
ON THE GEOMETRY OF OPTIMAL WINDOWS, WITH SPECIALFOCUS ON THE SQUAREALMUT BURCHARD� AND JOCHEN DENZLERAbstrat. For the Laplae operator with mixed (Dirihlet and Neumann) boundary onditions,the dependene of the prinipal eigenvalue on the plaement of the Dirihlet part is investigated. Anoptimal window is a Dirihlet part of the boundary that minimizes the prinipal eigenvalue amongall ompetitors of the same area.In the speial ase of a square, we provide both numerial evidene and rigorous partial resultsfor the onjeture that optimal windows in a square are segments entered at either a orner or themidpoint of a side. In partiular, we prove that the prinipal eigenvalue dereases as a window isshifted from a side-entereed position towards the orner. An optimal window ontained in two sidesof the square is onneted and ontains a orner in its interior. Optimal windows whose length doesnot exeed the length of one side break the symmetry of the square.We also onstrut a starshaped domain whose optimal window(s) must be disonneted. Finallywe give, for general domains in Rd, ontinuity results for the eigenvalue as a funtion of the window,and examples of disontinuity when ruial hypotheses are violated. We also give a variation formulathat relates the eigenvalue to the singularities of the eigenfuntion (stress intensity oeÆient) nearthe boundary of the window.Methods are based on the variational problem and inlude rearrangement, Dirihlet NeumannBraketing, apaity estimates, and deformation under a ow.Keywords: optimal eigenvalue, Laplae operator, mixed boundary onditions,shape optimization, apaity, singular oeÆient, rearrangementAMS subjet lassi�ations: 49R50, 35J05, 35R05, 31C401. Introdution.1.1. Overview over the Results. Consider the �rst eigenvalue of the Laplaeoperator in a �xed domain 
 � Rd (say, bounded Lipshitz)��u = �u ; u � 0 in 
(1.1)with Dirihlet boundary onditions on some subset D � 
 and Neumann on theomplement of D, i.e., ujD = 0 ; ��uj�
nD = 0:(1.2)Tehnial questions of how these boundary onditions should be interpreted will bedisussed below. We will all � = �(D) the prinipal eigenvalue of the Laplaianunder the window boundary onditions on D. The problem of optimal windows asksfor minimization of this eigenvalue for presribed surfae area of the window.As explained in [8℄, one may think of 
 as representing a room, with perfetly heat-onduting windows at D and insulating walls along �
nD. The prinipal eigenvalue�THE FIRST AUTHOR WAS PARTIALLY SUPORTED BY NSF GRANT # DMS-0308040
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2 Almut Burhard and Johen Denzler�(D) gives the rate of exponential deay of any initial temperature distribution dueto heat di�usion through the window as time beomes large, while the orrespondingeigenfuntion gives the asymptoti temperature pro�le. An optimal window minimizeslong-term heat loss among all windows of a given size.It has been shown in [9℄ that suh optimal windows exist and that in the aseof a ball of any dimension the optimal window is a spherial ap of the appropriatearea. Similar results have been obtained independently by Cox and Uhlig [6℄, whotreat windows as a singular limiting ase of Robin boundary onditions.Here we are onerned with the question what an be said about the geometryof optimal windows when 
 is not a ball. We suspet that an optimal window in aonvex domain 
 should be onneted, have some basi regularity properties, and liein a region of �
 with large mean urvature. This is ertainly not the ase for moregeneral domains, as we show by onstruting an example of a star-shaped domainwith a disonneted optimal window. Heuristi evidene onerning the loation ofoptimal windos has been disussed in [8℄, and is also orroborated by results of Harrellet. al. [13℄ on a di�erent, but related problem.As a model ase for a onvex domain, we study a square: The determination ofthe shape of optimal windows is already nontrivial in this ase. Here we onjeturethat the optimal window is a segment, entered either at the midpoint of a side or ata orner, depending on the presribed boundary measure (length); and that there areno other optimal windows, up to sets of measure zero. This onjeture is orroboratedby a number of rigorous partial results as well as numerial evidene. See Figure 2.1.In partiular, we prove that the eigenvalue dereases as a short segment is moved froma side-entered position to a position adjaent to a orner; and that this monotoniityextends at least for some distane as the window is moved around the orner. We showthe �rst part of this result by means of a Dirihlet-Neumann braketing argument.The seond part is proved by means of an Euler-Lagrange type variational formula,whih we derive for any domain of suÆient regularity in arbitrary dimension.Furthermore we show that some segment ontaining a orner in its interior isoptimal among all windows lying on only two sides of the square (adjaent or not). Theproof relies on disrete rearrangement arguments that are spei� to the square (withsome obvious, but maybe not too interesting, generalization to a ube or hyperube).Numerial evidene shows that for segments whose length exeeds the sidelengthby a ertain small amount, up to slightly more than two sidelengths, the orner-entered position eases to be optimal, with the side-entered position being better.This an be understood heuristially in terms of the fat that optimal windows preferto use orners, as was already disussed in terms of a model problem in [8℄. However,distributing the window evenly around the orners (sari�ing onnetedness) is notadvantageous and results in windows inferior to either the side-entered segment orthe orner-entered segment. For small windows, we an even prove this analytially.On the other hand, our analyti results prove that the (non-optimal) window withfour ongruent orner-entered omponents is still better than any other window thathas the full symmetry of the square.Our study of the square also serves as a building blok for an example of a star-shaped domain where any optimal window is disonneted. A related example wasdisussed heuristially in Figure 3 of [8℄.The variation formula mentioned above is derived here for windows in generaldomains of any dimension. Its upshot is that the rate of hange of the eigenvalue asa funtion of the window is determined by ertain singular oeÆients of the eigen-



Optimal Windows; partiularly for the Square 3funtion that show up at eah interfae of window and wall on the boundary. In aneighbourhood of suh interfae points, the eigenfuntion (albeit in W 1;2) annot beexpeted to be W 2;2.In speial geometries the singularities have been studied by Grisvard (e.g. [12℄).In the situation of a simple interfae of a wall and a window segment on a side of thesquare, the typially expeted singular behavior of the eigenfuntion is like  Impzin a neighbourhood of 0, where the number  is the singular oeÆient. We give asimple lower estimate for this oeÆient, based on a maximum priniple, to ensurethat it does not vanish. In ontrast, in a orner of the square, the singular oeÆientvanishes. These two fats are responsible that the eigenvalue an be lowered bymoving a segment a bit around the orner. For segments up to one sidelength, abetter ontrol of the singular oeÆients appearing in the variational formula (whihdepend on global properties of the eigenfuntion) should extend this monotoniity allthe way until a minimum is ahieved when the segment is entered at a orner, but aproof of this extended monotoniity has eluded us so far.Contributions from geometri singularities (orners, ridges, onial points) havebeen studied by many authors, and in vast generality, e.g., Maz'ya and Plamenevskii[21℄. Surveys are [16℄ and [23℄. We are using only the very simplest ase here.The ontinuous dependene of the eigenvalue under shifts of the window and otherreasonable modi�ations of its geometry is an intuitively plausible, but nontrivialresult of relevane. For deformations of windows that an be ahieved by the ow ofa vetor �eld, our Euler-Lagrange argument proves even di�erentiability. However,in the absene of good a-priori information on the window geometry, suh ow typemodi�ations are rather weak; this is why we inlude some ontinuity results for othermodi�ations (in general Lipshitz domains). In this ontext, it is ruial to onsider,in addition to the formulation of the EVP adopted in [9℄, [8℄, a more sophistiatedde�nition that takes into aount �ne properties of eigenfuntions. It is easy to see thatthe results in [9℄, [8℄ arry over. We will argue this point spei�ally for the existeneof optimal windows in Setion 1.3. Both de�nitions oinide for optimal windows, aswell as for windows of suÆient regularity, in partiular for open windows.1.2. Basi Fats, Context, and Notation; Variational Formulation. Letus introdue some notation. The symbol 
 will generally denote a bounded Lipshitzdomain in Rd , and the window D will be a measurable subset of �
: as surfaemeasure on �
, we use d � 1-dimensional Hausdor� measure, denoted here by �. Apoint in D \ �
 nD will be alled an interfae point .The Laplaian with the window boundary onditions (1.2) will be denoted by�D . The word `eigenvalue' without adjetive or ordinal will always denote the lowesteigenvalue, whih is simple. This eigenvalue will be denoted by �(D).De�ne the optimal eigenvalue for windows of a given surfae measure by��(`) = inf f�(D) j D � �
; �(D) = `g :(1.3)A set D � �
 will be alled an optimal window, if �(D) = ��(�(D)), that is, if�(D) = inf f�(D0) j D0 � �
; �(D0) = �(D)g :(1.4)In [8℄ and [9℄, the eigenvalue �(D) in (1.1) and (1.3) was de�ned by the Courant-Hilbert variational problem (CHVP)�(D) = min�Z
 jruj2 dx ��� u 2 W 1;2(
) ; Z
 u2 dx = 1 ; ujD = 0� :(1.5)



