Cases of Equality
in the

Riesz Rearrangement Inequality

Almut Burchard*

May 23, 1994

Abstract

We determine the cases of equality in the Riesz rearrangement inequality

//f dydx<//f h* (z) dyde

where f*, ¢g*, and h* are the spherically decreasing rearrangements of the functions f,

g, and h on R™. We apply our results to the weak Young inequality.

1 Statement of the results

The Riesz rearrangement inequality states that the functional

Z(f,g,h) /f*ghdx—//f (x) dydx (1.1)

never decreases under spherical rearrangement, that is,

Z(f, 9. h) <Z(f* 9", h") (1.2)
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for any triple (f, g, h) of nonnegative measurable functions on R" for which the right hand
side is defined. The spherically decreasing rearrangement, f*, of a nonnegative mea-
surable function f is the spherically decreasing function equimeasurable to f. We will define
it by

fr@) = sup{s >0 | pNi(f) = walz["}
where

N(f) = {:r eR" | f(z)> 5}

is the level set of f at height s, and w,, denotes the measure of the unit ball in R". That
is, the level sets of f* are the centered balls of equal measure as the corresponding level sets
of f. This definition makes sense if all level sets corresponding to positive values of f have
finite measure, for example, if f is in LP for some p < oo.

In this paper, we determine the cases of equality in (1.2). A triple of functions that
satisfies (1.2) with equality will be called an optimizing triple, or optimizer, of the inequality.
There are many optimizers of (1.2). One reason is that Z is invariant under a large group
of affine transformations: For any linear map, £, of determinant +1, and vectors a, b, and

c=a+bin R", we have

Z(f,9,h) = // F(L7y —a)g(L7H(z—y) = D)WL w — c) dyda . (1.3)

Additionally there is the permutation symmetry

I(f7g7h):I(ng7h):I(h'7g_7f)7 (14)

where g~ denotes the function defined by ¢~ (x) := g(—=z). Clearly, any triple of functions
that is equivalent to a triple of spherically decreasing functions under these symmetries is
an optimizer.

There is a second reason to expect many optimizers. Consider the case when f and g
have compact support. Then also the convolution f * ¢ has compact support. If A is the
characteristic function of a set that contains the support of fxg, then f, g, h produce equality

in (1.2) regardless of the shape of that set.



We will show that the non-uniqueness of the optimizers is due only to these two reasons.
In particular, we will give conditions on the three functions that guarantee that any optimiz-
ing triple either consists of spherically decreasing functions, or is equivalent to such a triple
under the symmetries given in (1.3).

The main result goes back to a conjecture by Lieb and Loss [20]. It describes all cases
of equality in (1.2) where f, g, and h are characteristic functions of measurable sets. The
spherical rearrangement, A*, of a measurable set A of finite measure, is defined to be the
open centered ball of the same measure as A. With this definition, X4« = (X4)*, and
all level sets of a measurable function f and its spherical rearrangement f* are related by

Ns(f*) = (Ns(f))*. Define the functional
T (A, B,C) = T(Xa, X, Xe) = [[ Xay)X(w—y)Xo(@) dyde
Naturally, J inherits the symmetries of Z.

Theorem 1 (Cases of equality, characteristic functions) Let A, B and C' be measurable sets
of finite positive measure in R"™. Denote by A*, B*, C* the centered balls of the same measure
as A, B, and C, respectively, and by «, 3, and v the radii of these balls.

If la — B] < v < a+ B, then there is equality in

J(A,B,C) < J(A*,B*,C") (1.5)
iof and only if, up to sets of measure zero,
A=a+afF, B=b+pE, C=c+~FE, (1.6)

where E is a centered ellipsoid, and a, b, and ¢ = a + b are vectors in R".

Otherwise, permute the three sets so that v > a + 3, using (1.4). Then there is equality
in (1.5) if and only if A, B, and C' can be changed by sets of measure zero so that

CDO>A+B, (1.7)

In particular, for v = o+ [, there is equality in (1.5) if and only if, up to sets of measure
zero,

A=a+aM , B=b+pM, C=c+~vM, (1.8)

where M C R" s convex and open, and a, b, and ¢ = a + b are vectors in R".
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The set A+ B that appears in conclusion (1.7) of Theorem 1 is called the pointwise, or
Minkowski sum of A and B. It is defined by

A+ B = {a+b | a€ A be B} .

We will say that three positive numbers «, (3, v satisfy the strict triangle inequality

if they could form the lengths of the sides of a nondegenerate triangle, that is, if
la—fl<y<a+p.

Note that this formula is symmetric under permutation of «, 3, and y. We will often say
that the strict triangle inequality holds between the sizes of three sets A, B, and C' in R",
if it holds between the radii of the balls A*, B*, and C*.

In other words, equation (1.6) says that any optimizing triple (A, B, C') such that the
radii «, 3, v satisfy the strict triangle inequality is (up to sets of measure zero) equivalent
under the symmetries of the functional 7 to the triple of balls with these radii, centered at
the origin. Equation (1.8) says that any optimizing triple such that «, (3, y are in the critical
size relation v = a + 3 is (up to sets of measure zero) of the form (A, B, A+ B), where A
and B produce equality in the Brunn-Minkowski inequality.

Theorem 1 is the basis for our other results. In principle, it determines all cases of
equality in the full Riesz rearrangement inequality, in the following way: Three functions f,
g, and h produce equality in (1.2) if and only if almost all triples of level sets of the three
functions produce equality in inequality (1.5). Unfortunately, this condition is hard to check
in general. However, it is easy to recover the result by Lieb [18] that if the middle function,
g, is required to be strictly spherically decreasing, then equality in (1.5) occurs only if f
and h are common translates of spherically decreasing functions. The next theorem is the
corresponding result in the case where at least two of the three functions are required to

have no flat spots.

Theorem 2 (Cases of equality, two strictly decreasing rearrangements) Let f, g, and h be
three nonnegative measurable functions with spherically decreasing rearrangements f*, g*,

and h*. Assume that Z(f, g, h) is finite, and that f, g, and h are not everywhere zero.



* and h*, are strictly spherically decreas-

If at least two of the three rearrangements f*, g
ing, then there is equality in inequality (1.2) iof and only if the triple (f, g, h) is equivalent to
9, q Y q Y Y p v 95 q

(f*,g*, h*) under the symmetries (1.3).

The following example shows that the hypothesis that the rearrangements of two of the

functions are strictly decreasing is essential. Let

flz) = X 2.2),

g(r) = X 1,1

(0 if 2 < -3,
442 if 3<z<—1,

4—z if-1<ux<3,

3  ifx > 3.

\
Then f and g are already spherically decreasing, and h coincides with its rearrangement
b—2|x| if x| <1,
h*(x) = 4—|z| if -1 < || < 3,
eS=2lif |x| > 3,
on the union of the two intervals [—3, —1] and [1, 3]. Since the convolution f * g is locally

constant on the complement of these intervals, it follows that

Z(f,9,h) = Z(f", 9" h7) -

Note that h* is strictly decreasing, but h and h* are not related by a linear transformation.

