
ON THE GEOMETRY OF OPTIMAL WINDOWS, WITH SPECIALFOCUS ON THE SQUAREALMUT BURCHARD� AND JOCHEN DENZLERAbstra
t. For the Lapla
e operator with mixed (Diri
hlet and Neumann) boundary 
onditions,the dependen
e of the prin
ipal eigenvalue on the pla
ement of the Diri
hlet part is investigated. Anoptimal window is a Diri
hlet part of the boundary that minimizes the prin
ipal eigenvalue amongall 
ompetitors of the same area.In the spe
ial 
ase of a square, we provide both numeri
al eviden
e and rigorous partial resultsfor the 
onje
ture that optimal windows in a square are segments 
entered at either a 
orner or themidpoint of a side. In parti
ular, we prove that the prin
ipal eigenvalue de
reases as a window isshifted from a side-
entereed position towards the 
orner. An optimal window 
ontained in two sidesof the square is 
onne
ted and 
ontains a 
orner in its interior. Optimal windows whose length doesnot ex
eed the length of one side break the symmetry of the square.We also 
onstru
t a starshaped domain whose optimal window(s) must be dis
onne
ted. Finallywe give, for general domains in Rd, 
ontinuity results for the eigenvalue as a fun
tion of the window,and examples of dis
ontinuity when 
ru
ial hypotheses are violated. We also give a variation formulathat relates the eigenvalue to the singularities of the eigenfun
tion (stress intensity 
oeÆ
ient) nearthe boundary of the window.Methods are based on the variational problem and in
lude rearrangement, Diri
hlet NeumannBra
keting, 
apa
ity estimates, and deformation under a 
ow.Keywords: optimal eigenvalue, Lapla
e operator, mixed boundary 
onditions,shape optimization, 
apa
ity, singular 
oeÆ
ient, rearrangementAMS subje
t 
lassi�
ations: 49R50, 35J05, 35R05, 31C401. Introdu
tion.1.1. Overview over the Results. Consider the �rst eigenvalue of the Lapla
eoperator in a �xed domain 
 � Rd (say, bounded Lips
hitz)��u = �u ; u � 0 in 
(1.1)with Diri
hlet boundary 
onditions on some subset D � 
 and Neumann on the
omplement of D, i.e., ujD = 0 ; ��uj�
nD = 0:(1.2)Te
hni
al questions of how these boundary 
onditions should be interpreted will bedis
ussed below. We will 
all � = �(D) the prin
ipal eigenvalue of the Lapla
ianunder the window boundary 
onditions on D. The problem of optimal windows asksfor minimization of this eigenvalue for pres
ribed surfa
e area of the window.As explained in [8℄, one may think of 
 as representing a room, with perfe
tly heat-
ondu
ting windows at D and insulating walls along �
nD. The prin
ipal eigenvalue�THE FIRST AUTHOR WAS PARTIALLY SUPORTED BY NSF GRANT # DMS-0308040
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2 Almut Bur
hard and Jo
hen Denzler�(D) gives the rate of exponential de
ay of any initial temperature distribution dueto heat di�usion through the window as time be
omes large, while the 
orrespondingeigenfun
tion gives the asymptoti
 temperature pro�le. An optimal window minimizeslong-term heat loss among all windows of a given size.It has been shown in [9℄ that su
h optimal windows exist and that in the 
aseof a ball of any dimension the optimal window is a spheri
al 
ap of the appropriatearea. Similar results have been obtained independently by Cox and Uhlig [6℄, whotreat windows as a singular limiting 
ase of Robin boundary 
onditions.Here we are 
on
erned with the question what 
an be said about the geometryof optimal windows when 
 is not a ball. We suspe
t that an optimal window in a
onvex domain 
 should be 
onne
ted, have some basi
 regularity properties, and liein a region of �
 with large mean 
urvature. This is 
ertainly not the 
ase for moregeneral domains, as we show by 
onstru
ting an example of a star-shaped domainwith a dis
onne
ted optimal window. Heuristi
 eviden
e 
on
erning the lo
ation ofoptimal windos has been dis
ussed in [8℄, and is also 
orroborated by results of Harrellet. al. [13℄ on a di�erent, but related problem.As a model 
ase for a 
onvex domain, we study a square: The determination ofthe shape of optimal windows is already nontrivial in this 
ase. Here we 
onje
turethat the optimal window is a segment, 
entered either at the midpoint of a side or ata 
orner, depending on the pres
ribed boundary measure (length); and that there areno other optimal windows, up to sets of measure zero. This 
onje
ture is 
orroboratedby a number of rigorous partial results as well as numeri
al eviden
e. See Figure 2.1.In parti
ular, we prove that the eigenvalue de
reases as a short segment is moved froma side-
entered position to a position adja
ent to a 
orner; and that this monotoni
ityextends at least for some distan
e as the window is moved around the 
orner. We showthe �rst part of this result by means of a Diri
hlet-Neumann bra
keting argument.The se
ond part is proved by means of an Euler-Lagrange type variational formula,whi
h we derive for any domain of suÆ
ient regularity in arbitrary dimension.Furthermore we show that some segment 
ontaining a 
orner in its interior isoptimal among all windows lying on only two sides of the square (adja
ent or not). Theproof relies on dis
rete rearrangement arguments that are spe
i�
 to the square (withsome obvious, but maybe not too interesting, generalization to a 
ube or hyper
ube).Numeri
al eviden
e shows that for segments whose length ex
eeds the sidelengthby a 
ertain small amount, up to slightly more than two sidelengths, the 
orner-
entered position 
eases to be optimal, with the side-
entered position being better.This 
an be understood heuristi
ally in terms of the fa
t that optimal windows preferto use 
orners, as was already dis
ussed in terms of a model problem in [8℄. However,distributing the window evenly around the 
orners (sa
ri�
ing 
onne
tedness) is notadvantageous and results in windows inferior to either the side-
entered segment orthe 
orner-
entered segment. For small windows, we 
an even prove this analyti
ally.On the other hand, our analyti
 results prove that the (non-optimal) window withfour 
ongruent 
orner-
entered 
omponents is still better than any other window thathas the full symmetry of the square.Our study of the square also serves as a building blo
k for an example of a star-shaped domain where any optimal window is dis
onne
ted. A related example wasdis
ussed heuristi
ally in Figure 3 of [8℄.The variation formula mentioned above is derived here for windows in generaldomains of any dimension. Its upshot is that the rate of 
hange of the eigenvalue asa fun
tion of the window is determined by 
ertain singular 
oeÆ
ients of the eigen-
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tion that show up at ea
h interfa
e of window and wall on the boundary. In aneighbourhood of su
h interfa
e points, the eigenfun
tion (albeit in W 1;2) 
annot beexpe
ted to be W 2;2.In spe
ial geometries the singularities have been studied by Grisvard (e.g. [12℄).In the situation of a simple interfa
e of a wall and a window segment on a side of thesquare, the typi
ally expe
ted singular behavior of the eigenfun
tion is like 
 Impzin a neighbourhood of 0, where the number 
 is the singular 
oeÆ
ient. We give asimple lower estimate for this 
oeÆ
ient, based on a maximum prin
iple, to ensurethat it does not vanish. In 
ontrast, in a 
orner of the square, the singular 
oeÆ
ientvanishes. These two fa
ts are responsible that the eigenvalue 
an be lowered bymoving a segment a bit around the 
orner. For segments up to one sidelength, abetter 
ontrol of the singular 
oeÆ
ients appearing in the variational formula (whi
hdepend on global properties of the eigenfun
tion) should extend this monotoni
ity allthe way until a minimum is a
hieved when the segment is 
entered at a 
orner, but aproof of this extended monotoni
ity has eluded us so far.Contributions from geometri
 singularities (
orners, ridges, 
oni
al points) havebeen studied by many authors, and in vast generality, e.g., Maz'ya and Plamenevskii[21℄. Surveys are [16℄ and [23℄. We are using only the very simplest 
ase here.The 
ontinuous dependen
e of the eigenvalue under shifts of the window and otherreasonable modi�
ations of its geometry is an intuitively plausible, but nontrivialresult of relevan
e. For deformations of windows that 
an be a
hieved by the 
ow ofa ve
tor �eld, our Euler-Lagrange argument proves even di�erentiability. However,in the absen
e of good a-priori information on the window geometry, su
h 
ow typemodi�
ations are rather weak; this is why we in
lude some 
ontinuity results for othermodi�
ations (in general Lips
hitz domains). In this 
ontext, it is 
ru
ial to 
onsider,in addition to the formulation of the EVP adopted in [9℄, [8℄, a more sophisti
atedde�nition that takes into a

ount �ne properties of eigenfun
tions. It is easy to see thatthe results in [9℄, [8℄ 
arry over. We will argue this point spe
i�
ally for the existen
eof optimal windows in Se
tion 1.3. Both de�nitions 
oin
ide for optimal windows, aswell as for windows of suÆ
ient regularity, in parti
ular for open windows.1.2. Basi
 Fa
ts, Context, and Notation; Variational Formulation. Letus introdu
e some notation. The symbol 
 will generally denote a bounded Lips
hitzdomain in Rd , and the window D will be a measurable subset of �
: as surfa
emeasure on �
, we use d � 1-dimensional Hausdor� measure, denoted here by �. Apoint in D \ �
 nD will be 
alled an interfa
e point .The Lapla
ian with the window boundary 
onditions (1.2) will be denoted by�D . The word `eigenvalue' without adje
tive or ordinal will always denote the lowesteigenvalue, whi
h is simple. This eigenvalue will be denoted by �(D).De�ne the optimal eigenvalue for windows of a given surfa
e measure by��(`) = inf f�(D) j D � �
; �(D) = `g :(1.3)A set D � �
 will be 
alled an optimal window, if �(D) = ��(�(D)), that is, if�(D) = inf f�(D0) j D0 � �
; �(D0) = �(D)g :(1.4)In [8℄ and [9℄, the eigenvalue �(D) in (1.1) and (1.3) was de�ned by the Courant-Hilbert variational problem (CHVP)�(D) = min�Z
 jruj2 dx ��� u 2 W 1;2(
) ; Z
 u2 dx = 1 ; ujD = 0� :(1.5)