4 Almut Burhard and Johen DenzlerHere, the restrition ujD of a funtion u 2 W 1;2(
) is to be understood as the trae.By general Sobolev spae theory ([1, Thm. 5.4℄ or [10, 4.3, Thm 1℄), the trae of aW 1;2-funtion is guaranteed to be an L2(�
) funtion. The ondition ujD = 0, in theL2-sense, will not distinguish sets D and D0 if they di�er by a set of d�1-dimensionalmeasure zero, and therefore, the Dirihlet onditions for D in (1.1) need to hold onlyon a set D0 thus di�ering from D. We refer to this de�nition of � as the oarseformulation of the eigenvalue problem (1.1) and the CHVP (1.5).The Neumann boundary onditions on �
 nD in equation (1.1) arise as naturalboundary onditions for the variational problem in (1.5). The minimizing funtionu is a normalized eigenfuntion orresponding to �(D), and an be hosen to benonnegative. It agrees a.e. with an analyti funtion in the interior of 
, but is notguaranteed to be ontinuous up to the boundary �
, unless some assumptions aremade on the geometry of D.Clearly, the prinipal eigenvalue �1(D) inreases under inlusion of windowsD1 � D2 =) �(D1) � �(D2);sine the minimizing funtion in the CHVP for �(D1) is an admissible test funtionfor the CHVP determining �(D2).1.3. Fine Variational Formulation. As mentioned above, there is anothermeaningful de�nition of the boundary onditions (1.2) and the orresponding varia-tional problem (1.5). Sine W 1;2-funtions an atually be determined quasi-every-where, that is, up to a set of zero apaity , one an insist that the Dirihlet boundaryonditions in (1.1) and in the Courant-Hilbert variational problem (1.5) hold on a setD0 that may di�er from D only by a set of zero apaity. Sine every set of apaityzero has d� 1-dimensional measure zero, but not vie versa, this is a stronger ondi-tion. It orresponds to hoosing a smaller domain for the quadrati form assoiatedwith �D . We will refer to this de�nition of �(D) as the �ne formulation of (1.1)or (1.5). When neessary, we distinguish the two de�nitions by supersripts, writing�(D) and �f (D) for the oarse and �ne eigenvalues, respetively. In general,�f (D) � �(D) ;(1.6)and it is easy to onstrut examples where the inequality is strit: any (fratal) windowwith Hausdor� dimension between d � 2 and d � 1 has measure 0 and nonvanishingapaity [10, 4.7.2℄,[19, 2.1.7℄, hene oarse eigenvalue 0, but positive �ne eigenvalue.The notion of sets of apaity 0 is well-de�ned even in two dimensions, where apaityan only be de�ned subjet to some arbitrary hoie. We an even ompletely avoidsuh subtleties, by replaing the window D in 
 � R2 with the equivalent windowD � [0; 1℄ in 
� ℄0; 1[ � R3 .In order to relate oarse and �ne eigenvalues, we represent an element u of aSobolev spae by a funtion de�ned everywhere, whih will be alled the preferredrepresentative. For any given Lipshitz domain 
 and any neighbourhood V of 
,there is a linear bounded operator E :W 1;2(
)! �W 1;2(V ) ,! W 1;2(Rd ) that extendsSobolev funtions in 
 to the entire spae as outlined in [10, 4.4℄, i.e., Euj
 = u. Thenwe hoose the preferred representative as~u(x) := lim supr!0 �ZBr(x) Eu(y) dy for x 2 
 :(1.7)The lim sup is in fat a limit, exept on a set of zero apaity, and ~u is quasiontinuous(as de�ned in [19, 2.17℄).



Optimal Windows; partiularly for the Square 5The extension operator E is not unique, but depends on a hoie of loally atten-ing oordinate harts, and we make suh a hoie one and for all, for eah given 
.The preferred representative on 
 depends on the extension operator, but any twohoies will only di�er on a set of apaity zero. See [19, Thm 2.55&Rmk℄ or [10, 4.8,Thm 1℄. The restrition of ~u to �
 represents the trae of u.Theorem 1.1. For the CHVP (1.5) in the �ne formulation, there exists a mini-mizer whih is uniquely determined quasi-everywhere up to hoie of a sign.Proof: This is a slight modi�ation of the lassial argument for the existeneof a minimizer for (1.5) in the (oarse) Sobolev sense. Let uj be a minimizing sequeneof quasiontinuous funtions (in W 1;2(Rd ), by extension) satisfying the boundaryonditions in the �ne sense. Extrating a subsequene (again denoted by uj), wemay assume weak onvergene in W 1;2(
), strong onvergene in L2(
) and (byompatness of the trae map) strong onvergene in L2(�
), to a limit funtionu�. We have to show that u� inherits the �ne boundary onditions from fujg. Tothis end, we replae the sequene fujg by a sequene f�ujg of onvex ombinationsthat onverges strongly in W 1;2, aording to Mazur's theorem (see, e.g., [18, 2.13℄).The normalized sequene ûj := �uj=k�ujkL2(
)) still onverges strongly in W 1;2(
)beause k�ujkL2(
) ! 1. The ûj inherit the �ne boundary onditions from uj andform therefore a sequene of legitimate ompetitors in the CHVP.Now by onvexity, we obtainZ jru�j2 = lim Z jrûj j2 = lim Z jr�uj j2 � lim Z jruj j2 = inf Z jruj2 :We must show that u� inherits the �ne boundary onditions from the ûj . This followsfrom the arguments in Se. 2.1.3 of [19℄, whih we sketh briey, for the sake of beingmore self-ontained:(1) If a sequene of C10 funtions vj (with uniformly bounded support) onvergesstrongly in W 1;2(
) to some u�, then it holds for a subsequene (again alled vj):8" > 0 9V" open : ap(V") < " ; kvj � u�kC0(
nV") ! 0(2) EveryW 1;2(
) funtion u an be approximated inW 1;2(
) norm by C10 funtionsvk (with uniformly bounded support), suh that8" > 0 9W" open : ap(W") < " ; kvk � ukC0(
nW") ! 0(The existene of a quasi-ontinuous representative is atually a onsequene of this.)Now there are open sets Vj with ap(Vj) < 2�j suh that ûj is ontinuous on
 n Vj and vanishes on D n Vj , and there are smooth approximants v̂j suh thatkv̂j � ûjkW 1;2(
) < 2�j and kv̂j � ûjkC0(
nVjnWj ) < 2�j for appropriate open sets Wjwith ap(Wj) < 2�j . Therefore, for every j0, the sequene v̂j onverges uniformly tou� outside the set Vj0 := Sj�j0 (Vj [Wj), whose apaity is at most 22�j0 . Hene u�vanishes on D n Vj0 , for every j0.(We ould have simpli�ed the argument by starting with a smooth minimizingsequene uj from the very beginning, but prefer the generality for possible futureonveniene.)Uniqueness and positivity follow from the strong maximum priniple as in thelassial argument.The oarse and �ne formulations of optimal windows and their eigenfuntionsessentially agree:Proposition 1.2. Let ��(`) and �f� (`) be optimal eigenvalues for windows of



6 Almut Burhard and Johen Denzlersize `, as de�ned by (1.3) in the oarse and �ne sense, respetively. Then�f�(`) = ��(`) (0 � ` � �Dir) :(1.8)Furthermore, D is an optimal window with respet to the oarse de�nition, if and onlyif it di�ers by a set of d � 1-dimensional measure zero from an optimal window forthe �ne formulation.Proof: Clearly, from (1.6), we have�f� (`) � ��(`) :To see the onverse inequality, take an optimal window D for the oarse formulation,i.e, �(D) = ��(`), and let u be a minimizer of the orresponding CHVP (1.5). Let~u be the preferred representative of u, as de�ned above, and setD0 := fx 2 �
 j ~u(x) = 0g :We refer to this proedure as re�ning the window D. By de�nition, �(D0) � ` and�(D0) = ��(`). Sine ~ujD0 vanishes identially, it is an admissible andidate for theCHVP (1.5) for �f (D0). It follows that�f� (`) � �f (D0) = �(D) = ��(`) :Note that we always have �f (D0) � �(D) sine ~u vanishes on D0. Whenever�f (D) > �(D) ours, this is due to D nD0 having positive apaity, whih makes~u ineligible for the �ne CHVP. Whenever de Giorgi's ontinuity argument appliesat eah point of D, i.e., when u has a representative that is ontinuous on 
 [ D,then ~u is admissible for the �ne CHVP and thus �f (D) = �(D). This holds inpartiular if D is open, notwithstanding possible disontinuities of u at interfaepoints. A de Giorgi argument an also be used to show ontinuity of u, providedthe window has positive density at every interfae point p 2 D \ �
 nD. We suspetthat eigenfuntions for optimal windows should be ontinuous up to the boundary,but this is an unresolved question.2. Numerial Results for the Square. We have used the matlab pdetool toalulate, by means of �nite elements, the lowest eigenvalue for various window on-�gurations. The alulation was done with a sequene of at least three subsequentmesh re�nements so that numerial onvergene within the preision of the graphisould be heked by inspetion. In the aompanying Figure 2.1, we show the eigen-value as a funtion of the length of the window, for �ve di�erent simple geometrion�gurations.As outlined in Setion 1.1, we onjeture that the on�gurations giving the lowesteigenvalue in Fig 2.1 (namely either a side-entered or a orner-entered segment,depending on the length) is in fat the optimal on�guration. As a rule of thumb, thebetter of the two hoies of symmetri and onneted windows is the one that ontainsmore orners. Exeptions to this rule our near integer multiples of a sidelength.Figure 2.1 also displays a feature of the �rst variation formula: when the interfaepoints are in the orner (whih implies vanishing of the singular oeÆients), thederivative of the eigenvalue vanishes. These are just the expliitly alulable asesmarked in the �gure. Our numeris does not resolve the modulus of ontinuity at



Optimal Windows; partiularly for the Square 7
one-component window, symmetric to diagonal