As an application of Theorem 2, consider the weak Young inequality

/] 1wgta i) dyda| < CoAD) 11, gl I8, (1.9)
where 1 < p,q, 7 < o0, 1/p+1/q+ 1/r =2, and A = n/q. The weak ¢g-norm is defined by

u(/vs<|g|>>>”q

T

and C(p, A, n) is the best constant in the Hardy-Littlewood-Sobolev inequality

] 1) o=yl e dyda

With Lieb’s proof of this inequality in [19], we obtain the following statement.

Y

< Clp, An) £, 120, -
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Corollary 1 There is equality in the weak Young inequality (1.9), if and only if (f,g,h) is

equivalent to (f*, g%, h*) under the symmetries (1.3), and moreover
. Y
g*(x) = const. |z|™"

and f* and h* produce equality in the Hardy-Littlewood-Sobolev inequality.

The structure of the paper is as follows. The second section contains an overview over the
literature. We are particularly interested in the questions, which of the proofs of inequality
(1.2) can be used to identify the cases of equality. The major part of the paper, Sections 4-9,
is dedicated to the proof of Theorem 1. Finally, in Section 10, we prove Theorem 2 and

Corollary 1.
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2 The history of the problem

The history of the inequality seems to begin with Poincaré’s work on the problem of the
possible shapes of a fluid body in equilibrium [11, 12]. If the total angular momentum
of the body vanishes, then the energy functional has the form (1.1), where f = h is the
characteristic function of the body, and g(z —y) = |z —y|™" is (up to a minus sign) the
potential of the gravitational attraction between two points located at  and y. Poincaré
showed that, under some smoothness assumptions, the potential energy is minimized if and
only if the body assumes the shape of a ball. Although he quoted Steiner’s work on the
isoperimetric inequality, his proof contains no concepts of rearrangement.

Poincaré referred to an earlier proof by Liapunoff [16], which apparently did not use the
isoperimetric inequality. He pointed out several shortcomings of Liapunoff’s proof, which

apparently did not show that minima of the energy functional existed.



All later proofs of inequality (1.2) (with or without requiring the middle function to
be spherically decreasing) are based on rearrangement ideas developed by Steiner for the
isoperimetric inequality. Using Steiner symmetrization, the proof can be split into two
parts. First, it is proven in one dimension. Applying the inequality to lower-dimensional
cross sections shows that J(f, g, h) never decreases under Steiner symmetrization, while f*,
g*, and h* stay the same. Then the spherical rearrangement is approximated with repeated
Steiner symmetrizations. It is a well known problem with Steiner’s proof of the isoperimetric
inequality that he did not show that such an approximation procedure converges, thus leaving
the possibility open that the functional in question may not attain its extremum. The same
problem occurs in some of the proofs of the Riesz rearrangement inequality discussed below.

The second universal tool is the ‘layer-cake principle’. Any nonnegative measurable
function can be represented as a sum of the characteristic functions of its level sets. Then
inequality (1.2) follows easily from the corresponding inequality (1.5) for the level sets (see
[23, 15, 18, 6]). We will use this technique to prove Theorem 2.

Blaschke seems to have been the first to consider inequality (1.2) as a geometric inequality,
and to use Steiner symmetrization to construct a proof of a special case [4]. With essen-
tially the same methods Carleman showed that the inequality holds for any symmetrically
decreasing middle function [8]. Both Blaschke and Carleman used techniques developed by
Grof [13] for the isoperimetric inequality to extend the inequality to non-convex sets. The
discussion of the cases of equality in [4, 8] was not complete, as it was only shown that con-
vex optimizers have to be balls, but not that all optimizers have to be convex sets. Finally,
Lichtenstein [17] extended the inequality with the ‘layer-cake principle’ to non-homogeneous
fluids.

Riesz first stated the full inequality, where all three functions may vary, in one dimension
[23] (see also [15]). It is easy to read off the cases of equality from a modification of his
proof. Another proof of the inequality in one dimension can be found in Hardy, Littlewood,
and Pélya [15]. Since the inequality (1.5) is approximated with a discrete analog, it does not
show the cases of equality.

Riesz claimed that the inequality can easily be generalized to several dimensions [23]. He

may have been thinking of Steiner’s methods discussed above. Following work by Lusternik
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on the Brunn-Minkowski inequality [21], Sobolev took this approach for the Riesz inequality
[24, 25]. Both proofs are incomplete, since it is not shown that the constructed sequence of
Steiner symmetrizations converges to the spherical rearrangement in some suitable metric
(Hausdorff metric for the Brunn-Minkowski inequality, and symmetric difference for the Riesz
inequality). The cases of equality are not discussed. Sobolev was interested in inequality
(1.2) because of an application to an inequality of the type of the Hardy-Littlewood-Sobolev
inequality.

Inequality (1.5) is closely related to the Brunn-Minkowski inequality. This connection is
lost, if the middle function is restricted to be strictly spherically decreasing. Incidentally,
Hadwiger and Ohmann proved the Brunn-Minkowski inequality and discussed the cases of
equality for measurable sets with more direct geometric methods that do not involve Schwarz
or Steiner symmetrization, and thus do not require such a convergence result [14].

The first complete proof of inequality (1.2) in higher dimensions is due to Brascamp,
Lieb, and Luttinger [6]. They also give a new proof of the inequality in one dimension,
which calls upon the Brunn-Minkowski inequality in a surprising way. This proof gives the

more general inequality

// f[lfz' (éaijxj) dry...dry < // i_ﬁlfi* (éaijxj) dxy...dxy . (2.1)

The variables z; are vectors in R™, and (a;;) is a m x k matrix of scalars. Inequality (1.2)

corresponds to the special case

01
m:3, k=2, (az’j): -1 1
10

The full inequality (1.2), where all three functions are allowed to vary, is needed for
applications to variants of Young’s inequality, which relate the value of the functional Z to
the norms of f, g, and h in some function spaces. Beckner [3] applied the analog of (1.2) for

multiple convolutions,

/fl*...*fkfodxg/ff*...*f;fgdx, (2.2)



(which is the special case of (2.1) with m = k + 1) to a version of Young’s inequality.
Brascamp and Lieb [5] proved a more general version of Young’s inequality and determined
the best constants, based on (2.1). Since sharp versions of inequalities (1.2), (2.1) and (2.2)
were not available, they used other methods to identify the cases of equality.

A similar inequality on spheres was proven by Luttinger [22] in one dimension, and
by Baernstein and Taylor in connection with subharmonic maps [2]. Here, g is a fixed
symmetrically decreasing integral kernel. The proof relies on a compression procedure that
involves reflections at hyperplanes. Although it is not mentioned in [2], it is easy to identify
the cases of equality from this proof. The same proof applies to inequality (1.2) in R" in
case the middle function is spherically decreasing.