4 Almut Bur
hard and Jo
hen DenzlerHere, the restri
tion ujD of a fun
tion u 2 W 1;2(
) is to be understood as the tra
e.By general Sobolev spa
e theory ([1, Thm. 5.4℄ or [10, 4.3, Thm 1℄), the tra
e of aW 1;2-fun
tion is guaranteed to be an L2(�
) fun
tion. The 
ondition ujD = 0, in theL2-sense, will not distinguish sets D and D0 if they di�er by a set of d�1-dimensionalmeasure zero, and therefore, the Diri
hlet 
onditions for D in (1.1) need to hold onlyon a set D0 thus di�ering from D. We refer to this de�nition of � as the 
oarseformulation of the eigenvalue problem (1.1) and the CHVP (1.5).The Neumann boundary 
onditions on �
 nD in equation (1.1) arise as naturalboundary 
onditions for the variational problem in (1.5). The minimizing fun
tionu is a normalized eigenfun
tion 
orresponding to �(D), and 
an be 
hosen to benonnegative. It agrees a.e. with an analyti
 fun
tion in the interior of 
, but is notguaranteed to be 
ontinuous up to the boundary �
, unless some assumptions aremade on the geometry of D.Clearly, the prin
ipal eigenvalue �1(D) in
reases under in
lusion of windowsD1 � D2 =) �(D1) � �(D2);sin
e the minimizing fun
tion in the CHVP for �(D1) is an admissible test fun
tionfor the CHVP determining �(D2).1.3. Fine Variational Formulation. As mentioned above, there is anothermeaningful de�nition of the boundary 
onditions (1.2) and the 
orresponding varia-tional problem (1.5). Sin
e W 1;2-fun
tions 
an a
tually be determined quasi-every-where, that is, up to a set of zero 
apa
ity , one 
an insist that the Diri
hlet boundary
onditions in (1.1) and in the Courant-Hilbert variational problem (1.5) hold on a setD0 that may di�er from D only by a set of zero 
apa
ity. Sin
e every set of 
apa
ityzero has d� 1-dimensional measure zero, but not vi
e versa, this is a stronger 
ondi-tion. It 
orresponds to 
hoosing a smaller domain for the quadrati
 form asso
iatedwith �D . We will refer to this de�nition of �(D) as the �ne formulation of (1.1)or (1.5). When ne
essary, we distinguish the two de�nitions by supers
ripts, writing�
(D) and �f (D) for the 
oarse and �ne eigenvalues, respe
tively. In general,�f (D) � �
(D) ;(1.6)and it is easy to 
onstru
t examples where the inequality is stri
t: any (fra
tal) windowwith Hausdor� dimension between d � 2 and d � 1 has measure 0 and nonvanishing
apa
ity [10, 4.7.2℄,[19, 2.1.7℄, hen
e 
oarse eigenvalue 0, but positive �ne eigenvalue.The notion of sets of 
apa
ity 0 is well-de�ned even in two dimensions, where 
apa
ity
an only be de�ned subje
t to some arbitrary 
hoi
e. We 
an even 
ompletely avoidsu
h subtleties, by repla
ing the window D in 
 � R2 with the equivalent windowD � [0; 1℄ in 
� ℄0; 1[ � R3 .In order to relate 
oarse and �ne eigenvalues, we represent an element u of aSobolev spa
e by a fun
tion de�ned everywhere, whi
h will be 
alled the preferredrepresentative. For any given Lips
hitz domain 
 and any neighbourhood V of 
,there is a linear bounded operator E :W 1;2(
)! �W 1;2(V ) ,! W 1;2(Rd ) that extendsSobolev fun
tions in 
 to the entire spa
e as outlined in [10, 4.4℄, i.e., Euj
 = u. Thenwe 
hoose the preferred representative as~u(x) := lim supr!0 �ZBr(x) Eu(y) dy for x 2 
 :(1.7)The lim sup is in fa
t a limit, ex
ept on a set of zero 
apa
ity, and ~u is quasi
ontinuous(as de�ned in [19, 2.17℄).
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ularly for the Square 5The extension operator E is not unique, but depends on a 
hoi
e of lo
ally 
atten-ing 
oordinate 
harts, and we make su
h a 
hoi
e on
e and for all, for ea
h given 
.The preferred representative on 
 depends on the extension operator, but any two
hoi
es will only di�er on a set of 
apa
ity zero. See [19, Thm 2.55&Rmk℄ or [10, 4.8,Thm 1℄. The restri
tion of ~u to �
 represents the tra
e of u.Theorem 1.1. For the CHVP (1.5) in the �ne formulation, there exists a mini-mizer whi
h is uniquely determined quasi-everywhere up to 
hoi
e of a sign.Proof: This is a slight modi�
ation of the 
lassi
al argument for the existen
eof a minimizer for (1.5) in the (
oarse) Sobolev sense. Let uj be a minimizing sequen
eof quasi
ontinuous fun
tions (in W 1;2(Rd ), by extension) satisfying the boundary
onditions in the �ne sense. Extra
ting a subsequen
e (again denoted by uj), wemay assume weak 
onvergen
e in W 1;2(
), strong 
onvergen
e in L2(
) and (by
ompa
tness of the tra
e map) strong 
onvergen
e in L2(�
), to a limit fun
tionu�. We have to show that u� inherits the �ne boundary 
onditions from fujg. Tothis end, we repla
e the sequen
e fujg by a sequen
e f�ujg of 
onvex 
ombinationsthat 
onverges strongly in W 1;2, a

ording to Mazur's theorem (see, e.g., [18, 2.13℄).The normalized sequen
e ûj := �uj=k�ujkL2(
)) still 
onverges strongly in W 1;2(
)be
ause k�ujkL2(
) ! 1. The ûj inherit the �ne boundary 
onditions from uj andform therefore a sequen
e of legitimate 
ompetitors in the CHVP.Now by 
onvexity, we obtainZ jru�j2 = lim Z jrûj j2 = lim Z jr�uj j2 � lim Z jruj j2 = inf Z jruj2 :We must show that u� inherits the �ne boundary 
onditions from the ûj . This followsfrom the arguments in Se
. 2.1.3 of [19℄, whi
h we sket
h brie
y, for the sake of beingmore self-
ontained:(1) If a sequen
e of C10 fun
tions vj (with uniformly bounded support) 
onvergesstrongly in W 1;2(
) to some u�, then it holds for a subsequen
e (again 
alled vj):8" > 0 9V" open : 
ap(V") < " ; kvj � u�kC0(
nV") ! 0(2) EveryW 1;2(
) fun
tion u 
an be approximated inW 1;2(
) norm by C10 fun
tionsvk (with uniformly bounded support), su
h that8" > 0 9W" open : 
ap(W") < " ; kvk � ukC0(
nW") ! 0(The existen
e of a quasi-
ontinuous representative is a
tually a 
onsequen
e of this.)Now there are open sets Vj with 
ap(Vj) < 2�j su
h that ûj is 
ontinuous on
 n Vj and vanishes on D n Vj , and there are smooth approximants v̂j su
h thatkv̂j � ûjkW 1;2(
) < 2�j and kv̂j � ûjkC0(
nVjnWj ) < 2�j for appropriate open sets Wjwith 
ap(Wj) < 2�j . Therefore, for every j0, the sequen
e v̂j 
onverges uniformly tou� outside the set Vj0 := Sj�j0 (Vj [Wj), whose 
apa
ity is at most 22�j0 . Hen
e u�vanishes on D n Vj0 , for every j0.(We 
ould have simpli�ed the argument by starting with a smooth minimizingsequen
e uj from the very beginning, but prefer the generality for possible future
onvenien
e.)Uniqueness and positivity follow from the strong maximum prin
iple as in the
lassi
al argument.The 
oarse and �ne formulations of optimal windows and their eigenfun
tionsessentially agree:Proposition 1.2. Let �
�(`) and �f� (`) be optimal eigenvalues for windows of
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hard and Jo
hen Denzlersize `, as de�ned by (1.3) in the 
oarse and �ne sense, respe
tively. Then�f�(`) = �
�(`) (0 � ` � �Dir) :(1.8)Furthermore, D is an optimal window with respe
t to the 
oarse de�nition, if and onlyif it di�ers by a set of d � 1-dimensional measure zero from an optimal window forthe �ne formulation.Proof: Clearly, from (1.6), we have�f� (`) � �
�(`) :To see the 
onverse inequality, take an optimal window D for the 
oarse formulation,i.e, �
(D) = �
�(`), and let u
 be a minimizer of the 
orresponding CHVP (1.5). Let~u
 be the preferred representative of u
, as de�ned above, and setD0 := fx 2 �
 j ~u
(x) = 0g :We refer to this pro
edure as re�ning the window D. By de�nition, �(D0) � ` and�
(D0) = ��(`). Sin
e ~u
jD0 vanishes identi
ally, it is an admissible 
andidate for theCHVP (1.5) for �f (D0). It follows that�f� (`) � �f (D0) = �
(D) = �
�(`) :Note that we always have �f (D0) � �
(D) sin
e ~u
 vanishes on D0. Whenever�f (D) > �
(D) o

urs, this is due to D nD0 having positive 
apa
ity, whi
h makes~u
 ineligible for the �ne CHVP. Whenever de Giorgi's 
ontinuity argument appliesat ea
h point of D, i.e., when u
 has a representative that is 
ontinuous on 
 [ D,then ~u
 is admissible for the �ne CHVP and thus �f (D) = �
(D). This holds inparti
ular if D is open, notwithstanding possible dis
ontinuities of u
 at interfa
epoints. A de Giorgi argument 
an also be used to show 
ontinuity of u
, providedthe window has positive density at every interfa
e point p 2 D \ �
 nD. We suspe
tthat eigenfun
tions for optimal windows should be 
ontinuous up to the boundary,but this is an unresolved question.2. Numeri
al Results for the Square. We have used the matlab pdetool to
al
ulate, by means of �nite elements, the lowest eigenvalue for various window 
on-�gurations. The 
al
ulation was done with a sequen
e of at least three subsequentmesh re�nements so that numeri
al 
onvergen
e within the pre
ision of the graphi
s
ould be 
he
ked by inspe
tion. In the a

ompanying Figure 2.1, we show the eigen-value as a fun
tion of the length of the window, for �ve di�erent simple geometri

on�gurations.As outlined in Se
tion 1.1, we 
onje
ture that the 
on�gurations giving the lowesteigenvalue in Fig 2.1 (namely either a side-
entered or a 
orner-
entered segment,depending on the length) is in fa
t the optimal 
on�guration. As a rule of thumb, thebetter of the two 
hoi
es of symmetri
 and 
onne
ted windows is the one that 
ontainsmore 
orners. Ex
eptions to this rule o

ur near integer multiples of a sidelength.Figure 2.1 also displays a feature of the �rst variation formula: when the interfa
epoints are in the 
orner (whi
h implies vanishing of the singular 
oeÆ
ients), thederivative of the eigenvalue vanishes. These are just the expli
itly 
al
ulable 
asesmarked in the �gure. Our numeri
s does not resolve the modulus of 
ontinuity at
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one-component window, symmetric to diagonal

