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Abstract. For the Laplace operator with mixed (Dirichlet and Neumann) boundary conditions,
the dependence of the principal eigenvalue on the placement of the Dirichlet part is investigated. An
optimal window is a Dirichlet part of the boundary that minimizes the principal eigenvalue among
all competitors of the same area.

In the special case of a square, we provide both numerical evidence and rigorous partial results
for the conjecture that optimal windows in a square are segments centered at either a corner or the
midpoint of a side. In particular, we prove that the principal eigenvalue decreases as a window is
shifted from a side-centereed position towards the corner. An optimal window contained in two sides
of the square is connected and contains a corner in its interior. Optimal windows whose length does
not exceed the length of one side break the symmetry of the square.

We also construct a starshaped domain whose optimal window(s) must be disconnected. Finally
we give, for general domains in R?, continuity results for the eigenvalue as a function of the window,
and examples of discontinuity when crucial hypotheses are violated. We also give a variation formula
that relates the eigenvalue to the singularities of the eigenfunction (stress intensity coefficient) near
the boundary of the window.

Methods are based on the variational problem and include rearrangement, Dirichlet Neumann
Bracketing, capacity estimates, and deformation under a flow.
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1. Introduction.

1.1. Overview over the Results. Consider the first eigenvalue of the Laplace
operator in a fixed domain Q C R? (say, bounded Lipschitz)

(L.1) —Au=XAu, ©u>0 inQ

with Dirichlet boundary conditions on some subset D C  and Neumann on the
complement of D, i.e.,

(1.2) U|D =0 , 8,,u|39\D =0.

Technical questions of how these boundary conditions should be interpreted will be
discussed below. We will call A = A(D) the principal eigenvalue of the Laplacian
under the window boundary conditions on D. The problem of optimal windows asks
for minimization of this eigenvalue for prescribed surface area of the window.

As explained in [8], one may think of 2 as representing a room, with perfectly heat-
conducting windows at D and insulating walls along 0Q\ D. The principal eigenvalue
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A(D) gives the rate of exponential decay of any initial temperature distribution due
to heat diffusion through the window as time becomes large, while the corresponding
eigenfunction gives the asymptotic temperature profile. An optimal window minimizes
long-term heat loss among all windows of a given size.

It has been shown in [9] that such optimal windows exist and that in the case
of a ball of any dimension the optimal window is a spherical cap of the appropriate
area. Similar results have been obtained independently by Cox and Uhlig [6], who
treat windows as a singular limiting case of Robin boundary conditions.

Here we are concerned with the question what can be said about the geometry
of optimal windows when () is not a ball. We suspect that an optimal window in a
convex domain € should be connected, have some basic regularity properties, and lie
in a region of 0} with large mean curvature. This is certainly not the case for more
general domains, as we show by constructing an example of a star-shaped domain
with a disconnected optimal window. Heuristic evidence concerning the location of
optimal windos has been discussed in [8], and is also corroborated by results of Harrell
et. al. [13] on a different, but related problem.

As a model case for a convex domain, we study a square: The determination of
the shape of optimal windows is already nontrivial in this case. Here we conjecture
that the optimal window is a segment, centered either at the midpoint of a side or at
a corner, depending on the prescribed boundary measure (length); and that there are
no other optimal windows, up to sets of measure zero. This conjecture is corroborated
by a number of rigorous partial results as well as numerical evidence. See Figure 2.1.
In particular, we prove that the eigenvalue decreases as a short segment is moved from
a side-centered position to a position adjacent to a corner; and that this monotonicity
extends at least for some distance as the window is moved around the corner. We show
the first part of this result by means of a Dirichlet-Neumann bracketing argument.
The second part is proved by means of an Euler-Lagrange type variational formula,
which we derive for any domain of sufficient regularity in arbitrary dimension.

Furthermore we show that some segment containing a corner in its interior is
optimal among all windows lying on only two sides of the square (adjacent or not). The
proof relies on discrete rearrangement arguments that are specific to the square (with
some obvious, but maybe not too interesting, generalization to a cube or hypercube).

Numerical evidence shows that for segments whose length exceeds the sidelength
by a certain small amount, up to slightly more than two sidelengths, the corner-
centered position ceases to be optimal, with the side-centered position being better.
This can be understood heuristically in terms of the fact that optimal windows prefer
to use corners, as was already discussed in terms of a model problem in [8]. However,
distributing the window evenly around the corners (sacrificing connectedness) is not
advantageous and results in windows inferior to either the side-centered segment or
the corner-centered segment. For small windows, we can even prove this analytically.
On the other hand, our analytic results prove that the (non-optimal) window with
four congruent corner-centered components is still better than any other window that
has the full symmetry of the square.