In [18], Lieb used inequality (1.2) to find solutions of a variational problem with rotational
symmetry. He proved and used the sharp version with the fixed middle function mentioned
above. The proof in one dimension is interesting, because it uses no approximation argu-
ments, but direct geometric considerations for measurable sets. In particular, no regularity
is assumed for the optimizers a priori. He also showed that the rearrangement inequality for
the L?-norm of the gradient can be obtained with a limiting argument from (1.2) with the
heat kernel as the middle function.

Returning to the problem studied by Poincaré, Auchmuty [1] used the sharp form of
the inequality with a fixed middle function to show that there are uniquely determined
axisymmetric equilibrium shapes for rotating fluid bodies. This inequality also plays a role
in Lieb’s work on sharp constants in the Hardy-Littlewood-Sobolev inequalities [19]. Similar
arguments are needed to identify the optimizers when applying the ‘Competing Symmetries’
method of Carlen and Loss [9, 10] to functionals of the form (1.1).

We are convinced that Theorems 1 and 2 can be generalized to include inequality (2.1).
The strict triangle inequality in Theorem 1 has to be replaced by a different size condition
which depends on the matrix (a;;). However, Riesz’ proof of inequality (1.5) does not work
for inequality (2.1), and the proof by Brascamp, Lieb, and Luttinger uses approximation
arguments in such a way that it seems impossible to read off the cases of equality. Inequality
(2.2) is a simpler special case. Theorem 1 holds for this inequality, with the triangle inequality

replaced by a condition that the radii form the sides of a polygon with interior. The analogue



of Lieb’s result holds, if one of the functions fy, ..., fi is strictly spherically decreasing, and
the analogue of Theorem 2 holds, if at least two of them are strictly spherically decreasing

(see[7]).

3 Outline of the proof of Theorem 1

The proof of Theorem 1 falls into several parts. In case one of the three sets is large enough
compared to the other two, we deduce Theorem 1 from the result by Hadwiger and Ohmann
[14] on the Brunn-Minkowski inequality and its cases of equality for measurable sets in R™
that was mentioned in the previous section.

In the most interesting case, when the strict triangle inequality holds between the sizes
of the three sets, we will prove Theorem 1 by induction over the dimension. For the base
case, dimension n = 1, we will modify Riesz’ proof to identify the cases of equality.

The inductive step is based on the observation that the functional 7 in R™*! is just the
functional in a lower-dimensional space integrated over the cross sections. It is easy to see
that almost all triples of n-dimensional cross sections of the three sets (at heights satisfying a
certain relation) are optimizers of the inequality in R”. Since J is invariant under rotations,
Theorem 1 can be applied to intersections of the three sets with hyperplanes in arbitrary
directions.

There are two major difficulties. First, since Theorem 1 only makes a strong statement
if the strict triangle inequality holds, it is crucial to find sufficiently many triples of cross
sections whose sizes satisfy this inequality. Since not much can be said about the measures
of cross sections of general measurable sets, some regularity is needed.

Second, the information about the cross sections obtained from the inductive assumption
has to be pieced together to draw conclusions about the entire sets. In other words, the
three sets have to be identified as ellipsoids by local properties. Eventually, we will derive
and solve a differential equation for the boundaries of the three sets of an optimizing triple.
Additional regularity will be needed to do this.

We will combine a pair of symmetrizations along subspaces with a linear transformation

to yield a basic symmetrization operation. The symmetrization procedure (which can also
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be used to prove the inequality [24, 25, 7]) has the following properties.

(R1) It transforms optimizers of (1.5) into optimizers of (1.5).

(R2) It is rather simple, so that we can show that optimizers that satisfy the conclusions of

Theorem 1 after regularization must have satisfied them to begin with.

(R3) It transforms general measurable sets into sets that are sufficiently regular.

Thus we need to prove conclusion (1.6) of Theorem 1 only for optimizing triples consisting
of regularized sets. For such triples, we find cross sections whose radii satisfy the strict
triangle inequality. We apply the inductive hypothesis and derive some properties of these
cross sections. From these properties, we identify the sets as ellipsoids that differ only by

scale factors. This will complete the proof of Theorem 1.

4 Some properties of optimizers of inequality (1.9)

In this section, we do those parts of the proof of Theorem 1 that are not related to the
induction over the dimension.

Let A, B,C be measurable sets of finite positive measure in R"™. Clearly, neither the
functional J, nor the spherical rearrangements A*, B*, and C*, nor the radii «, 3, and ~
change, if A, B, and C are changed by sets of measure zero. We will often replace the three
sets by the sets of their points of density one, or Lebesgue points. It is well known that
any measurable set differs by a set of measure zero from the set of its Lebesgue points.

We begin with a simple property of optimizers which plays a central role in the inductive
step: It will be used to find at least some cross sections of an optimizing triple for whose
sizes the strict triangle inequality holds, provided the strict triangle inequality holds for the
sizes of the three sets.

Fix two sets A and B in R™. The convolution X4 * Xz of their characteristic functions
is continuous, even if A and B are only measurable. Fix the measure of the third set, C. It

is easy to see that the functional J is maximized, if C' is a level set of X4 x Xp (this is know
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as the ‘bathtub principle’). It is the purpose of this section to describe this level set more

precisely. The number s will be called a degenerate value of X4 x X'g, if the level ‘surface’
{x | XyxXp = s}

has positive n-dimensional Lebesgue measure, and non-degenerate, if it has measure zero.
By definition, the symmetrized sets A* and B* are the open balls of radius o and 3. The
convolution

Xp- * Xp-(x) = pp( Ba(0) N By(x))

is a nonincreasing function of |x|. It is positive on the open ball of radius « + f, and it
achieves its maximum on all points of the closed ball of radius |« — f|. Its maximal value
is either u(A) or u(B), whichever is smaller. It is strictly spherically decreasing for radii
between |o — 3| and o + 3. Hence, if «, 3, satisfy the strict triangle inequality, then C*
is a level set corresponding to a nondegenerate value of Xy« x Xp-. If v > a4+ (3, then C*
contains the support of the convolution. If v < |ow — |, then C* is a subset of the set where
the convolution takes its maximal value.

The following two lemmas show that similar statements hold for general optimizing
triples. The first lemma can be seen as a regularity result — it implies that we can as-
sume that the boundary of the three sets have measure zero. In the second lemma, we

characterize the support of X4 x Xp.

Lemma 1 (Optimizers and level sets) Let (A, B,C) be an optimizing triple of inequality
(1.5) in R™. If «, B, and vy satisfy the strict triangle inequality, then C differs by a set of

measure zero from the level set
{x | XA*XB>5} : (4.1)

where

zeC*
is a nondegenerate value of X % Xp. If v > a+ 3, then C' contains (except for a set of

measure zero) the level set

{o | XaxXp(2) >0},
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if v = a+ 3, then the two sets differ by a set of measure zero. If 0 < v < |a — (3|, then C

is contained (up to a set of measure zero) in
{o | as Xy (2) = min(u(4), w(B)}
if 0 < v =|a— B, the two sets differ by a set of measure zero.
Proof Assume without loss of generality that p(A) > wu(B), that is, « > . The strict
triangle inequality between «, [, and v guarantees that
0 < s <maxX«x Xp- .