4-comp’ window, corner-centered, full symmetry
 ( = scaled version of  )

one-component window, symmetry axis parallel to side

two-component window, symmetric to diagonals

two-component window, symmetry axes parallel to sides

PSfrag repla
ements `

�

Fig. 2.1. Five se
tions through the spa
e of windows, ea
h parametrized by length. The hori-zontal axis measures the length, in units of the perimeter of the square, the verti
al axis gives theeigenvalue relative to the full Diri
hlet eigenvalue. The labels mark those window 
on�gurationsthat 
an be 
al
ulated expli
itly by separation of variables. In these pi
tograms, bold lines denoteDiri
hlet BCs.length 0. However, for ea
h of the 
urves printed, it 
an be seen analyti
ally that
1= ln(1=Æ) � �(Æ) � 
2= ln(1=Æ) (with Æ the total length of the window): the lowerbound follows from Thm 5 in [8℄ (slightly modi�ed for two dimensions, as pointedout there); the upper bound is an immediate 
onsequen
e of our 
apa
ity estimate inProp. 5.2 and eqn. (5.2) below. Sharp asymptoti
s for a di�erent, but 
losely relatedproblem, 
an be found in 
h. 9 of [20℄.We next study the dependen
e of the eigenvalue on the position of the window.In Figure 2.2, we shift windows of a given length from a side-
entered to a 
orner-
entered position. We 
annot expe
t the eigenvalue to depend monotoni
ally on theshift parameter for all lengths, be
ause the side-
entered and the 
orner-
entered
on�guration yield the same eigenvalue for three parti
ular lengths, 
lose to 1.02,2.04, 3.15 sidelengths, as seen in Figure 2.1. However, we observe in ea
h 
ase thateven lo
al minima only o

ur in symmetri
 positions, supporting our 
onje
ture.The slope of the shift 
urves is proportional to the di�eren
e of the singular 
oef-�
ients at the endpoints of the segment. In the symmetri
 
on�gurations, this slopevanishes by symmetry. When both endpoints lie in a 
orner, where the singular 
oef-�
ients vanish, the derivative appears to vanish to a higher order, indi
ating further
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Fig. 2.2. The eigenvalue for 
onne
ted windows of nine di�erent lengths and two-
omponentwindows of two di�erent lengths, as a fun
tion of a shift parameter. The horizontal axis indi
atesthe distan
e to a side-
entered position.
an
ellations. This 
an be plausibly observed for lengths 1 and 3 in the side-
entered
on�guration, and for length 2 in the 
orner-
entered 
on�guration.Finally, we observe the e�e
t of tearing apart a 
onne
ted window into two pie
es.See Figure 2.3. Note the 
ompetition between 
orner positions and 
onne
tedness asgeometri
 features favoring low eigenvalues.3. Rigorous Results for the Square. In this se
tion, we 
olle
t some inequal-ities and monotoni
ity results that are spe
i�
 to the square.3.1. Monotoni
ity of Shifting (Re
tangle). For the geometri
 situation, seethe top of Figure 3.1Theorem 3.1. Let 
 be a re
tangle. The prin
ipal eigenvalue of a 
onne
tedwindow D whi
h is 
ontained entirely in one side of �
 is a 
ontinuous, stri
tlyde
reasing fun
tion of the distan
e of D from the side-
entered position.Proof: By s
aling, rotating, and translating, we may assume that 
 = ℄0; 1[�℄0; h[, and that the window is 
ontained in the bottom side of the re
tangle. SeeFigure 3.1. For 0 < ` < 1 and jtj � (1� `)=2, let D(t) = ℄ 12 + t� 2̀ ; 12 + t+ 2̀ [�f0g bethe window of length ` that has been shifted by t from the side-
entered position, and
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0.4444

0.4444

Fig. 2.3. Examples of 
ompetition between 
onne
tedness and 
orner position for small win-dows. Dotted lines: The �rst hump for the side-
entered window is a
tually axially symmetri
, dueto the argument used in Se
tion 3.1.
 = ℄0; 1[� ℄0; h[D = ℄ 12 + t� 2̀ ; 12 + t+ 2̀ [� f0g�(D) =: �(t) `=2 `=2t
̂ (
ylinder)
`=2`=2 t1t2Fig. 3.1. Shifting windows in a re
tangle after doubling it to obtain a 
ylinderdenote the 
orresponding eigenvalue by �(t). By symmetry, � is an even fun
tion oft. Continuity of �(t) follows most easily from Prop. 5.2. To prove the last assertion,we will show that �� 12 (t1 + t2)� > min f�(t1); �(t2)g(3.1)holds for any pair t1 < t2. Setting t1 = �t, t2 = t in Eq. (3.1) and using that�(�t) = �(t) shows that � takes its global maximum at t = 0. Setting t1=2 = t � "in Eq. (3.1) shows that �(t) 
annot assume a lo
al minimum on the open interval℄0; (1� `)=2[. We 
on
lude that �(t) is stri
tly de
reasing on [0; (1� `)=2℄, as 
laimed.In order to prove 
laim (3.1), we 
ombine a doubling tri
k with a spe
ial 
aseof Diri
hlet{Neumann Bra
keting (see [22℄, XIII.15). Fix t1 � t2 with jt1j; jt2j �(1 � `)=2, set t = (t1+t2)=2, and let u be the positive normalized eigenfun
tion forthe re
tangle 
 = ℄0; 1[� ℄0; h[ with the window D(t).Consider the the CHVP on the 
ylinder 
̂ = (R=2Z)� ℄0; h[, with window D̂(t) =



10 Almut Bur
hard and Jo
hen DenzlerD(t)[(�D(t)), whi
h is obtained by gluing a 
opy of 
 with windowD(t) to its mirrorimage along the verti
al edges. Sin
e the minimizing fun
tion û is automati
allysymmetri
 by simpli
ity of the prin
ipal eigenvalue in a 
onne
ted domain, it followsthat this CHVP on 
̂ with window D̂(t) is equivalent to the CHVP on 
 with windowD(t). In parti
ular,û(x; y) = 1p2u(jxj; y) (�1 � x � 1; 0 � y � h);and the 
orresponding prin
ipal eigenvalue 
oin
ides with �(t).On the other hand, with the understanding that x 
oordinates are interpretedmodulo 2, the 
ylinder 
̂ 
ontains the disjoint union of the re
tangles 
1 = ℄(t2 �t1)=2; 1+(t2� t1)=2[� ℄0; h[ and 
2 = ℄�1+(t2� t1)=2; (t2� t1)=2[� ℄0; h[, whi
h are
opies of 
 with windows D(t1) and D(t2), respe
tively. By restri
ting û to 
1 [ 
2we obtain a test fun
tion for 
1 [
2 with window D(t1)[D(t2). Sin
e the prin
ipaleigenvalue for a disjoint union of domains is the smaller of the two eigenvalues, itfollows that �(t) � minf�(t1); �(t2)g:The fun
tions u1 = ûj
1 and u2 = ûj
2 
annot be eigenfun
tions for �(t1) and �(t2),be
ause the gradient of û vanishes at those boundary points of 
1 or 
2 that were
orners of 
, in violation of the Hopf boundary point lemma for u1 and u2. This
ompletes the proof of Eq. (3.1).The doubling argument used in the proof shows that two 
onne
ted window seg-ments of length ` ea
h, pla
ed symmetri
ally with distan
e 2s from the 
enter of are
tangle of side length 2 yield the same eigenvalue as two su
h windows pla
ed sym-metri
ally with distan
e 2(1� `� s) apart. This 
an be observed in the 
urve for theside-
entered 
on�gurations in Figure 2.3.3.2. Optimality Among Windows on One or Two Sides. The monotoni
-ity argument in the previous subse
tion implies in parti
ular that among all 
onne
tedwindows 
ontained in one side of a re
tangle, the one tou
hing a 
orner produ
es theminimal eigenvalue. We next 
onsider windows 
ontained in two sides of a square.Theorem 3.2. Among all windows that lie on only two sides of the square(adja
ent or not), the optimal window is 
onne
ted and 
ontains a 
orner of the squarein its interior.The proof is based on rearrangement te
hniques, whi
h have been widely usedfor geometri
 inequalities (see [14, 18℄ for a general referen
e). Here we will use tworearrangements adapted to the square: the in
reasing rearrangement and polarization.For a nonnegative measurable fun
tion u on a re
tangle, we de�ne the in
reasingrearrangement in the x-dire
tion, Ru, by repla
ing the restri
tion of u to ea
h line y =
onst with the unique non-de
reasing left-
ontinuous fun
tion whi
h is equimeasurablewith u(�; y). By Fubini's theorem, Ru is equimeasurable with u.Lemma 3.3. Let u be a nonnegative W 1;2-fun
tion on a re
tangle 
 = ℄0; 1[ �℄0; h[, and let Ru be its in
reasing rearrangement in the x-dire
tion. If the tra
e of uvanishes �-a.e. on a windowD = �f0g �Dl� [ �f1g �Dr� [ �Db � f0g�[ �Dt � fhg� ;
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ularly for the Square 11then Ru vanishes �-a.e. on the window RD de�ned by(RD)l = Dl [Dr; (RD)r = ;; (RD)b = ℄0; �(Db)[; (RD)t = ℄0; �(Dt)[:(3.2)In general, �(D) � �(RD) ;with equality 
ertainly when Dr = ;. The 
orresponding prin
ipal eigenvalues satisfy�(D) � �(RD) ;with equality only when RD agrees �-a.e. with either D or its mirror image.uD RD in
reasingFig. 3.2. The e�e
t of the symmetri
 in
reasing rearrangement on a window with 
omponentson all four sides of a re
tangle.Proof: If u is 
ontinuous up to the boundary of the re
tangle and vanishes onD, then its rearrangement Ru is also 
ontinuous and vanishes on the window RD. Tosee that the tra
e of Ru vanishes on RD for any nonnegative nonnegative fun
tion uin W 1;2 vanishing on D, we note that the in
reasing rearrangement is 
losely relatedwith Steiner symmetrization. In fa
t, if we extend both u and Ru by re
e
tion a
rossthe line x = 1 to fun
tions û and R̂u on the doubled re
tangle 
̂ = ℄0; 2[� ℄0; h[, thenR̂u is just the Steiner symmetrization of û. Sin
e Steiner symmetrization is 
ontinuousonW 1;2 [3℄, R is 
ontinuous as well, and the �rst 
laim follows by a density argument.For the se
ond 
laim we use that R preserves the L2-norm but redu
es the normof the gradient. In parti
ular, R 
an only de
rease the Rayleigh quotient. Choosingu to be the prin
ipal eigenfun
tion of the CHVP 
orresponding to the window D, wesee that �(D) = R jruj2 dxR juj2 dx � R jrRuj2 dxR jRuj2 dx � �(RD) :(3.3)By analyti
ity, the partial derivative �xu vanishes only on a set of zero measure. Itfollows from a theorem of Brothers and Ziemer [4℄ that the rearrangement inequalityin Eq. (3.3) is stri
t unless u is already either in
reasing or de
reasing in x on ea
hline y = 
onst .The se
ond rearrangement exploits the symmetry of the square under re
e
tionsat the diagonals. Let 
 = ℄0; 1[ � ℄0; 1[ be the unit square, and let �(x; y) = (y; x)denote the re
e
tion at the diagonal joining the lower left with the upper right hand
orner. For any fun
tion u on 
, the polarization Pu of u with respe
t � is given byPu(x; y) = � maxfu(x; y); u(�(x; y))g; if y � x;minfu(x; y); u(�(x; y))g; if y � x:



12 Almut Bur
hard and Jo
hen DenzlerFor a 
omprehensive a

ount of polarization we refer to [2℄. We have the followinglemma:Lemma 3.4. Let u be a nonnegative W 1;2-fun
tion on the unit square 
 =℄0; 1[ � ℄0; 1[, and let Pu be its polarization, as de�ned above. If (the tra
e of) uvanishes �-a.e. on a windowD = �f0g �Dl� [ �f1g �Dr� [ �Db � f0g� [ �Dt � f1g� ;then Pu vanishes �-a.e. on the window PD withPDl = Dl \Db; PDr = Dr [Dt; PDb = Dl [Db; PDt = Dr \Dt:In general, �(D) = �(PD) ;and the prin
ipal eigenvalues satisfy�(D) � �(PD);with equality only if PD agrees �-a.e. with either D or �(D).Proof: The form of PD is immediate from the de�nition of P . To see these
ond 
laim, 
hoose u to be the prin
ipal eigenfun
tion 
orresponding to the windowD. Sin
e Pu is equimeasurable with u, and jrPuj is equimeasurable with jruj byde�nition of the polarization, we have�(D) = R jruj2 dxR juj2 dx = R jrPuj2 dxR jPuj2 dx � �(PD) :Unless Pu agrees with either u or u Æ � , it 
annot be real analyti
, and hen
e is notthe eigenfun
tion 
orresponding to �(PD). We 
on
lude that then the last inequalityis stri
t.Proof of Thm. 3.2:Within the 
lass of windows 
ontained in two sides of the square, there 
learly existsan optimal one. By Lemma 3.4, a window 
onsisting of two non-empty parts 
ontainedin two opposite sides of the square 
annot be optimal, sin
e it 
an be improved bypolarization.If D is 
ontained in two adja
ent sides (say, left and bottom) of the square,Lemma 3.3 implies that repla
ingD withRD stri
tly redu
es the prin
ipal eigenvalue,unless the bottom part of the window is 
onne
ted and 
ontains a 
orner. Note thatin this 
ase, RD has the same length as D. Repeating this argument for the verti
aldire
tion, we see that also the part of D on the left hand side must be 
onne
ted and
ontain the lower left 
orner.It remains to show that a 
orner must lie in the interior of the window. If thelength of D happens to equal the length of one side of the square, we refer to thenumeri
al result, whi
h shows that the 
orner-
entered position improves over theone-side position. Otherwise, we refer to Cor. 6.3 below to show that moving thesegment a short distan
e round the 
orner improves the eigenvalue.
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ularly for the Square 133.3. Non-Optimality of Z2�Z2-Symmetri
 Windows. We have the follow-ing theorem:Theorem 3.5. In a re
tangle, any window of suÆ
iently small length that hasthe full symmetry group of a re
tangle is not optimal. In parti
ular in a square, asymmetri
 window whose length does not ex
eed the length of one side is not optimal.As mentioned before, numeri
al results for the square indi
ate that the lengthrestri
tion is not needed.Proof: In self-explanatory pi
togram notation, we reason that� ! = � ! = 4� ! � 4� ! ;(3.4)exploiting symmetry, s
aling, and the rearrangement of Lemma 3.3 in turn. The lastinequality is stri
t unless the window 
onsists of four L-shaped windows in the 
ornersto begin with, showing that an optimal window having full symmetry must be of thatform. In Eq. (3.4), we have gained a fa
tor 4, but lost half of the window length. Wenow double the window using Lemma 6.1.Assume that the re
tangle has the form 
 = ℄0; a[�℄0; b[ and the L-shaped window(
alled DL) has lengths qxa and qyb on the horizontal and verti
al parts respe
tively.An admissible test fun
tion for the CHVP for an L-shaped window with side lengths2qxa and 2qyb is given by uÆ , where  (x; y) = (h(x); k(y)) with h; k pie
ewise linearsu
h that h(0) = k(0) = 0, h(a) = a, k(b) = b, and h(2qxa) = qxa, k(2qyb) = qyb. It iseasy to see that  : 
! 
 is bi-Lips
hitz. The largest value for the spe
tral radius of(D )(D )T = detD is 2(1�q)=(1�2q) with q = maxfqx; qyg, and the largest value fordetD is (1�qx)=(1�2qx)� (1�qy)=(1�2qy). By Lemma 6.1, the window  �1(DL)is an improvement over the original window, whenever 2(1� q)3=(1� 2q)3 � 4, whi
hhappens for q < 0:17 and translates to a smallness 
ondition on the window size,depending on the side lengths of the re
tangle.In the square ℄0; 1[�℄0; 1[, an optimal window whi
h is symmetri
 under re
e
tionsat the verti
al and horizontal axes must be symmetri
 under re
e
tion in the diagonalsas well, sin
e otherwise a better window is obtained by polarization; this gives qx =qy =: q. We 
an now get a better quantitative estimate in Eq. (3.4) for the square.De�ne a bi-Lips
hitz map by setting : (x; y) 7! 8<: �x; 1� 1�q1�2q (1� y)�� if y � 1� (1� 2q)(1� x) (I)�x; 12 (x+ y)� if x � y � 1� (1� 2q)(1� x) (II)above the diagonal, and an analogous formula below the diagonal. The spe
tral ra-dius of (D )(D )T = detD is (1� q)=(1� 2q) in domain (I) and 12 (3 +p5) in (II).The Ja
obian detD is largest in (I), namely (1 � q)=(1 � 2q). Lemma 6.1 as-serts that the window 
an be doubled with a fa
tor � 4 in the eigenvalue, provided�(D) = 4q � 4(5�p5)=(13�p5) � 1:027.Corollary 3.6. The result of Thm. 3.5 holds, for suÆ
iently small windows ina re
tangle ℄�a; a[� ℄�b; b[, under the weaker assumption that either (a) there is equalwindow area in ea
h of the four quadrants, or (b) the window is symmetri
 under the180Æ rotation (x; y) 7! (�x;�y).Proof: For (a), the �rst step in (3.4) 
an be repla
ed with an inequality, wherethat quarter is sele
ted that 
ontributes the smallest Rayleigh quotient. For (b), note



14 Almut Bur
hard and Jo
hen Denzlerthat the symmetry is inherited by the eigenfun
tion, and we have u(0; y) = u(0;�y).So we 
an de�ne û 2 W 1;2 by: û(x; y) = u(x; y) for x � 0, and û(x; y) = u(x;�y)for x � 0. û represents another window D̂ with the same area as D, has the sameRayleigh quotient, and is not the optimizer yet, unless D̂ = D; this redu
es the 
orol-lary to the theorem again.4. A Star-Shaped Domain With Dis
onne
ted Optimal Window. Wehere prove the properties of the followingExample 4.1. There exists a starshaped Lips
hitz domain 
 in R2 and a length` su
h that a 
onne
ted window of length ` in 
 
annot be optimal.Proof: In a one-parameter family of domains 
", we 
al
ulate an upper boundfor the eigenvalue of a 
ertain window D2 with two 
omponents. Then we establish alarger lower bound for the eigenvalue of any 
onne
ted window D. These estimates,based on Diri
hlet-Neumann bra
keting, work for suÆ
iently small ", and 
an bemade quantitative.
" is the union of a `torso' re
tangle T" and a pair of `handles' H", �H":T" := ℄�1; 1[� ℄�1� "; 1 + "[ ; H" := [1; 9� "[� ℄�"; "[ :(4.1)See the top left part of Figure 4.1. We 
hoose D2 := (�
") n T ", with �(D2) = 32.The remaining boundary W := (�
") nD2 has measure �(W ) = 8.
(not to scale)

PSfrag repla
ements 
" D2
T"