Our study of the square also serves as a building block for an example of a star-
shaped domain where any optimal window is disconnected. A related example was
discussed heuristically in Figure 3 of [8].

The variation formula mentioned above is derived here for windows in general
domains of any dimension. Its upshot is that the rate of change of the eigenvalue as
a function of the window is determined by certain singular coefficients of the eigen-
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function that show up at each interface of window and wall on the boundary. In a
neighbourhood of such interface points, the eigenfunction (albeit in W1?) cannot be
expected to be W22,

In special geometries the singularities have been studied by Grisvard (e.g. [12]).
In the situation of a simple interface of a wall and a window segment on a side of the
square, the typically expected singular behavior of the eigenfunction is like ¢Im /2
in a neighbourhood of 0, where the number ¢ is the singular coefficient. We give a
simple lower estimate for this coefficient, based on a maximum principle, to ensure
that it does not vanish. In contrast, in a corner of the square, the singular coefficient
vanishes. These two facts are responsible that the eigenvalue can be lowered by
moving a segment a bit around the corner. For segments up to one sidelength, a
better control of the singular coefficients appearing in the variational formula (which
depend on global properties of the eigenfunction) should extend this monotonicity all
the way until a minimum is achieved when the segment is centered at a corner, but a
proof of this extended monotonicity has eluded us so far.

Contributions from geometric singularities (corners, ridges, conical points) have
been studied by many authors, and in vast generality, e.g., Maz’ya and Plamenevskii
[21]. Surveys are [16] and [23]. We are using only the very simplest case here.

The continuous dependence of the eigenvalue under shifts of the window and other
reasonable modifications of its geometry is an intuitively plausible, but nontrivial
result of relevance. For deformations of windows that can be achieved by the flow of
a vector field, our Euler-Lagrange argument proves even differentiability. However,
in the absence of good a-priori information on the window geometry, such flow type
modifications are rather weak; this is why we include some continuity results for other
modifications (in general Lipschitz domains). In this context, it is crucial to consider,
in addition to the formulation of the EVP adopted in [9], [8], a more sophisticated
definition that takes into account fine properties of eigenfunctions. It is easy to see that
the results in [9], [8] carry over. We will argue this point specifically for the existence
of optimal windows in Section 1.3. Both definitions coincide for optimal windows, as
well as for windows of sufficient regularity, in particular for open windows.

1.2. Basic Facts, Context, and Notation; Variational Formulation. Let
us introduce some notation. The symbol (2 will generally denote a bounded Lipschitz
domain in R?, and the window D will be a measurable subset of 9f2: as surface
measure on 0f), we use d — 1-dimensional Hausdorff measure, denoted here by . A
point in D NN \ D will be called an interface point.

The Laplacian with the window boundary conditions (1.2) will be denoted by
Ap. The word ‘eigenvalue’ without adjective or ordinal will always denote the lowest
eigenvalue, which is simple. This eigenvalue will be denoted by A(D).

Define the optimal eigenvalue for windows of a given surface measure by

(1.3) A(0) = inf{\(D) | DCoQ, a(D) = (}.
A set D C 99 will be called an optimal window, if A(D) = \.(c(D)), that is, if
(1.4) AD) = inf{\(D") | D' C 99, o(D") = o(D)}.

In [8] and [9], the eigenvalue A(D) in (1.1) and (1.3) was defined by the Courant-
Hilbert variational problem (CHVP)

(1.5)  XD) = min{/ |Vu|? dx ‘ u € WH(Q), / w*dr =1, ulp = 0} .
Q Q
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Here, the restriction u|p of a function v € W12(1) is to be understood as the trace.
By general Sobolev space theory ([1, Thm. 5.4] or [10, 4.3, Thm 1]), the trace of a
Wh2-function is guaranteed to be an L?(91) function. The condition u|p = 0, in the
L?-sense, will not distinguish sets D and D' if they differ by a set of d — 1-dimensional
measure zero, and therefore, the Dirichlet conditions for D in (1.1) need to hold only
on a set D' thus differing from D. We refer to this definition of A as the coarse
formulation of the eigenvalue problem (1.1) and the CHVP (1.5).