Clearly, s is a nondegenerate value of X4« x Xg-. Define the sets

Cy = Cﬂ{x|XA*XB(x) >s},
c. = CU{.I‘|XA*XB(1‘) 25}.
Then
c,cCccc_, (4.2)
and

Oy C {x | XA*XB(:U)>3} C {x | XA*XB(x)zs} c C_.

If C differs by a set of positive measure from the level set (4.1), or if s is a degenerate value
of X% Xp, then at least one of the sets C'\ C', C_\ C has positive measure. If u(C\C5) >0
then

J(A,B,C) < J(AB,Cy)+su(C\ Cy) because X4 x Xp < son C'\ C,
< J(A",B*,CY) —su(C*\ CY) by (1.5) and (4.2)

< J(A*,B*,C") because X4« x Xg- > s on C* .
Similarly, if ¢(C_ \ C') > 0 then

J(A,B,C) < J(AB,C)—su(C_\C) because X4« Xp > son C_\ C
< J(A",B*,C") —su(Ct\ CY) by (1.5) and (4.2)
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< J(A*, B*,C") because X4+ * Xp- < s outside the closure of C* .

In either case, it follows that (A, B, C') produces strict inequality in (1.5).

The proofs in the cases v > o+ # and v < o — 3 are similar. u

Lemma 2 (The support of the convolution) Consider two measurable sets, A and B, in
R™ with characteristic functions X, and Xg. Assume that A and B consist exactly of their
Lebesgue points. Then

{& | Xy Xp(x) >0} =A+B.

Proof ”D”: Suppose that the convolution takes a positive value at the point z. Then
plle = A) N B) = [ Xalo—y)Xa(y) dy = X+ Xy(x) >0,

that is, the intersection of x — A with B has positive measure. Any Lebesgue point of this

intersection is of the form b = x — a for some Lebesgue points a € A, b € B.

7C”: Any point of the form © = a+b € A+ B is a Lebesgue point of both a + B and b+ A,
so it is a Lebesgue point of the intersection. Consequently, b = = — a is a Lebesgue point of

(x — A) N B, and the convolution takes a positive value at x. L]

Combining Lemmas 1 and 2 shows that, if (A, B, C) is an optimizer of inequality (1.5) and
the strict triangle inequality holds between «, 3, and v, then A, B, and C' differ by sets of

measure zero from open sets satisfying
C c A+B , (4.3)

where C' is the closure of C.

The two lemmas also establish a connection between Theorem 1 in case the strict triangle
inequality does not hold between the sizes of the three sets, and the Brunn-Minkowski in-
equality. The Brunn-Minkowski inequality for measurable sets in R" as proved by Hadwiger
and Ohmann in [14] states that the measure of the pointwise sum of any two nonempty

measurable sets A and B in R” satisfies the inequality
WA+ B)V" > p(A) 4+ pu(BYY (4.4
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There is equality if and only if either A is a point, or B is a point, or A and B are of the
form

A=A\N,, B=DB\Ny (4.5)

where N4 and N are sets of measure zero, and A and B are convex sets that can be mapped
to each other by scaling and translation.

Before we turn to the proof of Theorem 1 in case one of the three sets is large compared
to the other two, we would like to remark that conversely, the Riesz rearrangement inequal-
ity implies the Brunn-Minkowski inequality for measurable sets, and Theorem 1 implies

characterization (4.5) of the cases of equality (see [7]).

Proof of Theorem 1, v > a+ 3 The assertion (1.7) follows immediately from Lemmas 1
and 2. If v = o + f3, the Brunn-Minkowski inequality (4.4) together with (1.7) implies that

pO)I" > (A + B)" > p(A) 4 (B

that is, v > « + . Hence A and B produce equality in (4.5), and C differs by a set of
measure zero from its subset A+ B. By (4.5), A, B, and consequently A + B, are convex

sets differing only by scaling and translation. This proves assertion (1.8). n

5 Proof of Theorem 1, n=1, [a—f|<y<a+pf

In this section, we adapt Riesz’ proof of inequality (1.5) in one dimension [23] (see also [15])
to general measurable sets, and use it to determine the cases of equality when the strict
triangle inequality holds between the sizes of the three sets.

The idea of the proof is to replace two of the three sets by smaller sets, so that the three

sets are in the critical size relation v = a+ 3, in which case we have just proved the theorem.

Proof of Theorem 1, n =1, |a — 3| < v < a+ B Ford >0, define

4 = {eeA /_ Xa(s) ds > 5/2,/°° Xa(s)ds > 5/2)

B, — {xeB|/:C XB(s)ds>6/2,/OOXB(s)ds>§/2}.
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The sets A; and By are obtained by cutting off subsets of measure §/2 from both ends of A
and B. In general, ju(As) = (u(A) —0),. Set

1= 5 (u(A) + u(B) ~ w(C)) =t 7.
With this choice of 9,
pAs) = w(A) — (WA + (B) ~ w(C) = atry -5,
p(B) = (B~ 3 (u(A) +u(B) ~ (@) = ptr—a.

Both expressions are positive because «, [, and v satisfy the strict triangle inequality.

Moreover, the measures of A5, Bs, and C are in the critical size relation

1(As) + p(Bs) = p(C) -

To estimate how the value of the functional J changes when A and B are replaced by Aj

and By, observe that for any two measurable sets,
(ANB); = {teAnB| / X1 Xp >6/2,/ XaXp>6/2} C AN B;,

and hence

p(As N By) 2 n((AN B)y) = n(ANB) =6 .

Applying this inequality to the intersection of A with x— B and integrating gives

J(A,B,C) — J(As, Bs,C) = /C u((AN (z — B)) — u(As N (z — By)) da
< ou(C) . (5.1)

It is easy to calculate directly, that A*, B*, and C* produce equality in (5.1). It follows that
J(A,B,C)— J(As,Bs,C) < J(A", B*,C*) — J (45, B;,C") . (5.2)
Adding inequality (1.5) for (A4s, Bs, C)
J(As, Bs, C) < J (45, B;,C*) (5.3)
to inequality (5.2) gives (1.5) for (A, B, C).
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It is necessary for equality in (1.5) that As, By, and C produce equality in (5.3). Con-
clusion (1.8) of Theorem 1, which was proved in the previous section, implies that C differs
from an interval by a set of measure zero. By the permutation symmetry (1.4), the other two
sets A and B have to be intervals up to sets of measure zero as well. It is easy to calculate

directly that the centers must satisfy a +b = c. n

6 Steiner and Schwarz symmetrization

The main tool for the proof of Theorem 1 in higher dimensions is symmetrization along
lower-dimensional subspaces, which we now define. Let A be a measurable set in R"*!.
Write points in R"*! as x = (2, z) with 2° € R and 2 € R". Denote the n-dimensional

cross section of A at 2° = z by
A(z) ={x e R" | (2,2) € A} .

