since A consists exactly of its Lebesgue points, it follows that thestrip is symmetric under L. The upper arc of the strip with�" < x�my < "0and the lower arc with �"0 < x�my < "29



consist of points x; �(x), and x;��(x), respectively, where � is given by formula (8.4). Sincethe strip is symmetric under the linear map L, also the image of the lower arc under L isdescribed by a quadratic equation. The image of the lower arc intersects the upper arc in anopen arc since the line x = my intersects both arcs. Consequently, (8.4) holds for the wholepart of the boundary of A with jx�myj < ". Repeating the argument for m = �m0 provesthe claim.9 Proof of Theorem 1 in higher dimensionsWe proved Theorem 1 in case the strict triangle inequality does not hold between the radii�, �, and 
 in Section 4. Following the outline in Section 3, we will prove the remainingcase by induction. The base case n = 1 was discussed in Section 5.Suppose that Theorem 1 has been proven for dimensions up to n. Let (A;B;C) be anoptimizing triple of inequality (1.5) in Rn+1, so that the radii �, �, 
 satisfy the stricttriangle inequality. By properties (R1){(R3) of the regularization discussed in Section 7, wemay assume without loss of generality that A, B, and C are `nice', that isA = nx 2 Rn+1 j jx̂j < �(x0)oB = nx 2 Rn+1 j jx̂j < �(x0)oC = nx 2 Rn+1 j jx̂j < 
(x0)oThe functions �(�), �(�), and 
(�) are even, nonnegative, bounded, lower semicontinuous,and nonincreasing for positive arguments. Lemmas 1 and 2 imply that�C � A+B(see equation (4.3)). Hence,
(0) < supw2Rn�(w) + �(�w)o � �(0) + �(0) :By the symmetry (1.4), �, �, and 
 may be permuted in this inequality to see that �(0), �(0),
(0) satisfy the strict triangle inequality. By Lemma 6, the measures of the intersections of30



A, B and C with hyperplanes of the formx0 = mx1 + t (9.1)are jointly continuous in (m; t) at (0; 0). That is, there exists " > 0 so that the sizes of theseintersections satisfy the strict triangle inequality for (m; t) with jmj < ", and jtj < ".To apply the inductive hypothesis, �xm with jmj < ". Since we have formulated Lemma 3only for cross sections perpendicular to the x0-axis, we rotate the three sets simultaneouslyin the x0-x1-plane (�xing the other coordinates), so that the cross sections de�ned by (9.1)are mapped to cross sections of the rotated sets perpendicular to the x0-axis. The rotatedsets satisfy the assumptions of Lemma 3 with IA = IB = IC = (�"0; "0), where "0 can bechosen independently of m for m small. By Lemma 3, almost all intersections of A, B andC with hyperplanes of the form (9.1) with jmj < "0 and jtj < "0 are ellipsoids. Since A, B,and C are symmetric about the origin, for every �xed m, the midpoints of these ellipsoidsall lie on one line through the origin by equation (6.4). Since the three sets are in symmetricunder rotation about the x0-axis, this line lies in the x0-x1-plane, and can be written asx1 = b(m)x0 ; xi = 0 (i > 1) :By Lemma 7, the parts of the three sets near the equatorial hyperplane x0 = 0 are piecesof similar ellipsoids. That is, there exists � > 0 so that�2(x) = �2(0)� c2x2 ; if jxj < �(0)��2(x) = �2(0)� c2x2 ; if jxj < �(0)�
2(x) = 
2(0)� c2x2 ; if jxj < 
(0)� (9.2)where the constant c is the same for the three sets by (8.5). Note that the three quadraticequations are related by scale factors �(0) : �(0) : 
(0).To show that equations (9.2) hold globally, we will make a continuation argument. Set�0 = supn� j (9:2) holds for �o : (9.3)We have just shown that �0 > 0. Assume that c�0 < 1. Then q1� c2�20 > 0. De�ne as inLemma 8 m0 = �0q1� c2�2031