The Neumann boundary conditions on 9 \ D in equation (1.1) arise as natural
boundary conditions for the variational problem in (1.5). The minimizing function
u is a normalized eigenfunction corresponding to A(D), and can be chosen to be
nonnegative. It agrees a.e. with an analytic function in the interior of 2, but is not
guaranteed to be continuous up to the boundary 02, unless some assumptions are
made on the geometry of D.

Clearly, the principal eigenvalue A\; (D) increases under inclusion of windows

D, CcD, = /\(Dl) C /\(D2)7

since the minimizing function in the CHVP for A(D;) is an admissible test function
for the CHVP determining A(Ds).

1.3. Fine Variational Formulation. As mentioned above, there is another
meaningful definition of the boundary conditions (1.2) and the corresponding varia-
tional problem (1.5). Since W!2-functions can actually be determined quasi-every-
where, that is, up to a set of zero capacity, one can insist that the Dirichlet boundary
conditions in (1.1) and in the Courant-Hilbert variational problem (1.5) hold on a set
D’ that may differ from D only by a set of zero capacity. Since every set of capacity
zero has d — 1-dimensional measure zero, but not vice versa, this is a stronger condi-
tion. It corresponds to choosing a smaller domain for the quadratic form associated
with Ap. We will refer to this definition of A(D) as the fine formulation of (1.1)
or (1.5). When necessary, we distinguish the two definitions by superscripts, writing
(D) and M (D) for the coarse and fine eigenvalues, respectively. In general,

(1.6) M(D) > x*(D),

and it is easy to construct examples where the inequality is strict: any (fractal) window
with Hausdorff dimension between d — 2 and d — 1 has measure 0 and nonvanishing
capacity [10, 4.7.2],[19, 2.1.7], hence coarse eigenvalue 0, but positive fine eigenvalue.
The notion of sets of capacity 0 is well-defined even in two dimensions, where capacity
can only be defined subject to some arbitrary choice. We can even completely avoid
such subtleties, by replacing the window D in Q@ C R? with the equivalent window
D x [0,1] in © x ]0,1[ C R3.

In order to relate coarse and fine eigenvalues, we represent an element u of a
Sobolev space by a function defined everywhere, which will be called the preferred
representative. For any given Lipschitz domain € and any neighbourhood V' of Q,
there is a linear bounded operator & : Wh2(€) — WL2(V) < WL2(R?) that extends
Sobolev functions in € to the entire space as outlined in [10, 4.4], i.e., u|q = u. Then
we choose the preferred representative as

(1.7 a(z) = limsup% Eu(y)dy for z€Q.
B, (z)

r—0

The lim sup is in fact a limit, except on a set of zero capacity, and @ is quasicontinuous
(as defined in [19, 2.17]).
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The extension operator £ is not unique, but depends on a choice of locally flatten-
ing coordinate charts, and we make such a choice once and for all, for each given (2.
The preferred representative on () depends on the extension operator, but any two
choices will only differ on a set of capacity zero. See [19, Thm 2.55&Rmk] or [10, 4.8,
Thm 1]. The restriction of @ to 02 represents the trace of u.

THEOREM 1.1. For the CHVP (1.5) in the fine formulation, there exists a mini-
mizer which is uniquely determined quasi-everywhere up to choice of a sign.

Proor: This is a slight modification of the classical argument for the existence
of a minimizer for (1.5) in the (coarse) Sobolev sense. Let u; be a minimizing sequence
of quasicontinuous functions (in W12?(R?), by extension) satisfying the boundary
conditions in the fine sense. Extracting a subsequence (again denoted by u;), we
may assume weak convergence in W1?2(Q), strong convergence in L?(Q2) and (by
compactness of the trace map) strong convergence in L2?(0f2), to a limit function
ux. We have to show that u, inherits the fine boundary conditions from {u;}. To
this end, we replace the sequence {u;} by a sequence {@;} of convex combinations
that converges strongly in W12 according to Mazur’s theorem (see, e.g., [18, 2.13]).
The normalized sequence i; := @;/||t;|12(q)) still converges strongly in W'*(Q)
because ||@;]|z2(@) — 1. The 4; inherit the fine boundary conditions from u; and
form therefore a sequence of legitimate competitors in the CHVP.