The Schwarz symmetrization, S; A, of A is defined by the property that its n-dimensional
cross sections perpendicular to the z'-axis are centered open balls whose measures equal the

measures of the corresponding cross sections of A. In short, for all z € R,
(514)(2) = (A(2))", (6.1)

where * denotes symmetrization of the cross section in R". If a cross section is not measurable
or does not have finite measure, the corresponding cross section of S; A is defined to be R".

Similarly, the Steiner symmetrization, S; A, of A is defined by the property that
its intersections with lines parallel to the z%-axis are intervals of the same lengths as the

measures of the corresponding intersections with A. In short, for all x € R”,
(524)(x) = (A(x))", (6.2)

where * denotes symmetrization in R of the linear cross section at x. If a cross section is
not measurable, or does not have finite measure, the corresponding cross section of S, A is
defined to be R.

Schwarz and Steiner symmetrization are uniquely determined by properties (6.1) and

(6.2). They preserve the measure of A by Fubini’s theorem. Moreover, if A is changed by a set

17



of measure zero, then Sy A and Sa A change by sets of measure zero. We will write S; (4, B, C)
and Sy(A, B, C) for the triples consisting of the Schwarz and Steiner symmetrizations of A,
B, and C.

The key to the inductive step is the observation that these partial symmetrizations trans-

form optimizing triples into optimizing triples: The functional J can be written as
J(A,B,C) = /R/R T(A(w), B(z—w), C(2)) dwdz .
Inequality (1.5) applied to the n-dimensional cross sections gives
J(A,B,C) < /R/RJ((A(U)))*,(B(Z—W))*,(C(Z))*)dwdz=J(Sl(A,B,C)) :
Applying inequality (1.5) in R""! gives
J(A,B,C)< J(S1(A B,C)) < J(A*, B*,C") .

Moreover, almost all n-dimensional cross sections of any optimizing triple (A, B, C) at za,
zp, and zo = z4 + zp form optimizing triples for the inequality in R"”. Similar arguments
show that also Steiner symmetrization transforms optimizers into optimizers.

We will use the inductive assumption in form of the following lemma. It says that,
provided the sizes of the cross sections of an optimizing triple satisfy the strict triangle

inequality, they must be homothetic ellipsoids whose midpoints lie on parallel lines.

Lemma 3 (Shape and midpoints of cross sections) Suppose that Theorem 1 has been proven
in some fized dimension n. Let (A, B,C) be an optimizing triple of inequality (1.5) in R™ 'L,

Assume that there exist nonempty intervals I, Ig, and Io such that for almost all zy € I
there exists wy € Ia with zo—wqy € I so that for almost all (z,w) near (zy, wy), the sizes of the
n-dimensional cross sections A(w), B(z—w), and C(z) satisfy the strict triangle inequality.

Finally, assume that these assumptions also hold for any triple that can be obtained from

(A, B,C) by the permutations (1.4).

~

Then there exists a fived centered ellipsoid E in R”, and vectors a, b, and ¢ = a +bin
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R", so that for almost all z in 14, Ig, and I, respectively,
Alz) = a+zo+a(x)E,
B(z) = b+20+B(2)F, (6.3)
C(z) = ¢+20+7(2)

&

Y

except for sets of n-dimensional measure zero.

Remark [t is easy to see that
i=b=¢=0 (6.4)
if A, B, and C are symmetric about the origin. In other words, the midpoints of the cross

sections of the three sets lie all on one line through the origin.

Proof Fix (2, wp) as in the assumptions. Since (A, B, (') is an optimizer, almost all triples
of cross sections A(w), B(z —w), C(z) are optimizing for inequality (1.5) in R". Conclusion

(1.6) of Theorem 1 shows that almost all those cross sections with (z,w) near (2q,wyp) are

given by
Alw) = alw)  + a(w)E(z,w)
B(z—w) = b(z—w) + p(z—w)E(z,w) (6.5)
C(z) = c(z) + Y(2)E(z,w)

(up to sets of n-dimensional measure zero), where for each (z,w), E(z,w) is a centered

ellipsoid in R™, and the vectors a(w), b(z—w), c(z) € R" satisfy
c(z) = a(w) +b(z—w) . (6.6)

Clearly, the ellipsoid E(z,w) in (6.5) cannot depend on z or w. Equation (6.6) implies that
for small | Al

d(h) == ¢(z+h) —c(z) = a(w+ h) — a(w) (6.7)
is a function of h only, and that
d(hy + he) = d(hy) +d(hg) . (6.8)

The function d is measurable, because a(z) is the center of gravity of the cross section A(z),

a(z) = u(A(z))’l/ xXy(z, 2) dx .

n
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Therefore relation (6.8) implies that d coincides with a linear function except on a set of

measure zero. By definition (6.7), for almost all values of z near wy, 2y — wy, 29, respectively,
a(z) =a+z20, b(z)=b+zi, c(z)=é+20,

where a, 13, ¢, and v are vectors in R", and a +b=é. Since I is connected, the formula for
¢(z) holds for almost all z € I. Permute the three sets, using (1.4), to see that the formulas

for a(z) and b(2) hold for almost all z in 14 and Ip, respectively. This proves the claim. ®

7 Regularization

We will use the following basic symmetrization operation in the inductive step: Let R be a
rotation by an angle that is not a rational multiple of 7/2 in the z°-z'-plane which leaves

the other coordinates fixed, and define & by
SA:=8585RA. (7.1)

It can be shown (see [6, 7]) that for any measurable set A of finite measure, the sequence
{S’“A}k>0 converges to A* with respect to symmetric difference. This suggests that S should
have regularizing properties. We now verify that S? indeed has the properties (R1)-(R3)

announced in Section 3.

Proof of (R1)

We already showed in Section 6 that Schwarz and Steiner symmetrization transform opti-

mizers into optimizers. By the rotational symmetry of 7, the same holds for S and S2.

Proof of (R2)

We will show that 8? has property (R2) in Lemma 5. In the proof we will use Lemma 4
to show that optimizers that can be transformed into ellipsoids by Schwarz symmetrization

have sufficiently many cross sections whose sizes satisfy the strict triangle inequality.
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Lemma 4 Let o, 3, v be three positive numbers satisfying the strict triangle inequality.
Then for any z with |z| < - there ezists a nonempty open interval such that for w in this

interval, the numbers

Val—w? (B - (w2 -2 (7.2)
satisfy the strict triangle inequality as well.

Proof Fix z with |z| < . We will construct a triangle in the plane with side lengths given
by equation (7.2).