4-comp’ window, corner-centered, full symmetry
 ( = scaled version of  )

one-component window, symmetry axis parallel to side

two-component window, symmetric to diagonals

two-component window, symmetry axes parallel to sides
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Fig. 2.1. Five setions through the spae of windows, eah parametrized by length. The hori-zontal axis measures the length, in units of the perimeter of the square, the vertial axis gives theeigenvalue relative to the full Dirihlet eigenvalue. The labels mark those window on�gurationsthat an be alulated expliitly by separation of variables. In these pitograms, bold lines denoteDirihlet BCs.length 0. However, for eah of the urves printed, it an be seen analytially that1= ln(1=Æ) � �(Æ) � 2= ln(1=Æ) (with Æ the total length of the window): the lowerbound follows from Thm 5 in [8℄ (slightly modi�ed for two dimensions, as pointedout there); the upper bound is an immediate onsequene of our apaity estimate inProp. 5.2 and eqn. (5.2) below. Sharp asymptotis for a di�erent, but losely relatedproblem, an be found in h. 9 of [20℄.We next study the dependene of the eigenvalue on the position of the window.In Figure 2.2, we shift windows of a given length from a side-entered to a orner-entered position. We annot expet the eigenvalue to depend monotonially on theshift parameter for all lengths, beause the side-entered and the orner-enteredon�guration yield the same eigenvalue for three partiular lengths, lose to 1.02,2.04, 3.15 sidelengths, as seen in Figure 2.1. However, we observe in eah ase thateven loal minima only our in symmetri positions, supporting our onjeture.The slope of the shift urves is proportional to the di�erene of the singular oef-�ients at the endpoints of the segment. In the symmetri on�gurations, this slopevanishes by symmetry. When both endpoints lie in a orner, where the singular oef-�ients vanish, the derivative appears to vanish to a higher order, indiating further
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Fig. 2.2. The eigenvalue for onneted windows of nine di�erent lengths and two-omponentwindows of two di�erent lengths, as a funtion of a shift parameter. The horizontal axis indiatesthe distane to a side-entered position.anellations. This an be plausibly observed for lengths 1 and 3 in the side-enteredon�guration, and for length 2 in the orner-entered on�guration.Finally, we observe the e�et of tearing apart a onneted window into two piees.See Figure 2.3. Note the ompetition between orner positions and onnetedness asgeometri features favoring low eigenvalues.3. Rigorous Results for the Square. In this setion, we ollet some inequal-ities and monotoniity results that are spei� to the square.3.1. Monotoniity of Shifting (Retangle). For the geometri situation, seethe top of Figure 3.1Theorem 3.1. Let 
 be a retangle. The prinipal eigenvalue of a onnetedwindow D whih is ontained entirely in one side of �
 is a ontinuous, stritlydereasing funtion of the distane of D from the side-entered position.Proof: By saling, rotating, and translating, we may assume that 
 = ℄0; 1[�℄0; h[, and that the window is ontained in the bottom side of the retangle. SeeFigure 3.1. For 0 < ` < 1 and jtj � (1� `)=2, let D(t) = ℄ 12 + t� 2̀ ; 12 + t+ 2̀ [�f0g bethe window of length ` that has been shifted by t from the side-entered position, and
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0.4444

0.4444

Fig. 2.3. Examples of ompetition between onnetedness and orner position for small win-dows. Dotted lines: The �rst hump for the side-entered window is atually axially symmetri, dueto the argument used in Setion 3.1.
 = ℄0; 1[� ℄0; h[D = ℄ 12 + t� 2̀ ; 12 + t+ 2̀ [� f0g�(D) =: �(t) `=2 `=2t
̂ (ylinder)
`=2`=2 t1t2Fig. 3.1. Shifting windows in a retangle after doubling it to obtain a ylinderdenote the orresponding eigenvalue by �(t). By symmetry, � is an even funtion oft. Continuity of �(t) follows most easily from Prop. 5.2. To prove the last assertion,we will show that �� 12 (t1 + t2)� > min f�(t1); �(t2)g(3.1)holds for any pair t1 < t2. Setting t1 = �t, t2 = t in Eq. (3.1) and using that�(�t) = �(t) shows that � takes its global maximum at t = 0. Setting t1=2 = t � "in Eq. (3.1) shows that �(t) annot assume a loal minimum on the open interval℄0; (1� `)=2[. We onlude that �(t) is stritly dereasing on [0; (1� `)=2℄, as laimed.In order to prove laim (3.1), we ombine a doubling trik with a speial aseof Dirihlet{Neumann Braketing (see [22℄, XIII.15). Fix t1 � t2 with jt1j; jt2j �(1 � `)=2, set t = (t1+t2)=2, and let u be the positive normalized eigenfuntion forthe retangle 
 = ℄0; 1[� ℄0; h[ with the window D(t).Consider the the CHVP on the ylinder 
̂ = (R=2Z)� ℄0; h[, with window D̂(t) =



10 Almut Burhard and Johen DenzlerD(t)[(�D(t)), whih is obtained by gluing a opy of 
 with windowD(t) to its mirrorimage along the vertial edges. Sine the minimizing funtion û is automatiallysymmetri by simpliity of the prinipal eigenvalue in a onneted domain, it followsthat this CHVP on 
̂ with window D̂(t) is equivalent to the CHVP on 
 with windowD(t). In partiular,û(x; y) = 1p2u(jxj; y) (�1 � x � 1; 0 � y � h);and the orresponding prinipal eigenvalue oinides with �(t).On the other hand, with the understanding that x oordinates are interpretedmodulo 2, the ylinder 
̂ ontains the disjoint union of the retangles 
1 = ℄(t2 �t1)=2; 1+(t2� t1)=2[� ℄0; h[ and 
2 = ℄�1+(t2� t1)=2; (t2� t1)=2[� ℄0; h[, whih areopies of 
 with windows D(t1) and D(t2), respetively. By restriting û to 
1 [ 
2we obtain a test funtion for 
1 [
2 with window D(t1)[D(t2). Sine the prinipaleigenvalue for a disjoint union of domains is the smaller of the two eigenvalues, itfollows that �(t) � minf�(t1); �(t2)g:The funtions u1 = ûj
1 and u2 = ûj
2 annot be eigenfuntions for �(t1) and �(t2),beause the gradient of û vanishes at those boundary points of 
1 or 
2 that wereorners of 
, in violation of the Hopf boundary point lemma for u1 and u2. Thisompletes the proof of Eq. (3.1).The doubling argument used in the proof shows that two onneted window seg-ments of length ` eah, plaed symmetrially with distane 2s from the enter of aretangle of side length 2 yield the same eigenvalue as two suh windows plaed sym-metrially with distane 2(1� `� s) apart. This an be observed in the urve for theside-entered on�gurations in Figure 2.3.3.2. Optimality Among Windows on One or Two Sides. The monotoni-ity argument in the previous subsetion implies in partiular that among all onnetedwindows ontained in one side of a retangle, the one touhing a orner produes theminimal eigenvalue. We next onsider windows ontained in two sides of a square.Theorem 3.2. Among all windows that lie on only two sides of the square(adjaent or not), the optimal window is onneted and ontains a orner of the squarein its interior.The proof is based on rearrangement tehniques, whih have been widely usedfor geometri inequalities (see [14, 18℄ for a general referene). Here we will use tworearrangements adapted to the square: the inreasing rearrangement and polarization.For a nonnegative measurable funtion u on a retangle, we de�ne the inreasingrearrangement in the x-diretion, Ru, by replaing the restrition of u to eah line y =onst with the unique non-dereasing left-ontinuous funtion whih is equimeasurablewith u(�; y). By Fubini's theorem, Ru is equimeasurable with u.Lemma 3.3. Let u be a nonnegative W 1;2-funtion on a retangle 
 = ℄0; 1[ �℄0; h[, and let Ru be its inreasing rearrangement in the x-diretion. If the trae of uvanishes �-a.e. on a windowD = �f0g �Dl� [ �f1g �Dr� [ �Db � f0g�[ �Dt � fhg� ;



Optimal Windows; partiularly for the Square 11then Ru vanishes �-a.e. on the window RD de�ned by(RD)l = Dl [Dr; (RD)r = ;; (RD)b = ℄0; �(Db)[; (RD)t = ℄0; �(Dt)[:(3.2)In general, �(D) � �(RD) ;with equality ertainly when Dr = ;. The orresponding prinipal eigenvalues satisfy�(D) � �(RD) ;with equality only when RD agrees �-a.e. with either D or its mirror image.uD RD inreasingFig. 3.2. The e�et of the symmetri inreasing rearrangement on a window with omponentson all four sides of a retangle.Proof: If u is ontinuous up to the boundary of the retangle and vanishes onD, then its rearrangement Ru is also ontinuous and vanishes on the window RD. Tosee that the trae of Ru vanishes on RD for any nonnegative nonnegative funtion uin W 1;2 vanishing on D, we note that the inreasing rearrangement is losely relatedwith Steiner symmetrization. In fat, if we extend both u and Ru by reetion arossthe line x = 1 to funtions û and R̂u on the doubled retangle 
̂ = ℄0; 2[� ℄0; h[, thenR̂u is just the Steiner symmetrization of û. Sine Steiner symmetrization is ontinuousonW 1;2 [3℄, R is ontinuous as well, and the �rst laim follows by a density argument.For the seond laim we use that R preserves the L2-norm but redues the normof the gradient. In partiular, R an only derease the Rayleigh quotient. Choosingu to be the prinipal eigenfuntion of the CHVP orresponding to the window D, wesee that �(D) = R jruj2 dxR juj2 dx � R jrRuj2 dxR jRuj2 dx � �(RD) :(3.3)By analytiity, the partial derivative �xu vanishes only on a set of zero measure. Itfollows from a theorem of Brothers and Ziemer [4℄ that the rearrangement inequalityin Eq. (3.3) is strit unless u is already either inreasing or dereasing in x on eahline y = onst .The seond rearrangement exploits the symmetry of the square under reetionsat the diagonals. Let 
 = ℄0; 1[ � ℄0; 1[ be the unit square, and let �(x; y) = (y; x)denote the reetion at the diagonal joining the lower left with the upper right handorner. For any funtion u on 
, the polarization Pu of u with respet � is given byPu(x; y) = � maxfu(x; y); u(�(x; y))g; if y � x;minfu(x; y); u(�(x; y))g; if y � x:



12 Almut Burhard and Johen DenzlerFor a omprehensive aount of polarization we refer to [2℄. We have the followinglemma:Lemma 3.4. Let u be a nonnegative W 1;2-funtion on the unit square 
 =℄0; 1[ � ℄0; 1[, and let Pu be its polarization, as de�ned above. If (the trae of) uvanishes �-a.e. on a windowD = �f0g �Dl� [ �f1g �Dr� [ �Db � f0g� [ �Dt � f1g� ;then Pu vanishes �-a.e. on the window PD withPDl = Dl \Db; PDr = Dr [Dt; PDb = Dl [Db; PDt = Dr \Dt:In general, �(D) = �(PD) ;and the prinipal eigenvalues satisfy�(D) � �(PD);with equality only if PD agrees �-a.e. with either D or �(D).Proof: The form of PD is immediate from the de�nition of P . To see theseond laim, hoose u to be the prinipal eigenfuntion orresponding to the windowD. Sine Pu is equimeasurable with u, and jrPuj is equimeasurable with jruj byde�nition of the polarization, we have�(D) = R jruj2 dxR juj2 dx = R jrPuj2 dxR jPuj2 dx � �(PD) :Unless Pu agrees with either u or u Æ � , it annot be real analyti, and hene is notthe eigenfuntion orresponding to �(PD). We onlude that then the last inequalityis strit.Proof of Thm. 3.2:Within the lass of windows ontained in two sides of the square, there learly existsan optimal one. By Lemma 3.4, a window onsisting of two non-empty parts ontainedin two opposite sides of the square annot be optimal, sine it an be improved bypolarization.If D is ontained in two adjaent sides (say, left and bottom) of the square,Lemma 3.3 implies that replaingD withRD stritly redues the prinipal eigenvalue,unless the bottom part of the window is onneted and ontains a orner. Note thatin this ase, RD has the same length as D. Repeating this argument for the vertialdiretion, we see that also the part of D on the left hand side must be onneted andontain the lower left orner.It remains to show that a orner must lie in the interior of the window. If thelength of D happens to equal the length of one side of the square, we refer to thenumerial result, whih shows that the orner-entered position improves over theone-side position. Otherwise, we refer to Cor. 6.3 below to show that moving thesegment a short distane round the orner improves the eigenvalue.



Optimal Windows; partiularly for the Square 133.3. Non-Optimality of Z2�Z2-Symmetri Windows. We have the follow-ing theorem:Theorem 3.5. In a retangle, any window of suÆiently small length that hasthe full symmetry group of a retangle is not optimal. In partiular in a square, asymmetri window whose length does not exeed the length of one side is not optimal.As mentioned before, numerial results for the square indiate that the lengthrestrition is not needed.Proof: In self-explanatory pitogram notation, we reason that� ! = � ! = 4� ! � 4� ! ;(3.4)exploiting symmetry, saling, and the rearrangement of Lemma 3.3 in turn. The lastinequality is strit unless the window onsists of four L-shaped windows in the ornersto begin with, showing that an optimal window having full symmetry must be of thatform. In Eq. (3.4), we have gained a fator 4, but lost half of the window length. Wenow double the window using Lemma 6.1.Assume that the retangle has the form 
 = ℄0; a[�℄0; b[ and the L-shaped window(alled DL) has lengths qxa and qyb on the horizontal and vertial parts respetively.An admissible test funtion for the CHVP for an L-shaped window with side lengths2qxa and 2qyb is given by uÆ , where  (x; y) = (h(x); k(y)) with h; k pieewise linearsuh that h(0) = k(0) = 0, h(a) = a, k(b) = b, and h(2qxa) = qxa, k(2qyb) = qyb. It iseasy to see that  : 
! 
 is bi-Lipshitz. The largest value for the spetral radius of(D )(D )T = detD is 2(1�q)=(1�2q) with q = maxfqx; qyg, and the largest value fordetD is (1�qx)=(1�2qx)� (1�qy)=(1�2qy). By Lemma 6.1, the window  �1(DL)is an improvement over the original window, whenever 2(1� q)3=(1� 2q)3 � 4, whihhappens for q < 0:17 and translates to a smallness ondition on the window size,depending on the side lengths of the retangle.In the square ℄0; 1[�℄0; 1[, an optimal window whih is symmetri under reetionsat the vertial and horizontal axes must be symmetri under reetion in the diagonalsas well, sine otherwise a better window is obtained by polarization; this gives qx =qy =: q. We an now get a better quantitative estimate in Eq. (3.4) for the square.De�ne a bi-Lipshitz map by setting : (x; y) 7! 8<: �x; 1� 1�q1�2q (1� y)�� if y � 1� (1� 2q)(1� x) (I)�x; 12 (x+ y)� if x � y � 1� (1� 2q)(1� x) (II)above the diagonal, and an analogous formula below the diagonal. The spetral ra-dius of (D )(D )T = detD is (1� q)=(1� 2q) in domain (I) and 12 (3 +p5) in (II).The Jaobian detD is largest in (I), namely (1 � q)=(1 � 2q). Lemma 6.1 as-serts that the window an be doubled with a fator � 4 in the eigenvalue, provided�(D) = 4q � 4(5�p5)=(13�p5) � 1:027.Corollary 3.6. The result of Thm. 3.5 holds, for suÆiently small windows ina retangle ℄�a; a[� ℄�b; b[, under the weaker assumption that either (a) there is equalwindow area in eah of the four quadrants, or (b) the window is symmetri under the180Æ rotation (x; y) 7! (�x;�y).Proof: For (a), the �rst step in (3.4) an be replaed with an inequality, wherethat quarter is seleted that ontributes the smallest Rayleigh quotient. For (b), note



14 Almut Burhard and Johen Denzlerthat the symmetry is inherited by the eigenfuntion, and we have u(0; y) = u(0;�y).So we an de�ne û 2 W 1;2 by: û(x; y) = u(x; y) for x � 0, and û(x; y) = u(x;�y)for x � 0. û represents another window D̂ with the same area as D, has the sameRayleigh quotient, and is not the optimizer yet, unless D̂ = D; this redues the orol-lary to the theorem again.4. A Star-Shaped Domain With Disonneted Optimal Window. Wehere prove the properties of the followingExample 4.1. There exists a starshaped Lipshitz domain 
 in R2 and a length` suh that a onneted window of length ` in 
 annot be optimal.Proof: In a one-parameter family of domains 
", we alulate an upper boundfor the eigenvalue of a ertain window D2 with two omponents. Then we establish alarger lower bound for the eigenvalue of any onneted window D. These estimates,based on Dirihlet-Neumann braketing, work for suÆiently small ", and an bemade quantitative.
" is the union of a `torso' retangle T" and a pair of `handles' H", �H":T" := ℄�1; 1[� ℄�1� "; 1 + "[ ; H" := [1; 9� "[� ℄�"; "[ :(4.1)See the top left part of Figure 4.1. We hoose D2 := (�
") n T ", with �(D2) = 32.The remaining boundary W := (�
") nD2 has measure �(W ) = 8.
(not to scale)

PSfrag replaements 
" D2
T"

T" D"
H"H"D0 D1Fig. 4.1. Top left: A starshaped Lipshitz domain whose optimal window(s) of a ertain length` annot be onneted. Top right: upper bound for eigenvalue of disonneted window. Bottom:Lower bounds for onneted windows.For omparison, disonnet the handles from the torso by means of extra Dirihletboundary D" = f�1g� [�"; "℄, as in the top right of Fig. 4.1. With fewer ompetitorsin the CHVP (1.5), we get an upper bound. In self-explaining notation, we onlude�(
"; D2) < minn�Dir(H"); �(T"; D")o = �(T"; D") :By testing the EVP for T" with sin �2 (jyj� ")+, one an see that the evaluation of theminimum is valid for all " � 1.For any onneted window D of length 32, it an easily be seen that, exept forreetion symmetry, either D � D0 or D � D1, whereD0 = f(x; y) 2 �
" j y � �"gD1 = f(x; y) 2 �
" j x � 1g [ [1; 5℄� f�"g