Now by convexity, we obtain

/|Vu*|2 =lim/|V7j]~|2 =lim/|Vﬂj|2 Slim/|Vuj|2 :inf/|Vu|2.

We must show that w, inherits the fine boundary conditions from the ;. This follows
from the arguments in Sec. 2.1.3 of [19], which we sketch briefly, for the sake of being
more self-contained:
(1) If a sequence of C§° functions v; (with uniformly bounded support) converges
strongly in W12(£) to some u., then it holds for a subsequence (again called v;):
Ve > 03V; open : cap(V:) <e, v — usllcoy.) = 0

(2) Every W12(Q) function u can be approximated in W12 (Q2) norm by C§° functions
vk, (with uniformly bounded support), such that

Ve >0 3W. open : cap(We) <e, [lvk — ullcow,) = 0
(The existence of a quasi-continuous representative is actually a consequence of this.)

Now there are open sets V; with cap(V;) < 27/ such that 4; is continuous on
Q\ V; and vanishes on D \ Vj, and there are smooth approximants ¢; such that
10 — Gsllwr2q) < 277 and ||o; — @ill o @, \wy) < 277 for appropriate open sets W;
with cap(W;) < 277. Therefore, for every jo, the sequence ¥; converges uniformly to
u, outside the set Vj, 1= Uijo (V; UW;), whose capacity is at most 2277, Hence u,
vanishes on D \ V},, for every jo.

(We could have simplified the argument by starting with a smooth minimizing
sequence u; from the very beginning, but prefer the generality for possible future
convenience.)

Uniqueness and positivity follow from the strong maximum principle as in the
classical argument. |

The coarse and fine formulations of optimal windows and their eigenfunctions
essentially agree:
PROPOSITION 1.2. Let A¢(£) and A (¢) be optimal eigenvalues for windows of
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size £, as defined by (1.3) in the coarse and fine sense, respectively. Then
(1.8) MO = X(0)  (0<< i) -

Furthermore, D is an optimal window with respect to the coarse definition, if and only
if it differs by a set of d — 1-dimensional measure zero from an optimal window for
the fine formulation.

Proor: Clearly, from (1.6), we have

M0 > X5(0) .

To see the converse inequality, take an optimal window D for the coarse formulation,
ie, A°(D) = X¢(¢), and let u® be a minimizer of the corresponding CHVP (1.5). Let
¢ be the preferred representative of u¢, as defined above, and set

D' :={x €| a‘(x) =0} .

We refer to this procedure as refining the window D. By definition, o(D’) > ¢ and
AS(D") = A«(£). Since 4°|ps vanishes identically, it is an admissible candidate for the
CHVP (1.5) for A (D"). It follows that

M(0) < M(D) = X(D) = X(0) .

Note that we always have A (D’) < X¢(D) since @¢ vanishes on D’. Whenever
M (D) > X¢(D) occurs, this is due to D \ D' having positive capacity, which makes
u° ineligible for the fine CHVP. Whenever de Giorgi’s continuity argument applies
at each point of D, i.e., when u® has a representative that is continuous on Q U D,
then @° is admissible for the fine CHVP and thus A (D) = A°(D). This holds in
particular if D is open, notwithstanding possible discontinuities of u¢ at interface
points. A de Giorgi argument can also be used to show continuity of u®, provided
the window has positive density at every interface point p € D N9Q \ D. We suspect
that eigenfunctions for optimal windows should be continuous up to the boundary,
but this is an unresolved question.

2. Numerical Results for the Square. We have used the matlab pdetool to
calculate, by means of finite elements, the lowest eigenvalue for various window con-
figurations. The calculation was done with a sequence of at least three subsequent
mesh refinements so that numerical convergence within the precision of the graphics
could be checked by inspection. In the accompanying Figure 2.1, we show the eigen-
value as a function of the length of the window, for five different simple geometric
configurations.

As outlined in Section 1.1, we conjecture that the configurations giving the lowest
eigenvalue in Fig 2.1 (namely either a side-centered or a corner-centered segment,
depending on the length) is in fact the optimal configuration. As a rule of thumb, the
better of the two choices of symmetric and connected windows is the one that contains
more corners. Exceptions to this rule occur near integer multiples of a sidelength.