to be the slope of the hyperplane passing through the end points of the parts of the boundariesof the three sets that are described by the quadratic equations (9.2). Since hyperplanes withjmj < m0 meet only those parts of the three sets that are described by (9.2), the intersectionsof A, B, and C with these hyperplanes are in the �xed scaling proportions �(0) : �(0) : 
(0).By the continuity results from Lemma 6, also the intersections with the hyperplane x0 = mx1are in this proportion. Applying Lemma 6 again we see that the sizes of cross sections withhyperplanes with m near m0 and jtj small enough satisfy the strict triangle inequality.To apply Lemma 3 again, �x m near m0, and rotate the three sets simultaneously inthe x0-x1-plane so that the intersections of A, B, and C with hyperplanes (9.1) are mappedto cross sections of the rotated sets perpendicular to the x0-axis. It follows from Lemma 3applied to the rotated triple that all three sets satisfy the assumptions of Lemma 8. So (9.2)holds on a neighborhood of [��0; �0], which contradicts de�nition (9.3).It follows that either c�0 = 1, or c = 0 and �0 = +1. In the �rst case, A, B, and C areellipsoids that are related by scale factors �(0) : �(0) : 
(0). Clearly, these factors must bein proportion � : � : 
, which proves conclusion (1.6) in this case. In the second case, thethree sets would have to be in�nite strips, which contradicts the assumption that they have�nite measure. This completes the proof of Theorem 1.10 Proof of Theorem 2 and Corollary 1Proof of Theorem 2 Let (f; g; h) be an optimizer for inequality (1.2) satisfying theassumptions of Theorem 2. We have to show that there exist a linear map, L, and vectorsa, b, and c = a+ b such thatf(x) = f � �L�1x� a� ; g(x) = g� �L�1x� b� ; h(x) = h� �L�1x� c� a.e. (10.1)We use the `layer-cake' representationf(x) = Z 10 Xf(x)>� d�32



to decompose f , g, and h, and their spherically decreasing rearrangements into the charac-teristic functions of their level sets. It is easy to see that the integrand is jointly measurablein x and �. By Fubini's theorem, inequality (1.2) is equivalent toZZZ J (Nr(f);Ns(g);Nt(h)) drdsdt � ZZZ J (Nr(f)�;Ns(g)�;Nt(h)�) drdsdt :For equality we need that almost all triples of level sets are optimizers of inequality (1.5).De�ne �(s), �(s), and 
(s) to be the radii of the level sets of f �, g�, and h� at heights, respectively. That is, these functions are constant multiples of the n-th roots of thedistribution functions. As in the inductive step of the proof of Theorem 1, we want to �ndtriples (r; s; t) such that the strict triangle inequality holds between �(r), �(s), and 
(t).Fix r0 and s0 such that �(r0) and �(s0) are positive. The assumption that f � and h�are strictly spherically decreasing implies that � and 
 are continuous, nonincreasing, andassume all positive real values. It follows that there exists t0 such that �(r0), �(s0), 
(t0)satisfy the strict triangle inequality. By continuity, the strict triangle inequality holds for�(r); �(s0); 
(t) with r; t in an open neighborhood of r0; t0. By conclusion (1.6) of Theorem 1,we can write the corresponding level sets asNr(f) = a(r) + �(r)E(r; s0; t) ;Ns0(g) = b(s0) + �(s0)E(r; s0; t) ;Nt(h) = c(t) + 
(t)E(r; s0; t) ;where for each value of r and t, E is an centered ellipsoid in Rn, and a and c are vectors inRn with a(r) + b(s0) = c(t) :Clearly, E cannot depend on r and t near r0 and t0, and a and c are locally constant. Butthe set n(r; t) j �(r); �(s0); 
(t) satisfy the strict triangle inequalityois connected, so a, c must be constant, and E is independent of r and t. Since s0 wasarbitrary, E and b cannot depend on s, either. The claim (10.1) follows by choosing L to bea linear transformation that maps the unit ball to E.33



Proof of Corollary 1 We may assume without loss of generality that f , g, and h arenonnegative. Following Lieb's argument in [19], we consider the chain of inequalitiesZZ f(y)g(x�y)h(x) dydx � ZZ f �(y)g�(x�y)h�(x) dydx� kgkw;q ZZ f �(y) jx�yj�� h�(x) dydx� C(p; �; n) kfkp kgkw;q khkr ;where the �rst line is the Riesz rearrangement inequality (1.2), the second follows fromthe de�nition of the weak norm, and the third is the Hardy-Littlewood-Sobolev inequality.For equality in (1.9), there has to be equality in all three lines. By Theorem 2.3(ii) from[19], equality in the Hardy-Littlewood-Sobolev inequality implies that f � and h� are strictlyspherically decreasing. Equality in the second line implies that g�(x) = kgkw;p jxj��. ByTheorem 2, equality in the �rst line implies the claim.References[1] J. F. G. Auchmuty. Existence of axisymmetric equilibrium �gures. Arch. Rat. Mech.Anal., 35:189{261, 1977.[2] A. Baernstein and B. A. Taylor. Spherical rearrangements, subharmonic functions, and*-functions in n-space. Duke Math. J., 43:245{268, 1976.[3] W. Beckner. Inequalities of Fourier analysis. Ann. Math. (2), 102:159{182, 1975.[4] W. Blaschke. Eine isoperimetrische Eigenschaft des Kreises. Math. Z., 3:52{57, 1918.[5] H. J. Brascamp and E. H. Lieb. Best constants in Young's inequality, its converse, andits generalization to more than three functions. Advances in Mathematics, 20:151{173,1976.[6] H. J. Brascamp, E. H. Lieb, and J. M. Luttinger. A general rearrangement inequalityfor multiple integrals. J. Funct. Anal., 17:227{237, 1974.34
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