Optimal Windows; partiularly for the Square 15To get lower bounds for �(
"; D0) and �(
"; D1), disonnet the handles from thetorso by means of extra Neumann boundary f�1g�[�"; "℄: In slight abuse of notation,we write �(T"; Di) for �(T"; Di \ �T"), and similarly for H". We have either�(
"; D) > minn�(H"; D0); �(T"; D0)o = �(T"; D0) > ( �4+4" )2(4.2)or �(
"; D) > minn�(H"; D1); �(T"; D1)o = �(H"; D1)(4.3)The evaluation of the minimum in (4.2), for any ", relies on a test funtion thatvanishes for y � �". The evaluation of the minimum in (4.3) is valid for all " < 32 ,sine then, using omparison funtions os(�y=(2 + 2")) and sin�(x� 5)+=2(4� "),�(T"; D1) > (�=(2 + 2"))2 � (�=(2(4� ")))2 > �(H"; D1) :For " < 23 , we an also onlude that�(H"; D1) < (�=(8� 2"))2 < (�=(4 + 4"))2 < �(T"; D0) :It therefore only remains to prove the middle inequality in�(
"; D) > �(H"; D1) > �(T"; D") > �(
"; D2) :But as " ! 0, one has �(T"; D") ! 0, whereas �(H"; D1) ! (�=8)2. This intu-itively lear fat an be proved in a straightforward way by writing the quadratiform RH"(u2x + u2y) dx dy as a quadrati form R ("�(�)�1u2� + "�1�(�)u2�) d� d� on L2with measure "�(�)d� d� in a �xed referene domain ℄0; 8[ � ℄�1; 1[. Here �(�) = 1for � < 4, and �(�) = 1� "=4 for � > 4. If we arry out the limit "! 0 in the CHVPwith the appropriate eigenfuntions, we have the uniform upper bound (�=(8� 2"))2for the eigenvalue, as mentioned before. This ontrols the W 1;2 norm in the �xeddomain, and atually enfores u� ! 0. The limiting funtion will indeed not dependon the � oordinate and solve the one-dimensional eigenvalue problem �u�� = �u on[4; 8℄ 3 �, with u(4) = 0, u�(8) = 0.5. Some Continuity Results. In this setion, we study how the eigenvaluehanges if a window of a partiular size is added at a partiular loation. The basiphilosophy is that windows an be added more heaply at loations where the eigen-funtion was already small before the addition. In the seond subsetion, we disussrelated ontinuity properties of the orresponding eigenfuntions.5.1. Continuity of Eigenvalues. Our �rst result is an estimate for the inreaseof the prinipal eigenvalue, if a set of small apaity is added to a given window.Lemma 5.1. Let D2 � D1 and let u1 be the normalized eigenfuntion for D1. LetG be a domain ontaining D2 nD1; in ase the dimension d = 2, assume additionallythat G is bounded. Then�(D2)� �(D1) � �(D1) vol (G \ 
) + ap(D2 nD1; G)1� (supG\
 u1)2 vol (G \ 
) � supG\
u1�2 ;(5.1)where ap is the apaity de�ned in [19, 2.2.1℄, namely:ap(D2 nD1; G) := inf�ZG jrvj2 ���� v = 1 in a nbhd of D2 nD1 ; v 2 C10 (G)� :



16 Almut Burhard and Johen DenzlerProof: Let M := supG\
 u1. As explained in [9℄ near (3.2), it follows from deGiorgi's argument (see formula (5.12) in hapter 2 of Ladyzhenskaya{Ural'tseva [17℄)that sup
 u1 is �nite, and an even be hosen to depend only on 
, not on D1. Toobtain a test funtion for the CHVP whih determines �(D2), we modify u1 in G: InG\
, let u2 := minfu1;M(1� v)g, where v is one of the funtions that approximatethe apaity of D2 nD1; outside (if any), let u2 = u1. Sine u2 = u1 on 
 \ �G, thisdoes not introdue disontinuities, and u2 is an admissible test funtion for �(D2).Clearly Z
 u22(x) � Z
nG u21 � 1�M2 vol (G \ 
)and Z
 jru2j2 � Z
 jru1j2 +M2 ZG jrvj2 ! Z
 jru1j2 +M2 ap(D2 nD1; G)as v runs through a minimizing sequene for the apaity funtional. We onlude(5.1) immediately.In appliations of the lemma, G should be a small neighbourhood of D2 nD1, sothat in the numerator on the right hand side of (5.1), the apaity term dominatesthe volume term. It an be used to establish ontinuity of the eigenvalue underdeformations of suÆiently regular windows. The following simpli�ed estimate suÆesto show the ontinuous dependene of the eigenvalue on the length and position of asegment in a square:Proposition 5.2. For a given bounded Lipshitz domain 
 � Rd , there existsa nonnegative ontinuous funtion � with �(0) = 0 so that for any pair of windowsD1 � D2 � �
, �(D2) � �(D1) + � (diam(D2 nD1)) ;where the � is a ontinuous funtion with �(0) = 0 whih depends only on 
 but noton D1 and D2. The result applies to the oarse as well as to the �ne de�nition of theeigenvalue.Proof:We assume D2 nD1 � BÆ(x0) where Æ := diam(D2 nD1) and use the Green's funtionas a legitimate limiting ase for v in the apaity funtional; namely, for dimensiond = 2, let G = BR(x0) and 1 � v := ln+(jx � x0j=Æ)= ln(R=Æ), with, say, R = pÆwhen Æ < 1. For d � 3, we an take G = BR(x0) with R := Æ(d�2)=d and let1� v := (Æ�(d�2)� jx�x0j�(d�2))+=(Æ�(d�2)�R�(d�2)). For simpliity, we an takeM := sup
 u1 as an upper bound for supG\
 u1, and obtain the laim with�(Æ) := 8>><>>: �M2 Æ�Dir + 2= ln(Æ�1=2)1� �M2Æ for d = 2(d� 1)2!dM2Æd�21� !dM2Æd�2 for d > 2(5.2)where !d is the volume of the unit ball.



Optimal Windows; partiularly for the Square 17It should be noted that the modulus of ontinuity of the eigenvalue annot beexpressed in terms of �(D2nD1) alone. This is due to the fat [8, Thm. 8℄ that for any", there exists a window of measure < " with eigenvalue > �Dir � ". This observationalso implies, in view of the a-priori estimate for kuk1 and H�older's inequality, thatan estimate in terms of ku1kp is not possible for any p <1.Theorem 5.3. The optimal eigenvalue �� depends ontinuously on the presribedboundary measure of the window.Proof: We will prove that in dimensions d > 2, the funtion ` 7! ��(`) isH�older ontinuous with exponent (d�2)=(d�1), for ` < �(�
). In d = 2 dimensions,we will obtain a logarithmi estimate for the modulus of ontinuity.Fix `1 < �(�
), and let D1 be an optimal window with �(D1) = `1. It followsfrom Prop. 5.2 that ��D1 [ (BÆ(x0) \ �
)�� �(D1) < �(Æ)for any hoie of x0 2 �
 and Æ > 0. We want to hoose x0 so that ��(BÆ(x0)\�
) nD1� is bounded away from zero. To do this, we use Fubini's theorem to estimate�Z�
 �((BÆ(x) \ �
) nD1)d�(x) = 1�(�
) Z�
 Z�
nD1 1jx�yj<Æ d�(y)d�(x)= 1�(�
) Z�
nD1 �(BÆ(y)) d�(y)� �(�
)� �(D1)�(�
) infy2�
�(BÆ(y)) :Sine 
 is a bounded Lipshitz domain, there exists a onstant , depending only on
, suh that �(BÆ(x0)) � Æd�1. We onlude that for any value of Æ there exists apoint x0 2 �
 suh that��BÆ(x0) nD1� � �1� `1�(�
)� Æd�1 :For `2 > `1, set Æ = � `2 � `1(1� `1=�(�
))�1=(d�1) ;and let D2 = D1 [ (BÆ(x0) \ �
). Sine �(D2) � `2, it follows that��(`2)� ��(`1) � �(D2)� �(D1) � �(Æ) :The laim now follows from the expression for � given in Prop. 5.2.The punhline of Thm. 5.3 is that we get a uniform modulus of ontinuity with-out extra regularity assumptions on the boundary. For smoother �
, stronger resultsould be obtained using the tools of Se. 6. We onjeture (but have not pursued)that the window D2 in Ex. 4.1 is atually optimal, and that the modulus of ontinuityat that length in Ex. 4.1 is preisely O(Æ2=3). This intuition is based on the r1=3 sin-gularity of the eigenfuntion at the re-entrant orner, the role of singularities revealedin Se. 6, and the estimate from Lemma 5.1. A Lipshitz estimate for ` 7! ��(`)should not be expeted without further assumptions on �
, but smoothness (a.e.) of�
 will improve upon Thm. 5.3.



18 Almut Burhard and Johen DenzlerThe following simple lemma estimates the hange of the eigenvalue under inreaseof a window solely in terms of the eigenfuntion on the smaller window.Lemma 5.4. Given 
 � Rd and two windows D1 � D2 � �
. Let u1 be thenormalized eigenfuntion orresponding to �(D1). Then�(D2)� �(D1) � �(D1) pvol (
) supD2nD1 u11�pvol (
) supD2nD1 u1(5.3)Proof: Let " := supD2nD1 u1. Then v" = (u1 � ")+ is an admissible testfuntion for both the CHVP's de�ning �(D2) and �(D1) . We omputekrv"k22 = Z ru1 � r(u1 � ")+ = �(D1) Z u1(u1 � ")+ ;(5.4)where we have used the weak form R rur' = � R u' of the eigenvalue equation�u = ��u, with ' := v". It follows that�(D2)� �(D1) � R jrv"j2R v2" � �(D1)� �(D1)R "(u1 � ")+R (u1 � ")2+� �(D1) "k(u1 � ")+k2 (vol (
))1=2 :The triangle inequality k(u1�")+k2 � 1�" (vol (
))1=2now yields the laim.For a given window D � �
, denote byDÆ := � [x2DBÆ(x)� \ �
 (Æ > 0) ; D0 := D(5.5)the relative Æ-neighborhood of D in �
. Continuity of the eigenfuntion up to theboundary is suÆient for ontinuity of the eigenvalue funtion Æ 7! �(DÆ):Theorem 5.5. Let u be an eigenfuntion for window boundary onditions on D,and assume that the preferred representative ~u vanishes everywhere on D.(a) If ~u is upper semi-ontinuous on 
, then �(�) is outer regular at D in thesense that for every " > 0, there exists a relatively open subset U � �
 ontaining D,with the property that �(U) � �(D") :(b) If u is ontinuous up to the boundary of 
, then the map Æ 7! �(DÆ) is rightontinuous at Æ = 0. We will show below (Thm. 5.7) that the hypothesis of part(a) is satis�ed for C1;� domains in R2 , and at at piees of the boundary in anydimension. We onjeture that upper semiontinuity may hold at least for smoothdomains in any dimension.Conerning part (b), ontinuity up to the boundary an be shown for the eigen-funtion by a areful analysis of de Giorgi's argument, under the assumption that thewindow D has positive Lebesgue density at every interfae point x0 2 D \ �
 nD.