Figure 2.1 also displays a feature of the first variation formula: when the interface
points are in the corner (which implies vanishing of the singular coefficients), the
derivative of the eigenvalue vanishes. These are just the explicitly calculable cases
marked in the figure. Our numerics does not resolve the modulus of continuity at
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D T two-component window, symmetry axes parallél to sides LT
---- two-component window, symmetric to diagonals e
——- one-component window, symmetry axis parallel to side /
—— one-component window, symmetric to diagonal Y
------ 4-comp’ window, corner-centered, full symmetry /
(= scaled version of ——) o /

FiG. 2.1. Five sections through the space of windows, each parametrized by length. The hori-
zontal azris measures the length, in units of the perimeter of the square, the vertical azis gives the
eigenvalue relative to the full Dirichlet eigenvalue. The labels mark those window configurations
that can be calculated explicitly by separation of variables. In these pictograms, bold lines denote
Dirichlet BCs.

length 0. However, for each of the curves printed, it can be seen analytically that
c1/1n(1/6) < A(0) < ¢2/1n(1/0) (with & the total length of the window): the lower
bound follows from Thm 5 in [8] (slightly modified for two dimensions, as pointed
out there); the upper bound is an immediate consequence of our capacity estimate in
Prop. 5.2 and eqn. (5.2) below. Sharp asymptotics for a different, but closely related
problem, can be found in ch. 9 of [20].

We next study the dependence of the eigenvalue on the position of the window.
In Figure 2.2, we shift windows of a given length from a side-centered to a corner-
centered position. We cannot expect the eigenvalue to depend monotonically on the
shift parameter for all lengths, because the side-centered and the corner-centered
configuration yield the same eigenvalue for three particular lengths, close to 1.02,
2.04, 3.15 sidelengths, as seen in Figure 2.1. However, we observe in each case that
even local minima only occur in symmetric positions, supporting our conjecture.

The slope of the shift curves is proportional to the difference of the singular coef-
ficients at the endpoints of the segment. In the symmetric configurations, this slope
vanishes by symmetry. When both endpoints lie in a corner, where the singular coef-
ficients vanish, the derivative appears to vanish to a higher order, indicating further
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vertical zoom of two
curves on left

corner-centered

F1a. 2.2. The eigenvalue for connected windows of nine different lengths and two-component
windows of two different lengths, as a function of a shift parameter. The horizontal azis indicates
the distance to a side-centered position.

cancellations. This can be plausibly observed for lengths 1 and 3 in the side-centered
configuration, and for length 2 in the corner-centered configuration.

Finally, we observe the effect of tearing apart a connected window into two pieces.
See Figure 2.3. Note the competition between corner positions and connectedness as
geometric features favoring low eigenvalues.

3. Rigorous Results for the Square. In this section, we collect some inequal-
ities and monotonicity results that are specific to the square.

3.1. Monotonicity of Shifting (Rectangle). For the geometric situation, see
the top of Figure 3.1

THEOREM 3.1. Let Q be a rectangle. The principal eigenvalue of a connected
window D which is contained entirely in one side of O is a continuous, strictly
decreasing function of the distance of D from the side-centered position.

PRrOOF: By scaling, rotating, and translating, we may assume that =0, 1] x
]0,h[, and that the window is contained in the bottom side of the rectangle. See
Figure 3.1. For 0 < £ < land [¢t| < (1—0)/2,let D(t) =]3 +t—£, 1+t +£[x {0} be
the window of length £ that has been shifted by ¢ from the side-centered position, and
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Fia. 2.3. Ezamples of competition between connectedness and corner position for small win-
dows. Dotted lines: The first hump for the side-centered window is actually azially symmetric, due
to the argument used in Section 3.1.

2 =10,1[ x 10, h[ |
D=l+t=g3+t+50x{0) ot
AD) =: AH) 02 ie)2

Q (cylinder)

/2 /2

Fic. 3.1. Shifting windows in a rectangle after doubling it to obtain a cylinder

denote the corresponding eigenvalue by A(¢). By symmetry, A is an even function of
t. Continuity of A\(¢) follows most easily from Prop. 5.2. To prove the last assertion,
we will show that

(3.1) At +t2)) > min{A(t1), M(t2)}

holds for any pair ¢; < to. Setting t; = —t, t = t in Eq. (3.1) and using that
A(—t) = A(t) shows that \ takes its global maximum at ¢ = 0. Setting t,/,, =t Fe¢
in Eq. (3.1) shows that A(t) cannot assume a local minimum on the open interval
10, (1 —£)/2[. We conclude that A(t) is strictly decreasing on [0, (1 —¢)/2], as claimed.