T" D"
H"H"D0 D1Fig. 4.1. Top left: A starshaped Lips
hitz domain whose optimal window(s) of a 
ertain length` 
annot be 
onne
ted. Top right: upper bound for eigenvalue of dis
onne
ted window. Bottom:Lower bounds for 
onne
ted windows.For 
omparison, dis
onne
t the handles from the torso by means of extra Diri
hletboundary D" = f�1g� [�"; "℄, as in the top right of Fig. 4.1. With fewer 
ompetitorsin the CHVP (1.5), we get an upper bound. In self-explaining notation, we 
on
lude�(
"; D2) < minn�Dir(H"); �(T"; D")o = �(T"; D") :By testing the EVP for T" with sin �2 (jyj� ")+, one 
an see that the evaluation of theminimum is valid for all " � 1.For any 
onne
ted window D of length 32, it 
an easily be seen that, ex
ept forre
e
tion symmetry, either D � D0 or D � D1, whereD0 = f(x; y) 2 �
" j y � �"gD1 = f(x; y) 2 �
" j x � 1g [ [1; 5℄� f�"g
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ularly for the Square 15To get lower bounds for �(
"; D0) and �(
"; D1), dis
onne
t the handles from thetorso by means of extra Neumann boundary f�1g�[�"; "℄: In slight abuse of notation,we write �(T"; Di) for �(T"; Di \ �T"), and similarly for H". We have either�(
"; D) > minn�(H"; D0); �(T"; D0)o = �(T"; D0) > ( �4+4" )2(4.2)or �(
"; D) > minn�(H"; D1); �(T"; D1)o = �(H"; D1)(4.3)The evaluation of the minimum in (4.2), for any ", relies on a test fun
tion thatvanishes for y � �". The evaluation of the minimum in (4.3) is valid for all " < 32 ,sin
e then, using 
omparison fun
tions 
os(�y=(2 + 2")) and sin�(x� 5)+=2(4� "),�(T"; D1) > (�=(2 + 2"))2 � (�=(2(4� ")))2 > �(H"; D1) :For " < 23 , we 
an also 
on
lude that�(H"; D1) < (�=(8� 2"))2 < (�=(4 + 4"))2 < �(T"; D0) :It therefore only remains to prove the middle inequality in�(
"; D) > �(H"; D1) > �(T"; D") > �(
"; D2) :But as " ! 0, one has �(T"; D") ! 0, whereas �(H"; D1) ! (�=8)2. This intu-itively 
lear fa
t 
an be proved in a straightforward way by writing the quadrati
form RH"(u2x + u2y) dx dy as a quadrati
 form R ("�(�)�1u2� + "�1�(�)u2�) d� d� on L2with measure "�(�)d� d� in a �xed referen
e domain ℄0; 8[ � ℄�1; 1[. Here �(�) = 1for � < 4, and �(�) = 1� "=4 for � > 4. If we 
arry out the limit "! 0 in the CHVPwith the appropriate eigenfun
tions, we have the uniform upper bound (�=(8� 2"))2for the eigenvalue, as mentioned before. This 
ontrols the W 1;2 norm in the �xeddomain, and a
tually enfor
es u� ! 0. The limiting fun
tion will indeed not dependon the � 
oordinate and solve the one-dimensional eigenvalue problem �u�� = �u on[4; 8℄ 3 �, with u(4) = 0, u�(8) = 0.5. Some Continuity Results. In this se
tion, we study how the eigenvalue
hanges if a window of a parti
ular size is added at a parti
ular lo
ation. The basi
philosophy is that windows 
an be added more 
heaply at lo
ations where the eigen-fun
tion was already small before the addition. In the se
ond subse
tion, we dis
ussrelated 
ontinuity properties of the 
orresponding eigenfun
tions.5.1. Continuity of Eigenvalues. Our �rst result is an estimate for the in
reaseof the prin
ipal eigenvalue, if a set of small 
apa
ity is added to a given window.Lemma 5.1. Let D2 � D1 and let u1 be the normalized eigenfun
tion for D1. LetG be a domain 
ontaining D2 nD1; in 
ase the dimension d = 2, assume additionallythat G is bounded. Then�(D2)� �(D1) � �(D1) vol (G \ 
) + 
ap(D2 nD1; G)1� (supG\
 u1)2 vol (G \ 
) � supG\
u1�2 ;(5.1)where 
ap is the 
apa
ity de�ned in [19, 2.2.1℄, namely:
ap(D2 nD1; G) := inf�ZG jrvj2 ���� v = 1 in a nbhd of D2 nD1 ; v 2 C10 (G)� :



16 Almut Bur
hard and Jo
hen DenzlerProof: Let M := supG\
 u1. As explained in [9℄ near (3.2), it follows from deGiorgi's argument (see formula (5.12) in 
hapter 2 of Ladyzhenskaya{Ural'tseva [17℄)that sup
 u1 is �nite, and 
an even be 
hosen to depend only on 
, not on D1. Toobtain a test fun
tion for the CHVP whi
h determines �(D2), we modify u1 in G: InG\
, let u2 := minfu1;M(1� v)g, where v is one of the fun
tions that approximatethe 
apa
ity of D2 nD1; outside (if any), let u2 = u1. Sin
e u2 = u1 on 
 \ �G, thisdoes not introdu
e dis
ontinuities, and u2 is an admissible test fun
tion for �(D2).Clearly Z
 u22(x) � Z
nG u21 � 1�M2 vol (G \ 
)and Z
 jru2j2 � Z
 jru1j2 +M2 ZG jrvj2 ! Z
 jru1j2 +M2 
ap(D2 nD1; G)as v runs through a minimizing sequen
e for the 
apa
ity fun
tional. We 
on
lude(5.1) immediately.In appli
ations of the lemma, G should be a small neighbourhood of D2 nD1, sothat in the numerator on the right hand side of (5.1), the 
apa
ity term dominatesthe volume term. It 
an be used to establish 
ontinuity of the eigenvalue underdeformations of suÆ
iently regular windows. The following simpli�ed estimate suÆ
esto show the 
ontinuous dependen
e of the eigenvalue on the length and position of asegment in a square:Proposition 5.2. For a given bounded Lips
hitz domain 
 � Rd , there existsa nonnegative 
ontinuous fun
tion � with �(0) = 0 so that for any pair of windowsD1 � D2 � �
, �(D2) � �(D1) + � (diam(D2 nD1)) ;where the � is a 
ontinuous fun
tion with �(0) = 0 whi
h depends only on 
 but noton D1 and D2. The result applies to the 
oarse as well as to the �ne de�nition of theeigenvalue.Proof:We assume D2 nD1 � BÆ(x0) where Æ := diam(D2 nD1) and use the Green's fun
tionas a legitimate limiting 
ase for v in the 
apa
ity fun
tional; namely, for dimensiond = 2, let G = BR(x0) and 1 � v := ln+(jx � x0j=Æ)= ln(R=Æ), with, say, R = pÆwhen Æ < 1. For d � 3, we 
an take G = BR(x0) with R := Æ(d�2)=d and let1� v := (Æ�(d�2)� jx�x0j�(d�2))+=(Æ�(d�2)�R�(d�2)). For simpli
ity, we 
an takeM := sup
 u1 as an upper bound for supG\
 u1, and obtain the 
laim with�(Æ) := 8>><>>: �M2 Æ�Dir + 2= ln(Æ�1=2)1� �M2Æ for d = 2(d� 1)2!dM2Æd�21� !dM2Æd�2 for d > 2(5.2)where !d is the volume of the unit ball.



Optimal Windows; parti
ularly for the Square 17It should be noted that the modulus of 
ontinuity of the eigenvalue 
annot beexpressed in terms of �(D2nD1) alone. This is due to the fa
t [8, Thm. 8℄ that for any", there exists a window of measure < " with eigenvalue > �Dir � ". This observationalso implies, in view of the a-priori estimate for kuk1 and H�older's inequality, thatan estimate in terms of ku1kp is not possible for any p <1.Theorem 5.3. The optimal eigenvalue �� depends 
ontinuously on the pres
ribedboundary measure of the window.Proof: We will prove that in dimensions d > 2, the fun
tion ` 7! ��(`) isH�older 
ontinuous with exponent (d�2)=(d�1), for ` < �(�
). In d = 2 dimensions,we will obtain a logarithmi
 estimate for the modulus of 
ontinuity.Fix `1 < �(�
), and let D1 be an optimal window with �(D1) = `1. It followsfrom Prop. 5.2 that ��D1 [ (BÆ(x0) \ �
)�� �(D1) < �(Æ)for any 
hoi
e of x0 2 �
 and Æ > 0. We want to 
hoose x0 so that ��(BÆ(x0)\�
) nD1� is bounded away from zero. To do this, we use Fubini's theorem to estimate�Z�
 �((BÆ(x) \ �
) nD1)d�(x) = 1�(�
) Z�
 Z�
nD1 1jx�yj<Æ d�(y)d�(x)= 1�(�
) Z�
nD1 �(BÆ(y)) d�(y)� �(�
)� �(D1)�(�
) infy2�
�(BÆ(y)) :Sin
e 
 is a bounded Lips
hitz domain, there exists a 
onstant 
, depending only on
, su
h that �(BÆ(x0)) � 
Æd�1. We 
on
lude that for any value of Æ there exists apoint x0 2 �
 su
h that��BÆ(x0) nD1� � �1� `1�(�
)� 
Æd�1 :For `2 > `1, set Æ = � `2 � `1
(1� `1=�(�
))�1=(d�1) ;and let D2 = D1 [ (BÆ(x0) \ �
). Sin
e �(D2) � `2, it follows that��(`2)� ��(`1) � �(D2)� �(D1) � �(Æ) :The 
laim now follows from the expression for � given in Prop. 5.2.The pun
hline of Thm. 5.3 is that we get a uniform modulus of 
ontinuity with-out extra regularity assumptions on the boundary. For smoother �
, stronger results
ould be obtained using the tools of Se
. 6. We 
onje
ture (but have not pursued)that the window D2 in Ex. 4.1 is a
tually optimal, and that the modulus of 
ontinuityat that length in Ex. 4.1 is pre
isely O(Æ2=3). This intuition is based on the r1=3 sin-gularity of the eigenfun
tion at the re-entrant 
orner, the role of singularities revealedin Se
. 6, and the estimate from Lemma 5.1. A Lips
hitz estimate for ` 7! ��(`)should not be expe
ted without further assumptions on �
, but smoothness (a.e.) of�
 will improve upon Thm. 5.3.