Optimal Windows; partiularly for the Square 19We onjeture, but annot prove, that eigenfuntions for optimal windows are on-tinuous up to the boundary. Below, we show by an example that ontinuity of theeigenfuntion is not neessary for ontinuity of Æ 7! �(DÆ).Proof of Thm. 5.5:If the preferred representative ~u is upper semiontinuous on the losure of 
, then theset U = fx 2 �
 j u(x) < �gis a (relatively) open set ontaining D. By Lemma 5.4, we have that�(D) � �(U) � �(D)1� ��(
)1=2 < �(D) + " ;if � = �(") is hosen suÆiently small (e.g., � := "(�Dir(
) vol (
))�1). This provesouter regularity. If ~u is ontinuous, then D is ompat, and hene there exists a Æ > 0so that DÆ � U , whih proves the seond laim.Note that assuming that ~u vanishes everywhere on D amounts to replaing Dwith its re�nement, and seleting the �ne eigenvalue. Sine oarse and �ne eigenvaluesagree for the open windows DÆ, ontinuity of � ertainly fails at any window D forwhih �(D) < �f (D). Cantor sets of zero measure but positive apaity provideexamples of suh windows.However, Æ 7! �f (DÆ) annot be ontinuous in general either. For an open-densewindow D of small measure, we learly have �(DÆ) = �Dir for all Æ > 0. However,we laim that �D < �Dir. To see this, note that uD annot agree with uDir, sineeigenfuntions do not take on `extra' Dirihlet boundary onditions, as was shownnear Fig. 1 in [9℄. Sine uDir is an admissible andidate for the CHVP for �D, itfollows from the uniqueness of the minimizer that �Dir > �D . We have hereby foundan example of a window whose eigenfuntion is disontinuous at `most' (in terms ofmeasure) of the boundary.Example 5.6. There exists an open window D with disontinuous eigenfuntion,suh that still Æ 7! �(DÆ) is right ontinuous.Proof: In a planar domain, parametrize a portion of the boundary by arlengthand refer to segments on the boundary as intervals in this parameter. We will on-strut two dereasing sequenes xn & 0 and Æn & 0 and let In := ℄xn � Æn; xn + Æn[.The sequenes xn and Æn will be spei�ed later. The window will be D := S1n=1 In,and we will also de�ne DN := SNn=1 In, with the eigenvalues and normalized eigen-funtions �, �N , u, uN respetively. If N is the �rst index suh that xN < Æ, thenDÆ nD � ℄�Æ; Æ[ [[Nn=1[xn + Æn; xn + Æn + Æ[ [[N�1n=1 ℄xn � Æn � Æ; xn � Æn℄ :It follows from Prop. 5.2 that �(DÆ) � �(D) < (2N + 1)�(Æ) < (2N + 1)�(xN�1).Choosing the sequene (xn) suh that (2N + 1)�(xN�1) ! 0 as N ! 1 ensures theright ontinuity of Æ 7! �(DÆ).With (xn) thus �xed, we introdue the ompat setK := f0g[fyn j n 2 Ng, whereyn = (xn+xn+1)=2 and onstrut the sequene (Æn) indutively. Let Æ1 = (x1�y1)=2.Sine D1 has positive Lebesgue density at all interfae points, it follows fromde Giorgi's argument that the orresponding eigenfuntion u1 is H�older ontinuousup to the boundary. Let a := infK u1 > 0 and de�ne an := (1=2 + 1=2n)a. We



20 Almut Burhard and Johen Denzlerwill hoose ÆN in suh a way that infK uN � aN . Assume Æ1; : : : ; ÆN�1 have beenonstruted. The interval IN and thus DN and uN , will depend on the hoie of ÆN .But as ÆN ! 0, the loal de Giorgi estimates near K remain uniform, beause theL1 estimate for uN does not depend on the window and the interfae stays awayfrom K. Then u(ÆN )N onverges weakly in W 1;2(
), strongly in L2(
), and strongly inL2(�
) by the usual ompatness arguments. It also onverges strongly in W 1;2(
)to uN�1 sine �(ÆN )N ! �N�1; the onvergene is uniform in a neighbourhood of K bythe equiontinuity obtained from de Giorgi. Sine uN�1 � aN�1 on the ompat setK, we an ahieve uN � aN�1 � " for any " > 0 by making ÆN small; in partiularwe an ahieve uN � aN .It is now easy to show that u is disontinuous at 0. Indeed, as N !1, uN ! uin the Sobolev spaes mentioned above. Again, the onvergene is uniform in a neigh-bourhood of eah single yn. Therefore u(yn) � a=2 for eah n, whereas u(xn) = 0.Hene u is disontinuous at 0.We �nally refer to Lemma 6.1, whih gives ontinuity estimates under distortionof a window by means of a bi-Lipshitz homeomorphism. Due to the similarity ofproofs, we onveyed it to Setion 6.5.2. On Upper Semiontinuity of Eigenfuntions. Here, we will provesemiontinuity of eigenfuntions as a onsequene of a subharmoniity argument.Theorem 5.7. If 
 � R2 has a C1;� boundary, then for any measurable windowD � �
, the eigenfuntion u has an upper semiontinuous preferred representative ~u.If 
 � Rd with d > 2, then ~u is upper semiontinuous at any boundary point wherethe boundary is loally part of a hyperplane.Proof: Let u be the solution of the CHVP (1.5) for D, the eigenvalue being�(D). Fix x0 2 �
. We will show that if the �
 oinides with a hyperplane in someneighborhood of x0, then the limit~u(x) := limr!0 �ZBr(x)\
 u(y) dy(5.6)exists for all points in this neighbourhood and de�nes an upper semiontinuous fun-tion. This limit agrees with the preferred representative de�ned in (1.7). In the speialase of two dimensions, the onlusion holds assuming only that �
 is of regularityC1;� neat x0. We note that u is always smooth in the interior of 
, and there isnothing to show.The basi idea is as follows: When the boundary is loally part of a hyperplane,extend u by even reetion, regardless of the type of boundary onditions. Thenonnegative funtion u, thus extended, has only suh disontinuities as are possiblefor a subharmoni distribution, and this fat is shown by means of the test funtion(u � t')+ in the CHVP, where ' is smooth nonnegative. Subharmoniity impliesupper semiontinuity aording to Thm. 9.3 in [18℄. For urved boundary in 2D, theRiemann mapping theorem loally provides an analog of the reetion.Consider �rst the ase where there exists a neighborhood V of x0 suh that�
 \ V is ontained in a hyperplane. We may assume that the hyperplane is givenby xd = 0, that 
 lies above the hyperplane, and that V is symmetri under thereetion (x0; xd) 7! (x0;�xd). Let ' be a smooth nonnegative funtion with support



Optimal Windows; partiularly for the Square 21in V . Sine (u� t')+ is a legitimate andidate for the CHVP when t � 0, we haveA(t)B(t) � A(0)B(0) ;(5.7)where A(t) := Z
 jr(u� t')+j2 ; B(t) := Z
 j(u� t')+j2 :We alulate from the weak Euler equationsA(t) = Z
r(u� t')+ru� t Z
r(u� t')+r'= � Z
(u� t')+u� t Zu>t'rur'+ t2 Zu>t' jr'j2 ;(5.8)and expand B(t) = Z
 u(u� t')+ � t Z
 '(u� t'+) :(5.9)Inserting (5.8) and (5.9) into (5.7) and using that A(0) = � and B(0) = 1, we obtainfor t > 0: 0 � t�1(A(t)B(0) �A(0)B(t))= Zu>t'h�rur'+ �u'i+ t Zu>t'hjr'j2 � �'2iSine all integrals over sets u > t' onverge to integrals over 
 by Lebesgue's domi-nated onvergene theorem, we obtain for t! 0+ that0 � ZV \
h�rur'+ �u'i(5.10)We now extend u by even reetion u(x0;�xd) := u(x0; xd) and use (5.10) for thelikewise reeted test funtion '. Adding the reeted and the original (5.10), weobtain 0 � ZV h�rur'+ �u'i = ZV hu�'+ �u'i(5.11)where we have used that ' is C2 and supported in V .We have shown that �u + �u is nonnegative in the sense of distributions. Ifv := u+ M�2d jxj2, where M := kuk1 <1, then �v � 0 in the sense of distributions.By [18, Thm. 9.3℄), v is subharmoni, that is,v(x) � �ZBr v(5.12)for almost every x 2 V , provided Br(x) � V . Furthermore, the preferred representa-tive ~v of v is upper semiontinuous, and satis�es the subharmoniity ondition (5.12)for all x and r so that Br(x) � V . Sine ~u di�ers from ~v by a ontinuous funtion, it