In order to prove claim (3.1), we combine a doubling trick with a special case
of Dirichlet—Neumann Bracketing (see [22], XIII.15). Fix t; < to with [t1],|t2] <
(1—=20)/2, set t = (t1+1t2)/2, and let u be the positive normalized eigenfunction for
the rectangle Q =10, 1[ x 10, h[ with the window D(t).

Consider the the CHVP on the cylinder Q = (R/2Z) x]0, h[, with window D(t) =
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D(t)u(—D(t)), which is obtained by gluing a copy of  with window D(t) to its mirror
image along the vertical edges. Since the minimizing function ¢ is automatically
symmetric by simplicity of the principal eigenvalue in a connected domain, it follows
that this CHVP on Q with window D(t) is equivalent to the CHVP on Q with window
D(t). In particular,

1

V2

and the corresponding principal eigenvalue coincides with A(%).

On the other hand, with the understanding that x coordinates are interpreted
modulo 2, the cylinder Q contains the disjoint union of the rectangles Q; = ](ty —
tl)/2, 1+ (tz — tl)/2[ X ]0, h[ and QQ = ]—]. + (tz — tl)/2, (t2 — tl)/2[ X ]0, h[, which are
copies of ) with windows D(t;) and D(t3), respectively. By restricting 4 to 3 U {2y
we obtain a test function for €; Uy with window D(¢;) U D(t2). Since the principal
eigenvalue for a disjoint union of domains is the smaller of the two eigenvalues, it
follows that

A(t) > min{A(t), A(t2)).

The functions u; = ulg, and us = |g, cannot be eigenfunctions for A(¢;) and A(t2),
because the gradient of @ vanishes at those boundary points of ; or Q- that were
corners of 2, in violation of the Hopf boundary point lemma for u; and us. This
completes the proof of Eq. (3.1). [ |

The doubling argument used in the proof shows that two connected window seg-
ments of length ¢ each, placed symmetrically with distance 2s from the center of a
rectangle of side length 2 yield the same eigenvalue as two such windows placed sym-
metrically with distance 2(1 — £ — s) apart. This can be observed in the curve for the
side-centered configurations in Figure 2.3.

3.2. Optimality Among Windows on One or Two Sides. The monotonic-
ity argument in the previous subsection implies in particular that among all connected
windows contained in one side of a rectangle, the one touching a corner produces the
minimal eigenvalue. We next consider windows contained in two sides of a square.

THEOREM 3.2. Among all windows that lie on only two sides of the square
(adjacent or not), the optimal window is connected and contains a corner of the square
un its interior.

The proof is based on rearrangement techniques, which have been widely used
for geometric inequalities (see [14, 18] for a general reference). Here we will use two
rearrangements adapted to the square: the increasing rearrangement and polarization.

For a nonnegative measurable function u on a rectangle, we define the increasing
rearrangement in the x-direction, Ru, by replacing the restriction of u to each line y =
const with the unique non-decreasing left-continuous function which is equimeasurable
with u(-,y). By Fubini’s theorem, Ru is equimeasurable with u.

LEMMA 3.3. Let u be a mnonnegative WL -function on a rectangle Q = ]0,1[ x
10, k[, and let Ru be its increasing rearrangement in the x-direction. If the trace of u
vanishes o-a.e. on a window

D = ({orx D) u ({13 x D) U (D x {0}) U (Di x {1}) ,
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then Ru vanishes o-a.e. on the window RD defined by

(3.2) (RD)i=DyUD,, (RD), =0, (RD)y =]0,0(Ds)[, (RD)¢ =10,0(Dy)[.

In general,
o(D) > o(RD),

with equality certainly when D, = (). The corresponding principal eigenvalues satisfy
A(D) > A(RD) ,

with equality only when RD agrees o-a.e. with either D or its mirror image.

FiG. 3.2. The effect of the symmetric increasing rearrangement on a window with components
on all four sides of a rectangle.

ProoF: If u is continuous up to the boundary of the rectangle and vanishes on
D, then its rearrangement Ru is also continuous and vanishes on the window RD. To
see that the trace of Ru vanishes on RD for any nonnegative nonnegative function u
in W12 vanishing on D, we note that the increasing rearrangement is closely related
with Steiner symmetrization. In fact, if we extend both v and Ru by reflection across
the line z = 1 to functions @ and Ru on the doubled rectangle 0 = ]0, 2[ x ]0, h[, then
Ruis just the Steiner symmetrization of @i Since Steiner symmetrization is continuous
on W12 [3], R is continuous as well, and the first claim follows by a density argument.