18 Almut Bur
hard and Jo
hen DenzlerThe following simple lemma estimates the 
hange of the eigenvalue under in
reaseof a window solely in terms of the eigenfun
tion on the smaller window.Lemma 5.4. Given 
 � Rd and two windows D1 � D2 � �
. Let u1 be thenormalized eigenfun
tion 
orresponding to �(D1). Then�(D2)� �(D1) � �(D1) pvol (
) supD2nD1 u11�pvol (
) supD2nD1 u1(5.3)Proof: Let " := supD2nD1 u1. Then v" = (u1 � ")+ is an admissible testfun
tion for both the CHVP's de�ning �(D2) and �(D1) . We 
omputekrv"k22 = Z ru1 � r(u1 � ")+ = �(D1) Z u1(u1 � ")+ ;(5.4)where we have used the weak form R rur' = � R u' of the eigenvalue equation�u = ��u, with ' := v". It follows that�(D2)� �(D1) � R jrv"j2R v2" � �(D1)� �(D1)R "(u1 � ")+R (u1 � ")2+� �(D1) "k(u1 � ")+k2 (vol (
))1=2 :The triangle inequality k(u1�")+k2 � 1�" (vol (
))1=2now yields the 
laim.For a given window D � �
, denote byDÆ := � [x2DBÆ(x)� \ �
 (Æ > 0) ; D0 := D(5.5)the relative Æ-neighborhood of D in �
. Continuity of the eigenfun
tion up to theboundary is suÆ
ient for 
ontinuity of the eigenvalue fun
tion Æ 7! �(DÆ):Theorem 5.5. Let u be an eigenfun
tion for window boundary 
onditions on D,and assume that the preferred representative ~u vanishes everywhere on D.(a) If ~u is upper semi-
ontinuous on 
, then �(�) is outer regular at D in thesense that for every " > 0, there exists a relatively open subset U � �
 
ontaining D,with the property that �(U) � �(D") :(b) If u is 
ontinuous up to the boundary of 
, then the map Æ 7! �(DÆ) is right
ontinuous at Æ = 0. We will show below (Thm. 5.7) that the hypothesis of part(a) is satis�ed for C1;� domains in R2 , and at 
at pie
es of the boundary in anydimension. We 
onje
ture that upper semi
ontinuity may hold at least for smoothdomains in any dimension.Con
erning part (b), 
ontinuity up to the boundary 
an be shown for the eigen-fun
tion by a 
areful analysis of de Giorgi's argument, under the assumption that thewindow D has positive Lebesgue density at every interfa
e point x0 2 D \ �
 nD.
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ularly for the Square 19We 
onje
ture, but 
annot prove, that eigenfun
tions for optimal windows are 
on-tinuous up to the boundary. Below, we show by an example that 
ontinuity of theeigenfun
tion is not ne
essary for 
ontinuity of Æ 7! �(DÆ).Proof of Thm. 5.5:If the preferred representative ~u is upper semi
ontinuous on the 
losure of 
, then theset U = fx 2 �
 j u(x) < �gis a (relatively) open set 
ontaining D. By Lemma 5.4, we have that�(D) � �(U) � �(D)1� ��(
)1=2 < �(D) + " ;if � = �(") is 
hosen suÆ
iently small (e.g., � := "(�Dir(
) vol (
))�1). This provesouter regularity. If ~u is 
ontinuous, then D is 
ompa
t, and hen
e there exists a Æ > 0so that DÆ � U , whi
h proves the se
ond 
laim.Note that assuming that ~u vanishes everywhere on D amounts to repla
ing Dwith its re�nement, and sele
ting the �ne eigenvalue. Sin
e 
oarse and �ne eigenvaluesagree for the open windows DÆ, 
ontinuity of �
 
ertainly fails at any window D forwhi
h �
(D) < �f (D). Cantor sets of zero measure but positive 
apa
ity provideexamples of su
h windows.However, Æ 7! �f (DÆ) 
annot be 
ontinuous in general either. For an open-densewindow D of small measure, we 
learly have �(DÆ) = �Dir for all Æ > 0. However,we 
laim that �D < �Dir. To see this, note that uD 
annot agree with uDir, sin
eeigenfun
tions do not take on `extra' Diri
hlet boundary 
onditions, as was shownnear Fig. 1 in [9℄. Sin
e uDir is an admissible 
andidate for the CHVP for �D, itfollows from the uniqueness of the minimizer that �Dir > �D . We have hereby foundan example of a window whose eigenfun
tion is dis
ontinuous at `most' (in terms ofmeasure) of the boundary.Example 5.6. There exists an open window D with dis
ontinuous eigenfun
tion,su
h that still Æ 7! �(DÆ) is right 
ontinuous.Proof: In a planar domain, parametrize a portion of the boundary by ar
lengthand refer to segments on the boundary as intervals in this parameter. We will 
on-stru
t two de
reasing sequen
es xn & 0 and Æn & 0 and let In := ℄xn � Æn; xn + Æn[.The sequen
es xn and Æn will be spe
i�ed later. The window will be D := S1n=1 In,and we will also de�ne DN := SNn=1 In, with the eigenvalues and normalized eigen-fun
tions �, �N , u, uN respe
tively. If N is the �rst index su
h that xN < Æ, thenDÆ nD � ℄�Æ; Æ[ [[Nn=1[xn + Æn; xn + Æn + Æ[ [[N�1n=1 ℄xn � Æn � Æ; xn � Æn℄ :It follows from Prop. 5.2 that �(DÆ) � �(D) < (2N + 1)�(Æ) < (2N + 1)�(xN�1).Choosing the sequen
e (xn) su
h that (2N + 1)�(xN�1) ! 0 as N ! 1 ensures theright 
ontinuity of Æ 7! �(DÆ).With (xn) thus �xed, we introdu
e the 
ompa
t setK := f0g[fyn j n 2 Ng, whereyn = (xn+xn+1)=2 and 
onstru
t the sequen
e (Æn) indu
tively. Let Æ1 = (x1�y1)=2.Sin
e D1 has positive Lebesgue density at all interfa
e points, it follows fromde Giorgi's argument that the 
orresponding eigenfun
tion u1 is H�older 
ontinuousup to the boundary. Let a := infK u1 > 0 and de�ne an := (1=2 + 1=2n)a. We



20 Almut Bur
hard and Jo
hen Denzlerwill 
hoose ÆN in su
h a way that infK uN � aN . Assume Æ1; : : : ; ÆN�1 have been
onstru
ted. The interval IN and thus DN and uN , will depend on the 
hoi
e of ÆN .But as ÆN ! 0, the lo
al de Giorgi estimates near K remain uniform, be
ause theL1 estimate for uN does not depend on the window and the interfa
e stays awayfrom K. Then u(ÆN )N 
onverges weakly in W 1;2(
), strongly in L2(
), and strongly inL2(�
) by the usual 
ompa
tness arguments. It also 
onverges strongly in W 1;2(
)to uN�1 sin
e �(ÆN )N ! �N�1; the 
onvergen
e is uniform in a neighbourhood of K bythe equi
ontinuity obtained from de Giorgi. Sin
e uN�1 � aN�1 on the 
ompa
t setK, we 
an a
hieve uN � aN�1 � " for any " > 0 by making ÆN small; in parti
ularwe 
an a
hieve uN � aN .It is now easy to show that u is dis
ontinuous at 0. Indeed, as N !1, uN ! uin the Sobolev spa
es mentioned above. Again, the 
onvergen
e is uniform in a neigh-bourhood of ea
h single yn. Therefore u(yn) � a=2 for ea
h n, whereas u(xn) = 0.Hen
e u is dis
ontinuous at 0.We �nally refer to Lemma 6.1, whi
h gives 
ontinuity estimates under distortionof a window by means of a bi-Lips
hitz homeomorphism. Due to the similarity ofproofs, we 
onveyed it to Se
tion 6.5.2. On Upper Semi
ontinuity of Eigenfun
tions. Here, we will provesemi
ontinuity of eigenfun
tions as a 
onsequen
e of a subharmoni
ity argument.Theorem 5.7. If 
 � R2 has a C1;� boundary, then for any measurable windowD � �
, the eigenfun
tion u has an upper semi
ontinuous preferred representative ~u.If 
 � Rd with d > 2, then ~u is upper semi
ontinuous at any boundary point wherethe boundary is lo
ally part of a hyperplane.Proof: Let u be the solution of the CHVP (1.5) for D, the eigenvalue being�(D). Fix x0 2 �
. We will show that if the �
 
oin
ides with a hyperplane in someneighborhood of x0, then the limit~u(x) := limr!0 �ZBr(x)\
 u(y) dy(5.6)exists for all points in this neighbourhood and de�nes an upper semi
ontinuous fun
-tion. This limit agrees with the preferred representative de�ned in (1.7). In the spe
ial
ase of two dimensions, the 
on
lusion holds assuming only that �
 is of regularityC1;� neat x0. We note that u is always smooth in the interior of 
, and there isnothing to show.The basi
 idea is as follows: When the boundary is lo
ally part of a hyperplane,extend u by even re
e
tion, regardless of the type of boundary 
onditions. Thenonnegative fun
tion u, thus extended, has only su
h dis
ontinuities as are possiblefor a subharmoni
 distribution, and this fa
t is shown by means of the test fun
tion(u � t')+ in the CHVP, where ' is smooth nonnegative. Subharmoni
ity impliesupper semi
ontinuity a