22 Almut Burhard and Johen Denzleris upper semiontinuous as well. This settles the ase where �
\ V is ontained in ahyperplane, in some neighbourhood of x0.In the ase where 
 � R2 we use omplex notation. Let V be a neighborhood ofz0 2 �
 suh that �
\V is of lass C1:�, and let V+ be the intersetion of V with 
.Replaing V by a subset, we may assume that there exists a onformal map  froma semidis B+ to V+ suh that the diameter of the semidis maps onto V \ �
. Thefuntion �u = u Æ  on the semidis satis�es ��u = j 0j2 (�u) Æ  . Our argument willrely on the boundedness of j 0j (shown below). By reetion, we an extend �u intothe full dis B. The extended funtion �u is still in W 1;2(B+) sine  0 2 L1; and asbefore, the extended funtion remains in W 1;2(B). From (5.10), we onlude, usingthe onformal invariane of the Dirihlet integral, that0 � ZB+ ��r(u Æ  )r(' Æ  ) + �j 0j2(u Æ  )(' Æ  )�for all 0 � ' 2 W 1;2(V+) that vanish on 
 \ �V+; in partiular for all ' := �' Æ  �1with �' 2 C20 (B). As with (5.11), we an now onlude that v := �u+M�2d sup j 0j2is subharmoni, and �nish up the argument as before.We still need to explain why j 0j remains bounded near �
: this is where theC1;� regularity of the boundary enters. Refer to Figure 5.1. Choose U to be theintersetion of a neighbourhood of z0 2 �
 with 
, suh that U is simply onneted.Choose a point p 2 U . The Green's funtion of U an be obtained in the formln jz� pj+ �(z) with � harmoni subjet to boundary values � ln jz� pj. Near z0, thisharmoni funtion � is C1;� up to the boundary, beause the boundary has this reg-ularity there. This result follows from the Shauder estimates given in [11℄; namelytheir Thm. 5.1 in onnetion with Lemma 2.1. If � is a onjugate harmoni to �(namely �y = �x, �x = ��y), then w : z 7! (z�p) exp[�(z)+ i�(z)℄ is a onformal mapof U onto a dis. (For more details, see [5, Se. I.7℄.) The mapping w inherits theC1;� regularity from �. With a onformal mapping � from the dis onto a half plane,we selet an appropriate semidis B+ from this half plane and let  := (� Æ w)�1jB+with V+ :=  (B+) � U .It is worth noting that a C1 boundary is not suÆient for the bounded derivativesof a Riemann map, as an be seen from the map w(z) = z ln z and its inverse, whihmap neighbourhoods of 0 in the half planes Re z > 0 or Rew > 0 respetively ontodomains bounded by a C1 urves.6. First Variation, and the Role of Singular CoeÆients in Optimality.In this setion, we study how the prinipal eigenvalue of the Laplaian with windowboundary onditions hanges under deformations of the window. The �rst lemmaontains some estimates for distortions by bi-Lipshitz maps.Lemma 6.1. Let  : 
1 ! 
2 be a bi-Lipshitz map. Then for any window D in
2, it holds�( �1(D)) � �(D) sup
1 ��(D )(D )T (detD )�1� sup
1 (detD )where � denotes the spetral radius. In terms of the distortion ratiosa(x) := lim supy!x j (y)�  (x)jjy � xj ; b(x) := 1= lim infy!x j (y)�  (x)jjy � xj
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Fig. 5.1. The Riemann mappings used in the proof of Thm 5.7we have the simpler (but weaker) estimates�( �1(D))�(D) � sup(abd�1) sup(ad�1=b) � (sup a)d+1(sup b)d�1 :Proof: For any two di�erentiable funtions h1, h2 on 
 and any di�eomor-phism  , we have the transformation formulasZ
 h1(y)h2(y) dy = Z �1(
)(h1 Æ  )(x) (h2 Æ  )(x) detD (x) dx(6.1)and Z
rh1(y) � rh2(y) dy = Z �1(
)rx(h1 Æ  )(x)TM(x)rx(h2 Æ  )(x) dx ;(6.2)where the matrix M is given byM(x) = D (x)�1D (x)�T detD (x) :(6.3)Let u be the nonnegative normalized eigenfuntion for window D � �
, and take uÆ as a test funtion in the CHVP for  �1(D). The �rst laim follows from (6.1){(6.3)by setting h1 = h2 = u, and using that the smallest eigenvalue of M(x) is the reip-roal of the spetral radius of M(x)�1. The distortion ratio estimates follow for  2C1 from �(D (x)TD (x)) � a(x)2 and a(x)2=b(x)2(d�1) � det(D (x)TD (x)) �a(x)2(d�1)=b(x)2, as alulated in an eigenbasis of this symmetri matrix. Both esti-mates extend to bi-Lipshitz maps by approximation.Our main result in this setion desribes the hange of the prinipal eigenvalueunder a di�eomorphism generated by a ow.Theorem 6.2. Let 
 be a Lipshitz domain in Rd , D a window, u its normalizedeigenfuntion, and X a vetor �eld of regularity C1(
) \ C0(
) that is `parallel' tothe boundary in the sense that 
 is the union of an inreasing sequene of smoothlybounded subdomains 
Æ, with Æ & 0, suh that X is tangential on �
Æ for Æ suÆientlysmall.



24 Almut Burhard and Johen DenzlerLet  t be the ow of X. Consider the dependene of the �rst eigenvalue � as Dhanges under the ow. Then it holds:ddt�( t(D))����t=0 = �2 limÆ!0Z�
Æ ��uLXu ;(6.4)where LXu denotes the diretional derivative of u in diretion X.Remark: The assumptions guarantee that X is tangential to the boundary of
 at smooth boundary points, and that X vanishes in those boundary points wherethe boundary is not C1. Moreover, the ow on the boundary is de�ned uniquely asthe ontinuous extension of the ow in the interior.Proof: Let  t : x 7!  t(x) = y ; 
 ! 
 be the bi-Lipshitz homeomorphismarising from the vetor �eld X , i.e., ddt t(x)jt=0 = X( t(x)),  0(x) = x. SineX 2 C1,  is a C1-di�eomorphism in the interior of 
 and satis�es a Lipshitzestimate up to the boundary.

 3 xDtest ft alled g 
(t) � 
 3 y��ut = �(t)utD(t) =  t(D)

test ft ft = g Æ  �1t t(�)di�eo
utut Æ  t = vt R

Fig. 6.1. The mappings in the proof of Thm. 6.2Let ut(�) and �(t) be the eigenfuntions and eigenvalue for D(t) :=  t(D), andlet g be a test funtion on 
 whose trae vanishes on D. The variation of geometrywill be expressed as a variation of the operator by referring all windows bak to theoordinates x.We will denote the pullbak of the eigenfuntion ut to 
 with window boundaryonditions on D as ut Æ  t =: vt . Similarly ft := g Æ  �1t the pushforward of the testfuntion g. The weak eigenvalue equation for ut(�) isZ
(t)ryut(y) � ryft(y) dy = �(t) Z
(t) ut(y)ft(y) dywhere, in our ase, 
(t) � 
, g vanishes on D, and ft vanishes on D(t).We now use (6.1){(6.3) with  =  t, h1 = ut, h2 = ft and expand to �rst order



Optimal Windows; partiularly for the Square 25in t. From ddt t(x) = X( t(x)),  0(x) = x, we obtain t(x) = x+ tX(x) + o(t)D t(x)j i = Æji + t�Xj�xi + o(t)�D t(x)�1�j i = Æji � t�Xj�xi + o(t)detD t(x) = 1 + t divX + o(t) :The estimates for the remainder terms are uniform in x 2 
. Inserting the �rst andlast estimate into (6.1) with  =  t, h1 = ut, h2 = ft yieldsutft dy = (vtg(1 + t divX) + o(t)) dx ;where the o(t) term represents an L1 funtion. Similarly, we obtain from (6.2)ryut(y) � ryft(y) dy = �rxvt(x) � rxg(x) ++ t�(divX)rxvt � rxg � � �g�xi �vt�xj + �vt�xi �g�xj ��Xj�xi �+ o(t)� dx ;where the o(t) term again represents an L1 funtion. We have used the Einsteinsummation onvention to express the sum over i and j.If we trunate the bilinear forms by dropping the o(t) terms, it is immediatethat the eigenvalue will only hange by o(t). Sine the trunated operators dependanalytially on the perturbation parameter t, we may use results from Chapter VII ofKato [15℄ to estimate the eigenvalue up to errors of order o(t). Kato's Thm. VII.4.2and his disussion in VII xx6.2,4,5 asertain, via spetral projetions, and for any �niteset of isolated eigenvalues, that the perturbation theory works as in �nite dimensionalspaes. In partiular, a simple eigenvalue and its orresponding eigenfuntion ofthe trunated operators depend analytially on t. We may therefore write downexpansions vt = v0 + tv1 +O(t2) of the eigenfuntion for the trunated problem, and�(t) = �0 + t�1 + o(t) of the eigenvalue (for the trunated as well as for the fullproblem), and ompare like powers of t.Order t0 yields Z
rv0 � rg dx = �0 Z
 v0g dxwhih is just the weak Euler equation for v0. Order t1 yields�1 Z v0g dx+ �0 Z fv1g + (divX)v0gg dx == Z �rv1 � rg + (divX)rv0 � rg � �Xj�xi � �g�xi �v0�xj + �v0�xi �g�xj �� dxThese equations are valid for integration over any subdomain of 
. We will integrateover 
Æ , where 
Æ runs through an inreasing sequene of smoothly bounded domainsompatly ontained in 
 suh that X is tangent to the boundary of 
Æ . We write�I := Z
Æ and I := Z�
Æ