Consider a triangle in R3 with side lengths «, 3, and ~, and denote the corners by
O, P, and . Arrange it so that O = (0,0,0), and P = (/%2 —22,0,2), and that the
distances | — O] and |P — Q| are « and 3, respectively. Denote the image of P and @
under projection onto the x1-zo-plane by Pr and ). The triangle OP'Q)’ is non-degenerate
triangle unless ) happens to lie in the xy-z3-plane, directly above or below the line OP.

Let w be the third component of ), so z — w is the third component of the difference
vector P — ). Then (by Pythagoras) the distances of O, P', and @)’ are the three numbers
of equation (7.2). Varying @ for fixed O, P, «, and 3, we see that w can take any value in

a certain open interval. u

Lemma 5 (Optimizers may be regularized) Assume that Theorem 1 has been proven for
some fized dimension n > 1. Let (A, B,C) be an optimizing triple R" ™' so that the radii a,

B, v satisfy the strict triangle inequality.
If §%(A, B,C) satisfies conclusion (1.6) of Theorem 1, then (A, B,C) satisfies (1.6) as

well.
Proof We will first show the claims
A=a+aFE, B=b+pE, C=c+9FE (7.3)

and

at+b=c (7.4)
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under the stronger assumption that
SSA=d +aFE', S B=V+p8E, §C=d+~F", (7.5)

where o', ' and ¢ = o’ + V' are fixed vectors in R"™!. By the translation symmetry of 7,

we may assume that the centers of gravity of A and B are at the origin, that is,

p(A)™ /

Amd:r = /J,(B)_l/ zdr=0. (7.6)

B

By (7.5), the ellipsoid E’ is symmetric under rotation about the z%-axis, so
E' = {x = (2%,2) e R*™ | |27 <2 — c%x%} ,

where ¢; and ¢y are constants. Since Schwarz symmetrization does not change the measure

of the cross sections, we have

() " (M>/ _ @7 =), . (7.7

Wn Wn

It follows that

- (M)W = Sl =), .

Wn
The same formula holds for for B and C' with « replaced by 3 and v, respectively. By

Lemma 4, A, B, and C satisfy the assumptions of Lemma 3 with

Iy = (—aci /ey, aci/ca) , Ip=(=Pcifes, Berfca) , Io= (—va/ca, yer/ca) -

Assumption (7.6) gives

so, by Lemma 3, also

f=a+b=0.

To show that A, B, and C are ellipsoids, write the ellipsoid E of (6.3) as

E={teR" | Q@) <1}
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where () is a positive definite quadratic form on R". Then, by equations (6.3) and (7.7),
conclusion (1.6) holds with the ellipsoid

E = {x e R | Q& — %) < & — c%:rg} :
anda=b=c=0.
In case (A, B, C) satisfies
S A=d +aFE', SB=V+p8E, §C=d+~F", (7.8)

where o/, 0" and ¢’ = o' + V' are fixed vectors in R"*! take R to be the rotation by 7/2 that
maps the z’-axis to the z'-axis and leaves the other coordinate axes fixed. Since Fubini’s
theorem implies that Steiner symmetrization does not change the measures of n-dimensional

cross sections perpendicular to the z!'-axis, we have
S1Ro = SRS .
Assumption (7.8) implies
SIRyA=SRySA=aF, SRyB=pE, SRyC=+vE.

Applying the first case to Ro(A, B, C') shows the claim (7.3).

Finally, by definition (7.1), the assertion follows from the rotational invariance of J and

the two results just proved. n

Proof of (R3)

We will show that S§? transforms a general measurable set A into the rotational solid of a

nonincreasing function,
§A = {xeR" | [i] <a(z")}, (7.9)

where « is bounded, even, and nonincreasing for positive arguments. Since a nonincreasing
function can have at most countable many discontinuities, we can change S?A by a set of
measure zero, so that it becomes open, and a becomes lower semicontinuous. The next

lemma deals with the smoothness properties of such sets.

23



Lemma 6 (Continuity of intersections) Let A be an open set of finite positive measure, given

by
A={x=@"2)eR" | |i| <a(a")},

where « is an even, nonnegative function that is nonincreasing for positive arguments. Con-

sider the intersection of A with hyperplanes of the form
2’ =mat +t, (7.10)

where m and t are scalars. If m # 0 then the n-dimensional measure of the intersections is
uniformly bounded in t, and jointly continuous in (m,t) at (m,0).
If additionally « is bounded and continuous at 0, then the measure of the intersections is

also jointly continuous in (m,t) at (0,0).

1

Proof Write points in R"™ as x = (2, 2!, %), if n > 1, and points in R? as x = (20, 21).

The intersection of a hyperplane of the form (7.10) with A is given by the equations
0o _ .1 12 2(.0 1,2
x =mx +1t, |x|<a(x)—(x),

for n = 1set |&| = 0. Integrating over &, the measure of this intersection is (1+m?)"/2I (m, t),

where
(0.0

9\ (n—1)/2
)+ ds ,

I(m,t) = wn_l/

—0o0

(aZ(mS +1t)—s

with the convention that wy = 1, and 0° = 0. The integrand cannot be positive unless

a(ms+1t) > 1 or |s| <1 or both. Thus, for m # 0, we can decompose

I<L+1,
where [; is given by
Wp—1 [%0 2 2\ (n—1)/2
I = / (s —t d
el B CH OB (CER VD0 N
S0
< Y1 a"(s)dt
wm —S80
. n—1
= mwnu( )
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with sy = inf{s >0 | a(s) < 1}. The other part of the integral is

1
I = wn_l/ o (ms+t)ds .
-1

It is easy to see from these representations that [;, I, and I are bounded uniformly in ¢,
and that limy . I(m,t) = 0.

Continuity for n > 1 follows from the fact that the integrand in

1(m,t) = wns [ O:o m (a2(s) = ((s = t)/m)") """ ds

+

depends continuously on (m,t), and vanishes for fixed (m,t) if s is outside a compact set.
To show continuity for n = 1, note that by the monotonicity properties of «, any line (7.10)

with m # 0, t = 0 intersects the boundary of A transversally.

Finally, if « is continuous at 0, then the integrand of I converges pointwise to

(a2(0) — 82)5:071)/2 )

except possibly for n =1 at s = £«(0). Dominated convergence shows that I is continuous

at (0,0). u
By construction, S transforms any measurable set A in R"*! into a rotational solid,
SA={xeR" | |i| <a(a)} .

where « is even, nonnegative, and nonincreasing for positive arguments, so, clearly, S?A

satisfies (7.9). We only need to show that a is bounded. Recall that by definition (7.1),
S =88R,

where R rotates the 2’-axis by a non-integer multiple of /2. The function « describing the
cross sections of S8 RS A is obtained by symmetric decreasing rearrangement from the func-
tion describing the cross sections of RSA perpendicular to the z%-axis, which are uniformly
bounded by Lemma 6, because they correspond to intersections of SA with hyperplanes with

m # 0. So « is bounded.
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8 Identifying Ellipsoids

The following two lemmas were proven in collaboration with Michael Loss. They provide

the criteria we will use to identify optimizers as triples of ellipsoids.
Lemma 7 (Ellipses, local) Let A be an open set in R* of the form

A={(z,y) eR* | Jy| < (o)} (8.1)

where « is an even, bounded, nonnegative function which is nonincreasing for x > 0, and

continuous at 0. Consider the intersections of A with the family of lines

r=my+t. (8.2)
Assume that there exists a family of lines

y = b(m)x (8.3)

with the following property: For all m with |m| < e, the intersection of A with almost all
lines (8.2) with |t| < e differs by a set of one-dimensional measure zero from a line segment
whose midpoint lies on the line (8.3).