ording to Thm. 9.3 in [18℄. For 
urved boundary in 2D, theRiemann mapping theorem lo
ally provides an analog of the re
e
tion.Consider �rst the 
ase where there exists a neighborhood V of x0 su
h that�
 \ V is 
ontained in a hyperplane. We may assume that the hyperplane is givenby xd = 0, that 
 lies above the hyperplane, and that V is symmetri
 under there
e
tion (x0; xd) 7! (x0;�xd). Let ' be a smooth nonnegative fun
tion with support
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ularly for the Square 21in V . Sin
e (u� t')+ is a legitimate 
andidate for the CHVP when t � 0, we haveA(t)B(t) � A(0)B(0) ;(5.7)where A(t) := Z
 jr(u� t')+j2 ; B(t) := Z
 j(u� t')+j2 :We 
al
ulate from the weak Euler equationsA(t) = Z
r(u� t')+ru� t Z
r(u� t')+r'= � Z
(u� t')+u� t Zu>t'rur'+ t2 Zu>t' jr'j2 ;(5.8)and expand B(t) = Z
 u(u� t')+ � t Z
 '(u� t'+) :(5.9)Inserting (5.8) and (5.9) into (5.7) and using that A(0) = � and B(0) = 1, we obtainfor t > 0: 0 � t�1(A(t)B(0) �A(0)B(t))= Zu>t'h�rur'+ �u'i+ t Zu>t'hjr'j2 � �'2iSin
e all integrals over sets u > t' 
onverge to integrals over 
 by Lebesgue's domi-nated 
onvergen
e theorem, we obtain for t! 0+ that0 � ZV \
h�rur'+ �u'i(5.10)We now extend u by even re
e
tion u(x0;�xd) := u(x0; xd) and use (5.10) for thelikewise re
e
ted test fun
tion '. Adding the re
e
ted and the original (5.10), weobtain 0 � ZV h�rur'+ �u'i = ZV hu�'+ �u'i(5.11)where we have used that ' is C2 and supported in V .We have shown that �u + �u is nonnegative in the sense of distributions. Ifv := u+ M�2d jxj2, where M := kuk1 <1, then �v � 0 in the sense of distributions.By [18, Thm. 9.3℄), v is subharmoni
, that is,v(x) � �ZBr v(5.12)for almost every x 2 V , provided Br(x) � V . Furthermore, the preferred representa-tive ~v of v is upper semi
ontinuous, and satis�es the subharmoni
ity 
ondition (5.12)for all x and r so that Br(x) � V . Sin
e ~u di�ers from ~v by a 
ontinuous fun
tion, it
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hard and Jo
hen Denzleris upper semi
ontinuous as well. This settles the 
ase where �
\ V is 
ontained in ahyperplane, in some neighbourhood of x0.In the 
ase where 
 � R2 we use 
omplex notation. Let V be a neighborhood ofz0 2 �
 su
h that �
\V is of 
lass C1:�, and let V+ be the interse
tion of V with 
.Repla
ing V by a subset, we may assume that there exists a 
onformal map  froma semidis
 B+ to V+ su
h that the diameter of the semidis
 maps onto V \ �
. Thefun
tion �u = u Æ  on the semidis
 satis�es ��u = j 0j2 (�u) Æ  . Our argument willrely on the boundedness of j 0j (shown below). By re
e
tion, we 
an extend �u intothe full dis
 B. The extended fun
tion �u is still in W 1;2(B+) sin
e  0 2 L1; and asbefore, the extended fun
tion remains in W 1;2(B). From (5.10), we 
on
lude, usingthe 
onformal invarian
e of the Diri
hlet integral, that0 � ZB+ ��r(u Æ  )r(' Æ  ) + �j 0j2(u Æ  )(' Æ  )�for all 0 � ' 2 W 1;2(V+) that vanish on 
 \ �V+; in parti
ular for all ' := �' Æ  �1with �' 2 C20 (B). As with (5.11), we 
an now 
on
lude that v := �u+M�2d sup j 0j2is subharmoni
, and �nish up the argument as before.We still need to explain why j 0j remains bounded near �
: this is where theC1;� regularity of the boundary enters. Refer to Figure 5.1. Choose U to be theinterse
tion of a neighbourhood of z0 2 �
 with 
, su
h that U is simply 
onne
ted.Choose a point p 2 U . The Green's fun
tion of U 
an be obtained in the formln jz� pj+ �(z) with � harmoni
 subje
t to boundary values � ln jz� pj. Near z0, thisharmoni
 fun
tion � is C1;� up to the boundary, be
ause the boundary has this reg-ularity there. This result follows from the S
hauder estimates given in [11℄; namelytheir Thm. 5.1 in 
onne
tion with Lemma 2.1. If � is a 
onjugate harmoni
 to �(namely �y = �x, �x = ��y), then w : z 7! (z�p) exp[�(z)+ i�(z)℄ is a 
onformal mapof U onto a dis
. (For more details, see [5, Se
. I.7℄.) The mapping w inherits theC1;� regularity from �. With a 
onformal mapping � from the dis
 onto a half plane,we sele
t an appropriate semidis
 B+ from this half plane and let  := (� Æ w)�1jB+with V+ :=  (B+) � U .It is worth noting that a C1 boundary is not suÆ
ient for the bounded derivativesof a Riemann map, as 
an be seen from the map w(z) = z ln z and its inverse, whi
hmap neighbourhoods of 0 in the half planes Re z > 0 or Rew > 0 respe
tively ontodomains bounded by a C1 
urves.6. First Variation, and the Role of Singular CoeÆ
ients in Optimality.In this se
tion, we study how the prin
ipal eigenvalue of the Lapla
ian with windowboundary 
onditions 
hanges under deformations of the window. The �rst lemma
ontains some estimates for distortions by bi-Lips
hitz maps.Lemma 6.1. Let  : 
1 ! 
2 be a bi-Lips
hitz map. Then for any window D in
2, it holds�( �1(D)) � �(D) sup
1 ��(D )(D )T (detD )�1� sup
1 (detD )where � denotes the spe
tral radius. In terms of the distortion ratiosa(x) := lim supy!x j (y)�  (x)jjy � xj ; b(x) := 1= lim infy!x j (y)�  (x)jjy � xj
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ularly for the Square 23PSfrag repla
ements z0U V+ B+ �wp
Fig. 5.1. The Riemann mappings used in the proof of Thm 5.7we have the simpler (but weaker) estimates�( �1(D))�(D) � sup(abd�1) sup(ad�1=b) � (sup a)d+1(sup b)d�1 :Proof: For any two di�erentiable fun
tions h1, h2 on 
 and any di�eomor-phism  , we have the transformation formulasZ
 h1(y)h2(y) dy = Z �1(
)(h1 Æ  )(x) (h2 Æ  )(x) detD (x) dx(6.1)and Z
rh1(y) � rh2(y) dy = Z �1(
)rx(h1 Æ  )(x)TM(x)rx(h2 Æ  )(x) dx ;(6.2)where the matrix M is given byM(x) = D (x)�1D (x)�T detD (x) :(6.3)Let u be the nonnegative normalized eigenfun
tion for window D � �
, and take uÆ as a test fun
tion in the CHVP for  �1(D). The �rst 
laim follows from (6.1){(6.3)by setting h1 = h2 = u, and using that the smallest eigenvalue of M(x) is the re
ip-ro
al of the spe
tral radius of M(x)�1. The distortion ratio estimates follow for  2C1 from �(D (x)TD (x)) � a(x)2 and a(x)2=b(x)2(d�1) � det(D (x)TD (x)) �a(x)2(d�1)=b(x)2, as 
al
ulated in an eigenbasis of this symmetri
 matrix. Both esti-mates extend to bi-Lips
hitz maps by approximation.Our main result in this se
tion des
ribes the 
hange of the prin
ipal eigenvalueunder a di�eomorphism generated by a 
ow.Theorem 6.2. Let 
 be a Lips
hitz domain in Rd , D a window, u its normalizedeigenfun
tion, and X a ve
tor �eld of regularity C1(
) \ C0(
) that is `parallel' tothe boundary in the sense that 
 is the union of an in
reasing sequen
e of smoothlybounded subdomains 
Æ, with Æ & 0, su
h that X is tangential on �
Æ for Æ suÆ
ientlysmall.
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hard and Jo
hen DenzlerLet  t be the 
ow of X. Consider the dependen
e of the �rst eigenvalue � as D
hanges under the 
ow. Then it holds:ddt�( t(D))����t=0 = �2 limÆ!0Z�
Æ ��uLXu ;(6.4)where LXu denotes the dire
tional derivative of u in dire
tion X.Remark: The assumptions guarantee that X is tangential to the boundary of
 at smooth boundary points, and that X vanishes in those boundary points wherethe boundary is not C1. Moreover, the 
ow on the boundary is de�ned uniquely asthe 
ontinuous extension of the 
ow in the interior.Proof: Let  t : x 7!  t(x) = y ; 
 ! 
 be the bi-Lips
hitz homeomorphismarising from the ve
tor �eld X , i.e., ddt t(x)jt=0 = X( t(x)),  0(x) = x. Sin
eX 2 C1,  is a C1-di�eomorphism in the interior of 
 and satis�es a Lips
hitzestimate up to the boundary.

 3 xDtest f
t 
alled g 
(t) � 
 3 y��ut = �(t)utD(t) =  t(D)