26 Almut Burhard and Johen Denzlerfor volume and surfae integrals, respetively. Using g = v0 as a test funtion, weobtain in �rst order�1 �I v20 = �I (rv1 �rv0��0v0v1)+ �I �(divX)�jrv0j2 � �0v20�� 2�Xj�xi �v0�xi �v0�xj� :Sine v1 lies in W 1;2(
) and satis�es window boundary onditions for D, it is a validtest funtion in the Euler-Lagrange equation for v0, and we onlude that the �rstintegral vanishes as Æ ! 0. For the seond integral, we use the identity�Xj�xi �v0�xi �v0�xj = ��xi ��v0�xiLXv0��Xj ��xi ��v0�xi �v0�xj�= div(LXv0rv0) + 12LX(�0v20 � jrv0j2)and Gauss' divergene theorem to ompute�I �(divX)�jrv0j2 � �0v20)� 2�Xj�xi �v0�xi �v0�xj� == �I div�(jrv0j2 � �0v20)X�� 2 div(rv0 LXv0)= I (jrv0j2 � �0v20)X � � � 2��v0 LXv0 :The �rst term under the integral vanishes sine X is tangential to the boundary of
Æ by assumption, and the laim follows as Æ ! 0.We note that, at least formally, the integrand on the right hand side of (6.4)vanishes on both the Dirihlet and the Neumann parts of the boundary of 
. Theevaluation of the limit of the integral as Æ ! 0 is far from trivial in higher dimensions,but reasonably straightforward in two dimensions with nie window geometry. Itamounts to the evaluation of ertain singular oeÆients at interfae points betweenthe Neumann and Dirihlet arts of �
. It has been shown that in polygonal domains,in the neighbourhood of a orner, solutions of ellipti boundary problems lie loallyin the diret sum of W 2;2 with a singular spae, and in two dimensions, this singularspae is one-dimensional. See, eg., Grisvard [12℄, in partiular his Thm. 2.4.3. Indeed,funtions in the singular spae behave like the expliit harmoni funtions Re(z�)with � appropriate for the boundary onditions. In this ontext, it is understoodthat an interfae point between Dirihlet and Neumann data is a orner even if (inpartiular if!) the geometri boundary is smooth there. As noted, orners that an bemade disappear by means of the reetion priniple (like the geometri orners of aretangle) do not have a singular spae. The singular oeÆients (aka stress intensityoeÆients) must be alulated (numerially) in pratial situations. They dependon global information. For a wider bakground onerning singular ontributions, see[7, 12, 16, 21, 23℄ and muh other work by these authors and referenes given there.In partiular, the variational equation gives rise to the followingCorollary 6.3. Consider a segment on the boundary of a retangle, suh thatone endpoint of the segment is a orner of the retangle, whereas the other endpointis a point that is not a orner. Suh a segment is not an optimal window, but an beimproved in�nitesimally by shifting in the diretion that brings the orner point insidethe window



Optimal Windows; partiularly for the Square 27Proof: In self-explanatory notation, we refer to the windows as intervals, let[a; b℄ be an interval with orner point b and non-orner point a; we will show (withsome positive onstants m, M):�([a+ "; b+ "℄) � �([a+ "; b℄) +M"2 and �([a+ "; b℄) � �([a; b℄)�m" :From this the laim is immediate.The �rst estimate (loal near b) follows from Lemma 5.1, with G a ball of radius 2"entered at the orner b. The eigenfuntion is smooth near b, beause reetion inthe Neumann boundary removes the singularity: juj = O(") in G, and the estimateis uniform with respet to small hanges at the other end a. The apaity term isbounded as "! 0, based on a radial test funtion ln+(jx� b1j=")= ln 2 as in the proofof Prop. 5.2.The seond estimate (loal near a) follows from an evaluation of the singularboundary integral R�
 LXu��u. In the partiular ase of an interfae point on astraight line, the loal behavior of a solution u is u = pr sin('=2)+v with v 2W 2;2.
x

y

r

NBC DBC
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 �
u = us + v = pr sin '2 + vux = vx � 2r1=2 sin '2uy = vy + 2r1=2 os '2To evaluate the singular boundary integral in terms of the singular oeÆient,de�ne oordinates as in the above �gure, with the boundary point a loated at (0; 0).Let us assume that the C1 vetor �eld X is given by f(x; y)�x with the oeÆient atthe interfae f(0; 0) = 1. It an easily be seen that the regular funtion v does notontribute to the integral, nor do the mixed terms. We have�2 Z t�t LXu ��u dx = 2 Z t�t �us�x �us�y dx = �24 Z t�t yx2 + y2 dx = �22 artan ty ;and this onverges to � 2�4 as y ! 0+.Finally, we estimate the singular oeÆient. Choose r so small that Br(0) inter-sets �
 in a straight line as in the above �gure, with one radius (Nr) being Neumannboundary and one radius (Dr) Dirihlet boundary; let Sr := (�Br(0))\
, and ount' from the Dirihlet to the Neumann boundary. Let��h = 0 in Br(0) \ 
, ��h = 0 on Nr, h = 0 on Dr, h = u on Sr��v = �u in Br(0) \ 
, ��v = 0 on Nr, v = 0 on Dr, v = 0 on SrThen u = v + h with v � 0. Evaluation on the boundary implies that the singularoeÆient of u is at least as large as the singular oeÆient of h. Expliit alulationof the singular oeÆient of h by means of Fourier analysis gives exatly � 2�r1=2 Z �0 u(rei') sin '2 d' > 0 :The above estimate of the singular oeÆient is losely related to formula (2.3)in Dauge et al. [7℄, whih atually gives the exat oeÆient (in terms of u). However



28 Almut Burhard and Johen Denzlertheir formula is not designed to show non-vanishing (whih relies on using the max-imum priniple), but is instead built on Fredholm properties. (The distintion thattheir formula is for a Dirihlet{Dirihlet orner, not a Dirihlet{Neumann orner, isa minor issue.)Our argument shows that shortening a window in�nitesimally at the interfaedereases the eigenvalue by an amount proportional to the square of the singularoeÆient at the end of the window. Moving a window amounts to shortening it atone end and lengthening it at the other end. To derease the eigenvalue, the windowshould be moved in the diretion of the smaller singular oeÆient (i.e., towardsthe orner of the square, if it is already lose to a orner). If the window onsistsof several intervals, nonloal hanges that lengthen one omponent at the expenseof the other an also be studied in terms of the singular oeÆients. Conversely,singular oeÆients an be determined graphially from the slopes in Figure 2.1, forthe geometri on�gurations depited there.As an immediate onsequene of the role of singular oeÆients, a window on-sisting of any number of equidistant and ongruent ars on the boundary of a irleis a ritial point for the �rst eigenvalue. Sine these ars an now be moved inde-pendently, these are ritial points of arbitrarily large index. The optimal window ina irle is known to be a single ar [9℄.Limitations of our result should also be observed. The variations indued bythe ow of vetor �elds orrespond to the `weak', C1-small variations (as opposed to`strong', C0-small variations) that are exploited in the Euler-Lagrange equations ofthe lassial Calulus of Variations. It is doubtful how signi�ant a role suh variationsan play, if it omes to show, say, that a ertain open-dense set of small measure isnot an optimal window.We have not established an analog of the fundamental lemma of the alulus ofvariations that would permit elimination of the vetor �eld X . In the absene ofa-priori regularity for optimal windows, suh an attempt seems extremely diÆult.There is however some hope to get nontrivial boundary regularity for the optimaleigenfuntion by seleting vetor �elds onstruted from the eigenfuntion in someappropriate way. We plan a further investigation of this issue.In spite of these limitations, Thm 6.2 does give some insight into the question ofoptimal windows, and in partiular into the variation of windows with a given a-prioriregularity.Aknowledgments: The seond author would like to thank Steve Cox for a quikintrodution to matlab's pdetool that boosted the experimental work; V.G. Maz'ya for aninspiring hat in Darmstadt, and U. Mertins for sharing some of his numeris on the problem,eah several years ago. REFERENCES[1℄ R.A. Adams, Sobolev Spaes, Aademi Press, 1978[2℄ F. Brok, A.Yu. Solynin, An approah to symmetrization via polarization, Trans. Amer.Math. So. 352 (2000), pp. 1759{1796[3℄ A. Burhard, Steiner symmetrization is ontinuous in W 1;p, GAFA 7 (1997), pp. 823{860[4℄ J. Brothers, W.P. Ziemer, Minimal rearrangements of Sobolev Funtions, Crelle J. ReineAngew. Math. 384 (1988), pp. 153{179[5℄ R. Courant, The Dirihlet Priniple, Intersiene Publ., 1950[6℄ St. Cox, P.X. Uhlig, Where to best hold a drum fast, SIAM J. Optim. 9 (1999), pp. 948{964[7℄ M. Dauge, M.S. Lubuma, S. Niaise, CoeÆients des singularit�es pour le probl�eme de Dirih-let sur un polygone, C. R. Aad. S. Paris 304 (1987), pp. 483{486
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