For the second claim we use that R preserves the L?-norm but reduces the norm
of the gradient. In particular, R can only decrease the Rayleigh quotient. Choosing
u to be the principal eigenfunction of the CHVP corresponding to the window D, we
see that

2 2
[ IVul? dz S [ IVRul|? dz > A(RD) .

(3:3) AD) = JlulPdz = [|Rul?dz —

By analyticity, the partial derivative 0,u vanishes only on a set of zero measure. It
follows from a theorem of Brothers and Ziemer [4] that the rearrangement inequality
in Eq. (3.3) is strict unless u is already either increasing or decreasing in x on each
line y = const. |

The second rearrangement exploits the symmetry of the square under reflections
at the diagonals. Let Q@ = ]0,1[ x |0, 1[ be the unit square, and let 7(z,y) = (y,z)
denote the reflection at the diagonal joining the lower left with the upper right hand
corner. For any function u on {2, the polarization Pu of u with respect 7 is given by

_ | max{u(z,y),u(r(z,y))}, ify>uz,
P“%”“{mmmwwxwdmwn, if y < z.
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For a comprehensive account of polarization we refer to [2]. We have the following
lemma:

LEMMA 3.4. Let u be a nonnegative Wh2-function on the unit square Q =
10,1[ x 10,1, and let Pu be its polarization, as defined above. If (the trace of) u
vanishes o-a.e. on a window

D = ({0} x D,) U ({1} x D,) U (D,, x {0}) U (Dt x {1}) ,
then Pu vanishes o-a.e. on the window PD with
PDy =D NDy, PD,=D,UD;, PDy=D;UDy, PD; =D, ND;.
In general,
o(D) =0(PD),
and the principal eigenvalues satisfy
A(D) = M(PD),

with equality only if PD agrees o-a.e. with either D or 7(D).

ProOF: The form of PD is immediate from the definition of P. To see the
second claim, choose u to be the principal eigenfunction corresponding to the window
D. Since Pu is equimeasurable with u, and |VPu| is equimeasurable with |Vu| by
definition of the polarization, we have

[IVulPdz [ |VPul*dx
A(D) = = > A(PD) .
(D) [ |u? dz J|Pul?dz — (PD)
Unless Pu agrees with either u or u o 7, it cannot be real analytic, and hence is not
the eigenfunction corresponding to A(PD). We conclude that then the last inequality
is strict. |

Proor or THM. 3.2:

Within the class of windows contained in two sides of the square, there clearly exists
an optimal one. By Lemma 3.4, a window consisting of two non-empty parts contained
in two opposite sides of the square cannot be optimal, since it can be improved by
polarization.

If D is contained in two adjacent sides (say, left and bottom) of the square,
Lemma 3.3 implies that replacing D with R D strictly reduces the principal eigenvalue,
unless the bottom part of the window is connected and contains a corner. Note that
in this case, RD has the same length as D. Repeating this argument for the vertical
direction, we see that also the part of D on the left hand side must be connected and
contain the lower left corner.

It remains to show that a corner must lie in the interior of the window. If the
length of D happens to equal the length of one side of the square, we refer to the
numerical result, which shows that the corner-centered position improves over the
one-side position. Otherwise, we refer to Cor. 6.3 below to show that moving the
segment a short distance round the corner improves the eigenvalue. |
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3.3. Non-Optimality of Zs X Z,-Symmetric Windows. We have the follow-
ing theorem:

THEOREM 3.5. In a rectangle, any window of sufficiently small length that has
the full symmetry group of a rectangle is not optimal. In particular in a square, a
symmetric window whose length does not exceed the length of one side is not optimal.

As mentioned before, numerical results for the square indicate that the length
restriction is not needed.

PrOOF: In self-explanatory pictogram notation, we reason that

) () - T) ()

exploiting symmetry, scaling, and the rearrangement of Lemma 3.3 in turn. The last
inequality is strict unless the window consists of four L-shaped windows in the corners
to begin with, showing that an optimal window having full symmetry must be of that
form. In Eq. (3.4), we have gained a factor 4, but lost half of the window length. We
now double the window using Lemma 6.1.