Then there exists a constant ¢, and 6 > 0 such that for |x| < 0
o?(z) = a®(0) — *a? | (8.4)

that is, the intersection of A with the vertical strip |x| < § coincides with the intersection of
an ellipsoid (¢ # 0) or a horizontal strip (¢ = 0) with this strip. The shape of the ellipsoid
15 determained by

?=—-— (8.5)

for any nonzero value of m.
Proof We will first show that

Ay ={(x,y) € A | |a] <5} .
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Figure 1: A property characterizing ellipses

is convex if ¢ is small enough. We need to find through each boundary point of A; a line,
so that Ay is contained in one of the closed half-spaces defined by that line. Such a line will
be called a support line of A at the given boundary point.

Let @ = (0, —a(0)) be the point of the boundary of A with the smallest y-coordinate.
Clearly, A does not intersect the lower of the two half-spaces defined by the line y = —«/(0)
through @. Consider a point of the form P = (z,a(z)) in the boundary of A. The line
joining P and @ is given by equation (8.2) with

m = NOFTIOR t =—ma(0) . (8.6)

If x is close enough to zero, then |t| < e, |m| < e.

Fix m asin (8.6), and consider the linear transformation £ which fixes the line y = b(m)x
pointwise, and maps all points on the line + = my to their negatives. L is conjugate to a
reflection. By assumption, for all ¢ with |t| < &, the intersection of A with the lines (8.2)

differs only by a set of one-dimensional measure zero from a line segment centered on the
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line y = b(m)z. In other words, the intersections of A and LA with the strip

{(9) | Imy—z| <e}

differ by a set of measure zero. By definition, A, and consequently LA consist exactly of
their Lebesgue points, so the two sets must coincide. In particular, £ maps @ to P, and the
half-space below the line y = —a(0) to a half-space containing P in its boundary which does
not meet A in a neighborhood of P. It follows that Ay is convex provided ¢ is small enough.

By construction, £ maps support lines at P into support lines at (), so there is a unique
support line at P if and only if there is a unique support line at (). Since P was an arbitrary
point on the upper arc of the boundary of As, and since, by convexity, all but countably
many points on this arc have unique support lines, every such point has a unique support
line. Hence, « is differentiable everywhere on the interval (—d,0).

We will derive a differential equation for . Consider a pair of points P = (z,a(x)) on
the upper arc, and @ = (z, —a(z)) on the lower arc of the boundary of A;. By assumption
(8.3), the slope of the line though the midpoint of the line segment PQ,

a(z) - a(?)
T+ z

b= (8.7)

is a function of the slope of the line segment,

T —z
m=-———-—.
a(z) + a(z)

Both the midpoint and the slope are differentiable functions of (z,z) for z + z # 0. Since
b is a function of m, the gradients of b(x, z) and m(z,z) must be linearly dependent. We

calculate these gradients at (z,0) (z # 0)

za (x) — a(z) + a(0)
—a(z) + «(0)

Vb(z,0) = x7?2

a(z) + a(0) — zd (x)
—a(z) — a(0)

Vm(z,0) = (a(z)+ a(0))™2

where we have used that o/(0) = 0 since « is even. They are linearly dependent, if

(20 (z) — a(z) + a(0)) (a(z) + a(0)) = (a(x) — a(0)) (a(x) + a(0) - 20/ (x)) .
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Collecting terms, we see that « satisfies the differential equation

The general solution of this differential equation with a(x) < a(0) is given by (8.4). Inserting
(8.4) into (8.7) gives the formula (8.5) for c. n

Lemma 8 (Ellipses, continuation) Let A C R? be as in equation (8.1) of Lemma 7. Assume
that there exists a number § > 0 with ¢§ < «(0), so that for x € [—0,0], the function « is

given by formula (8.4). Let
4

a?(0) — 202 '

Assume moreover that there exist € > 0 and a function b(m) such for all m with |m —my| <

my =

and for almost all t with |t| < e the intersection of A with the line given by (8.2) differs by
a set of one-dimensional measure zero from a line segment whose midpoint lies on the line
given by (8.3).

Then equation (8.4) holds on an open neighborhood of [—6,6].

Proof For 0 < m < mg define

=8 —my/a?(0) — 262 >0

Choose m with my — e < m < myg close enough to my that ¢’ < e. By assumption, the
intersection of A with lines with parameters (m,t), |t| < € consists of line segments whose

midpoints are given by (8.3). In other words, the intersection of A with the strip
{@y) eR* | |o —my| <e}

differs from its image under the skewed reflection £ constructed in the proof of Lemma 7
by a set of measure zero. Since A consists exactly of its Lebesgue points, it follows that the

strip is symmetric under £. The upper arc of the strip with
—e<z—my<¢e

and the lower arc with

—d<z—-—my<e
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consist of points x, a(x), and z, —a(x), respectively, where « is given by formula (8.4). Since
the strip is symmetric under the linear map £, also the image of the lower arc under L is
described by a quadratic equation. The image of the lower arc intersects the upper arc in an
open arc since the line © = my intersects both arcs. Consequently, (8.4) holds for the whole
part of the boundary of A with |z — my| < e. Repeating the argument for m = —my proves

the claim. n

9 Proof of Theorem 1 in higher dimensions

We proved Theorem 1 in case the strict triangle inequality does not hold between the radii
a, 3, and v in Section 4. Following the outline in Section 3, we will prove the remaining

case by induction. The base case n = 1 was discussed in Section 5.

Suppose that Theorem 1 has been proven for dimensions up to n. Let (A, B,C) be an
optimizing triple of inequality (1.5) in R"™!) so that the radii «, (3, v satisfy the strict
triangle inequality. By properties (R1)—(R3) of the regularization discussed in Section 7, we

may assume without loss of generality that A, B, and C are ‘nice’, that is

A = {xeR" | | <o)}
= {xeR" | || <p@")}
C = {xeR"™ | |i| <y(")}

The functions af(-), £(-), and y(-) are even, nonnegative, bounded, lower semicontinuous,

and nonincreasing for positive arguments. Lemmas 1 and 2 imply that
C Cc A+B
(see equation (4.3)). Hence,

7(0) < sup{a(w) + B(-w)} < a(0)+ B(0) .

weR

By the symmetry (1.4), o, 5, and ¥ may be permuted in this inequality to see that «(0), 3(0),

v(0) satisfy the strict triangle inequality. By Lemma 6, the measures of the intersections of
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A, B and C with hyperplanes of the form
2’ = ma' +t (9.1)

are jointly continuous in (m,t) at (0,0). That is, there exists € > 0 so that the sizes of these
intersections satisfy the strict triangle inequality for (m,t) with |m| < e, and |t| < e.