test f
t ft = g Æ  �1t t(�)di�eo
utut Æ  t = vt R

Fig. 6.1. The mappings in the proof of Thm. 6.2Let ut(�) and �(t) be the eigenfun
tions and eigenvalue for D(t) :=  t(D), andlet g be a test fun
tion on 
 whose tra
e vanishes on D. The variation of geometrywill be expressed as a variation of the operator by referring all windows ba
k to the
oordinates x.We will denote the pullba
k of the eigenfun
tion ut to 
 with window boundary
onditions on D as ut Æ  t =: vt . Similarly ft := g Æ  �1t the pushforward of the testfun
tion g. The weak eigenvalue equation for ut(�) isZ
(t)ryut(y) � ryft(y) dy = �(t) Z
(t) ut(y)ft(y) dywhere, in our 
ase, 
(t) � 
, g vanishes on D, and ft vanishes on D(t).We now use (6.1){(6.3) with  =  t, h1 = ut, h2 = ft and expand to �rst order
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ularly for the Square 25in t. From ddt t(x) = X( t(x)),  0(x) = x, we obtain t(x) = x+ tX(x) + o(t)D t(x)j i = Æji + t�Xj�xi + o(t)�D t(x)�1�j i = Æji � t�Xj�xi + o(t)detD t(x) = 1 + t divX + o(t) :The estimates for the remainder terms are uniform in x 2 
. Inserting the �rst andlast estimate into (6.1) with  =  t, h1 = ut, h2 = ft yieldsutft dy = (vtg(1 + t divX) + o(t)) dx ;where the o(t) term represents an L1 fun
tion. Similarly, we obtain from (6.2)ryut(y) � ryft(y) dy = �rxvt(x) � rxg(x) ++ t�(divX)rxvt � rxg � � �g�xi �vt�xj + �vt�xi �g�xj ��Xj�xi �+ o(t)� dx ;where the o(t) term again represents an L1 fun
tion. We have used the Einsteinsummation 
onvention to express the sum over i and j.If we trun
ate the bilinear forms by dropping the o(t) terms, it is immediatethat the eigenvalue will only 
hange by o(t). Sin
e the trun
ated operators dependanalyti
ally on the perturbation parameter t, we may use results from Chapter VII ofKato [15℄ to estimate the eigenvalue up to errors of order o(t). Kato's Thm. VII.4.2and his dis
ussion in VII xx6.2,4,5 as
ertain, via spe
tral proje
tions, and for any �niteset of isolated eigenvalues, that the perturbation theory works as in �nite dimensionalspa
es. In parti
ular, a simple eigenvalue and its 
orresponding eigenfun
tion ofthe trun
ated operators depend analyti
ally on t. We may therefore write downexpansions vt = v0 + tv1 +O(t2) of the eigenfun
tion for the trun
ated problem, and�(t) = �0 + t�1 + o(t) of the eigenvalue (for the trun
ated as well as for the fullproblem), and 
ompare like powers of t.Order t0 yields Z
rv0 � rg dx = �0 Z
 v0g dxwhi
h is just the weak Euler equation for v0. Order t1 yields�1 Z v0g dx+ �0 Z fv1g + (divX)v0gg dx == Z �rv1 � rg + (divX)rv0 � rg � �Xj�xi � �g�xi �v0�xj + �v0�xi �g�xj �� dxThese equations are valid for integration over any subdomain of 
. We will integrateover 
Æ , where 
Æ runs through an in
reasing sequen
e of smoothly bounded domains
ompa
tly 
ontained in 
 su
h that X is tangent to the boundary of 
Æ . We write�I := Z
Æ and I := Z�
Æ
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hen Denzlerfor volume and surfa
e integrals, respe
tively. Using g = v0 as a test fun
tion, weobtain in �rst order�1 �I v20 = �I (rv1 �rv0��0v0v1)+ �I �(divX)�jrv0j2 � �0v20�� 2�Xj�xi �v0�xi �v0�xj� :Sin
e v1 lies in W 1;2(
) and satis�es window boundary 
onditions for D, it is a validtest fun
tion in the Euler-Lagrange equation for v0, and we 
on
lude that the �rstintegral vanishes as Æ ! 0. For the se
ond integral, we use the identity�Xj�xi �v0�xi �v0�xj = ��xi ��v0�xiLXv0��Xj ��xi ��v0�xi �v0�xj�= div(LXv0rv0) + 12LX(�0v20 � jrv0j2)and Gauss' divergen
e theorem to 
ompute�I �(divX)�jrv0j2 � �0v20)� 2�Xj�xi �v0�xi �v0�xj� == �I div�(jrv0j2 � �0v20)X�� 2 div(rv0 LXv0)= I (jrv0j2 � �0v20)X � � � 2��v0 LXv0 :The �rst term under the integral vanishes sin
e X is tangential to the boundary of
Æ by assumption, and the 
laim follows as Æ ! 0.We note that, at least formally, the integrand on the right hand side of (6.4)vanishes on both the Diri
hlet and the Neumann parts of the boundary of 
. Theevaluation of the limit of the integral as Æ ! 0 is far from trivial in higher dimensions,but reasonably straightforward in two dimensions with ni
e window geometry. Itamounts to the evaluation of 
ertain singular 
oeÆ
ients at interfa
e points betweenthe Neumann and Diri
hlet arts of �
. It has been shown that in polygonal domains,in the neighbourhood of a 
orner, solutions of ellipti
 boundary problems lie lo
allyin the dire
t sum of W 2;2 with a singular spa
e, and in two dimensions, this singularspa
e is one-dimensional. See, eg., Grisvard [12℄, in parti
ular his Thm. 2.4.3. Indeed,fun
tions in the singular spa
e behave like the expli
it harmoni
 fun
tions Re(
z�)with � appropriate for the boundary 
onditions. In this 
ontext, it is understoodthat an interfa
e point between Diri
hlet and Neumann data is a 
orner even if (inparti
ular if!) the geometri
 boundary is smooth there. As noted, 
orners that 
an bemade disappear by means of the re
e
tion prin
iple (like the geometri
 
orners of are
tangle) do not have a singular spa
e. The singular 
oeÆ
ients (aka stress intensity
oeÆ
ients) must be 
al
ulated (numeri
ally) in pra
ti
al situations. They dependon global information. For a wider ba
kground 
on
erning singular 
ontributions, see[7, 12, 16, 21, 23℄ and mu
h other work by these authors and referen
es given there.In parti
ular, the variational equation gives rise to the followingCorollary 6.3. Consider a segment on the boundary of a re
tangle, su
h thatone endpoint of the segment is a 
orner of the re
tangle, whereas the other endpointis a point that is not a 
orner. Su
h a segment is not an optimal window, but 
an beimproved in�nitesimally by shifting in the dire
tion that brings the 
orner point insidethe window



Optimal Windows; parti
ularly for the Square 27Proof: In self-explanatory notation, we refer to the windows as intervals, let[a; b℄ be an interval with 
orner point b and non-
orner point a; we will show (withsome positive 
onstants m, M):�([a+ "; b+ "℄) � �([a+ "; b℄) +M"2 and �([a+ "; b℄) � �([a; b℄)�m" :From this the 
laim is immediate.The �rst estimate (lo
al near b) follows from Lemma 5.1, with G a ball of radius 2"
entered at the 
orner b. The eigenfun
tion is smooth near b, be
ause re
e
tion inthe Neumann boundary removes the singularity: juj = O(") in G, and the estimateis uniform with respe
t to small 
hanges at the other end a. The 
apa
ity term isbounded as "! 0, based on a radial test fun
tion ln+(jx� b1j=")= ln 2 as in the proofof Prop. 5.2.The se
ond estimate (lo
al near a) follows from an evaluation of the singularboundary integral R�
 LXu��u. In the parti
ular 
ase of an interfa
e point on astraight line, the lo
al behavior of a solution u is u = 
pr sin('=2)+v with v 2W 2;2.
x

y

r

NBC DBC
ϕ


 �
u = us + v = 
pr sin '2 + vux = vx � 
2r1=2 sin '2uy = vy + 
2r1=2 
os '2To evaluate the singular boundary integral in terms of the singular 
oeÆ
ient,de�ne 
oordinates as in the above �gure, with the boundary point a lo
ated at (0; 0).Let us assume that the C1 ve
tor �eld X is given by f(x; y)�x with the 
oeÆ
ient atthe interfa
e f(0; 0) = 1. It 
an easily be seen that the regular fun
tion v does not
ontribute to the integral, nor do the mixed terms. We have�2 Z t�t LXu ��u dx = 2 Z t�t �us�x �us�y dx = �
24 Z t�t yx2 + y2 dx = �
22 ar
tan ty ;and this 
onverges to � 
2�4 as y ! 0+.Finally, we estimate the singular 
oeÆ
ient. Choose r so small that Br(0) inter-se
ts �
 in a straight line as in the above �gure, with one radius (Nr) being Neumannboundary and one radius (Dr) Diri
hlet boundary; let Sr := (�Br(0))\
, and 
ount' from the Diri
hlet to the Neumann boundary. Let��h = 0 in Br(0) \ 
, ��h = 0 on Nr, h = 0 on Dr, h = u on Sr��v = �u in Br(0) \ 
, ��v = 0 on Nr, v = 0 on Dr, v = 0 on SrThen u = v + h with v � 0. Evaluation on the boundary implies that the singular
oeÆ
ient of u is at least as large as the singular 
oeÆ
ient of h. Expli
it 
al
ulationof the singular 
oeÆ
ient of h by means of Fourier analysis gives exa
tly
 � 2�r1=2 Z �0 u(rei') sin '2 d' > 0 :The above estimate of the singular 
oeÆ
ient is 
losely related to formula (2.3)in Dauge et al. [7℄, whi
h a
tually gives the exa
t 
oeÆ
ient (in terms of u). However



28 Almut Bur
hard and Jo
hen Denzlertheir formula is not designed to show non-vanishing (whi
h relies on using the max-imum prin
iple), but is instead built on Fredholm properties. (The distin
tion thattheir formula is for a Diri
hlet{Diri
hlet 
orner, not a Diri
hlet{Neumann 
orner, isa minor issue.)Our argument shows that shortening a window in�nitesimally at the interfa
ede
reases the eigenvalue by an amount proportional to the square of the singular
oeÆ
ient at the end of the window. Moving a window amounts to shortening it atone end and lengthening it at the other end. To de
rease the eigenvalue, the windowshould be moved in the dire
tion of the smaller singular 
oeÆ
ient (i.e., towardsthe 
orner of the square, if it is already 
lose to a 
orner). If the window 
onsistsof several intervals, nonlo
al 
hanges that lengthen one 
omponent at the expenseof the other 
an also be studied in terms of the singular 
oeÆ
ients. Conversely,singular 
oeÆ
ients 
an be determined graphi
ally from the slopes in Figure 2.1, forthe geometri
 
on�gurations depi
ted there.As an immediate 
onsequen
e of the role of singular 
oeÆ
ients, a window 
on-sisting of any number of equidistant and 
ongruent ar
s on the boundary of a 
ir
leis a 
riti
al point for the �rst eigenvalue. Sin
e these ar
s 
an now be moved inde-pendently, these are 
riti
al points of arbitrarily large index. The optimal window ina 
ir
le is known to be a single ar
 [9℄.Limitations of our result should also be observed. The variations indu
ed bythe 
ow of ve
tor �elds 
orrespond to the `weak', C1-small variations (as opposed to`strong', C0-small variations) that are exploited in the Euler-Lagrange equations ofthe 
lassi
al Cal
ulus of Variations. It is doubtful how signi�
ant a role su
h variations
an play, if it 
omes to show, say, that a 
ertain open-dense set of small measure isnot an optimal window.We have not established an analog of the fundamental lemma of the 
al
ulus ofvariations that would permit elimination of the ve
tor �eld X . In the absen
e ofa-priori regularity for optimal windows, su
h an attempt seems extremely diÆ
ult.There is however some hope to get nontrivial boundary regularity for the optimaleigenfun
tion by sele
ting ve
tor �elds 
onstru
ted from the eigenfun
tion in someappropriate way. We plan a further investigation of this issue.In spite of these limitations, Thm 6.2 does give some insight into the question ofoptimal windows, and in parti
ular into the variation of windows with a given a-prioriregularity.A
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