To apply the inductive hypothesis, fix m with |m| < €. Since we have formulated Lemma 3
only for cross sections perpendicular to the z°-axis, we rotate the three sets simultaneously
in the 2%-z!-plane (fixing the other coordinates), so that the cross sections defined by (9.1)
are mapped to cross sections of the rotated sets perpendicular to the z%-axis. The rotated
sets satisfy the assumptions of Lemma 3 with Iy = Iy = I¢ = (—¢',¢’), where ¢’ can be
chosen independently of m for m small. By Lemma 3, almost all intersections of A, B and
C with hyperplanes of the form (9.1) with |m| < ¢" and || < £’ are ellipsoids. Since A, B,
and C are symmetric about the origin, for every fixed m, the midpoints of these ellipsoids
all lie on one line through the origin by equation (6.4). Since the three sets are in symmetric

under rotation about the z%-axis, this line lies in the 2%-z'-plane, and can be written as
gt =b(m)2®, 2'=0(i>1).

By Lemma 7, the parts of the three sets near the equatorial hyperplane 2° = 0 are pieces

of similar ellipsoids. That is, there exists 6 > 0 so that
a?(z) = o?(0)—c*2?, if |z] < a(0)d
B%(x) = B*0)—c*z*, if |z < B(0)d (9.2)
V() = 7*0) -, if fa] <(0)6

where the constant c¢ is the same for the three sets by (8.5). Note that the three quadratic

equations are related by scale factors a(0) : 3(0) : v(0).

To show that equations (9.2) hold globally, we will make a continuation argument. Set
dy = sup{(S | (9.2) holds for 6} . (9.3)

We have just shown that d; > 0. Assume that ¢dy < 1. Then /1 — ¢202 > 0. Define as in

Lemma 8

do
/1 — 2602
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to be the slope of the hyperplane passing through the end points of the parts of the boundaries
of the three sets that are described by the quadratic equations (9.2). Since hyperplanes with
|m| < my meet only those parts of the three sets that are described by (9.2), the intersections
of A, B, and C with these hyperplanes are in the fixed scaling proportions «(0) : 3(0) : v(0).
By the continuity results from Lemma 6, also the intersections with the hyperplane 2° = ma*
are in this proportion. Applying Lemma 6 again we see that the sizes of cross sections with
hyperplanes with m near mg and |¢| small enough satisfy the strict triangle inequality.

To apply Lemma 3 again, fix m near mgy, and rotate the three sets simultaneously in
the z%-z'-plane so that the intersections of A, B, and C' with hyperplanes (9.1) are mapped
to cross sections of the rotated sets perpendicular to the 2’-axis. It follows from Lemma 3
applied to the rotated triple that all three sets satisfy the assumptions of Lemma 8. So (9.2)
holds on a neighborhood of [—dy, dy|, which contradicts definition (9.3).

It follows that either c¢dy = 1, or ¢ = 0 and dy = +o0. In the first case, A, B, and C are
ellipsoids that are related by scale factors «(0) : 5(0) : v(0). Clearly, these factors must be
in proportion « : ( : 7, which proves conclusion (1.6) in this case. In the second case, the

three sets would have to be infinite strips, which contradicts the assumption that they have

finite measure. This completes the proof of Theorem 1. u

10 Proof of Theorem 2 and Corollary 1

Proof of Theorem 2 Let (f,g,h) be an optimizer for inequality (1.2) satisfying the
assumptions of Theorem 2. We have to show that there exist a linear map, £, and vectors

a, b, and ¢ = a + b such that

flx)y=f" (E_lfr - a) , glx)y=y¢g" (E_I:r - b) , h(z)=h" (E_I:r — c) a.e.  (10.1)

We use the ‘layer-cake’ representation

f(z) :/0 Xf(z)y>a da
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to decompose f, g, and h, and their spherically decreasing rearrangements into the charac-
teristic functions of their level sets. It is easy to see that the integrand is jointly measurable

in z and «. By Fubini’s theorem, inequality (1.2) is equivalent to

///j(Nr(f)aNs(g);M(h)) drdsdt < ///j(M(f)*st(g)*JM(h)*) drdsdi

For equality we need that almost all triples of level sets are optimizers of inequality (1.5).
Define a(s), f(s), and v(s) to be the radii of the level sets of f*, ¢*, and h* at height
s, respectively. That is, these functions are constant multiples of the n-th roots of the
distribution functions. As in the inductive step of the proof of Theorem 1, we want to find
triples (r, s,t) such that the strict triangle inequality holds between «(r), 5(s), and ~(t).
Fix 7y and sq such that a(rg) and ((sy) are positive. The assumption that f* and h*
are strictly spherically decreasing implies that o and  are continuous, nonincreasing, and
assume all positive real values. It follows that there exists ¢y such that «(rg), 3(so), 7(to)
satisfy the strict triangle inequality. By continuity, the strict triangle inequality holds for
a(r), B(se), v(t) with r, ¢ in an open neighborhood of 7, ty. By conclusion (1.6) of Theorem 1,

we can write the corresponding level sets as

N(f) = alr) + a(r)E(r sot),

Nio(9) = blso) + B(s0)E(r,s0,1) ,

Ni(h) = ¢(t)  + y(O)E(r, s,t)
where for each value of r and ¢, £ is an centered ellipsoid in R”, and @ and ¢ are vectors in
R" with

a(r) + b(so) = ¢(t) .
Clearly, E cannot depend on r and ¢ near ry and ¢y, and a and ¢ are locally constant. But
the set
{(r, t) | alr),B(so),v(t) satisfy the strict triangle inequality}

is connected, so a, ¢ must be constant, and F is independent of r and ¢. Since sy was
arbitrary, F' and b cannot depend on s, either. The claim (10.1) follows by choosing £ to be

a linear transformation that maps the unit ball to E. [
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Proof of Corollary 1 We may assume without loss of generality that f, g, and h are

nonnegative. Following Lieb’s argument in [19], we consider the chain of inequalities

/] fwg(e—y)h(a) dyda

IN

//f (x—y)h*(z) dydz
190 // 17(y) fo =yl " (2) dyda
< CEAD) £, 9l 1Al

IN

where the first line is the Riesz rearrangement inequality (1.2), the second follows from
the definition of the weak norm, and the third is the Hardy-Littlewood-Sobolev inequality.
For equality in (1.9), there has to be equality in all three lines. By Theorem 2.3(ii) from
[19], equality in the Hardy-Littlewood-Sobolev inequality implies that f* and h* are strictly
spherically decreasing. Equality in the second line implies that ¢*(z) = [, lz|™*. By

Theorem 2, equality in the first line implies the claim. u
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