Assume that the rectangle has the form @ =]0,a[x]0, b] and the L-shaped window
(called Dy ) has lengths g,a and ¢,b on the horizontal and vertical parts respectively.
An admissible test function for the CHVP for an L-shaped window with side lengths
2¢,a and 2gyb is given by uo, where ¢(z,y) = (h(x), k(y)) with h, k piecewise linear
such that h(0) = k(0) = 0, h(a) = a, k(b) = b, and h(2¢ya) = gga, k(2¢,b) = ¢,b. Tt is
easy to see that ¢ : Q — 2 is bi-Lipschitz. The largest value for the spectral radius of
(D) (D)t [ det Dy is 2(1—q)/(1—2q) with ¢ = max{q, g, }, and the largest value for
det Dy is (1—¢,)/(1—2¢,) x (1—g¢,)/(1—2g,). By Lemma 6.1, the window ¢~ *(Dp)
is an improvement over the original window, whenever 2(1 — ¢)3/(1 — 2¢)® < 4, which
happens for ¢ < 0.17 and translates to a smallness condition on the window size,
depending on the side lengths of the rectangle.

In the square ]0, 1[x]0, 1], an optimal window which is symmetric under reflections
at the vertical and horizontal axes must be symmetric under reflection in the diagonals
as well, since otherwise a better window is obtained by polarization; this gives g, =
¢y =: q. We can now get a better quantitative estimate in Eq. (3.4) for the square.
Define a bi-Lipschitz map by setting

(3.4) A

N
=
i |
| 1
-

(21- L0 -y)) ify>1-(1-20)(1-2) (M

(2,3 +9)) fr<y<l—(1-29(1—o) ()

Y (z,y) =

above the diagonal, and an analogous formula below the diagonal. The spectral ra-
dius of (Dvy)(Dv)T/ det Dy is (1 — ¢)/(1 — 2¢) in domain (I) and (3 + v/5) in (II).
The Jacobian det Dt is largest in (I), namely (1 — ¢)/(1 — 2¢). Lemma 6.1 as-
serts that the window can be doubled with a factor < 4 in the eigenvalue, provided
o(D) = 4q < 4(5 —V5)/(13 — /5) ~ 1.027. ]

COROLLARY 3.6. The result of Thm. 3.5 holds, for sufficiently small windows in
a rectangle |—a, a[ x |—b, b, under the weaker assumption that either (a) there is equal
window area in each of the four quadrants, or (b) the window is symmetric under the
180° rotation (z,y) — (—x, —y)-

Proor: For (a), the first step in (3.4) can be replaced with an inequality, where
that quarter is selected that contributes the smallest Rayleigh quotient. For (b), note
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that the symmetry is inherited by the eigenfunction, and we have u(0,y) = u(0, —y).
So we can define & € W12 by: a(x,y) = u(z,y) for x < 0, and a(x,y) = u(z, —y)
for x > 0. @ represents another window D with the same area as D, has the same
Rayleigh quotient, and is not the optimizer yet, unless D= D; this reduces the corol-
lary to the theorem again. |

4. A Star-Shaped Domain With Disconnected Optimal Window. We
here prove the properties of the following

EXAMPLE 4.1. There exists a starshaped Lipschitz domain Q in R? and a length
¢ such that a connected window of length £ in Q cannot be optimal.

PROOF: In a one-parameter family of domains ()., we calculate an upper bound
for the eigenvalue of a certain window Dy with two components. Then we establish a
larger lower bound for the eigenvalue of any connected window D. These estimates,
based on Dirichlet-Neumann bracketing, work for sufficiently small £, and can be
made quantitative.

Q. is the union of a ‘torso’ rectangle T, and a pair of ‘handles’ H., —H.:

(4.1) T, :=]-1,1[x]-1—¢g,1+¢[, H::=[1,9—¢[x]—¢,¢.

See the top left part of Figure 4.1. We choose Dy := (09Q.) \ T-, with o(D,) = 32.
The remaining boundary W := (0€.) \ D> has measure o(IW) = 8.

F1G. 4.1. Top left: A starshaped Lipschitz domain whose optimal window(s) of a certain length
£ cannot be connected. Top right: upper bound for eigenvalue of disconnected window. Bottom:
Lower bounds for connected windows.

For comparison, disconnect the handles from the torso by means of extra Dirichlet
boundary D. = {£1} x [—¢,¢€], as in the top right of Fig. 4.1. With fewer competitors
in the CHVP (1.5), we get an upper bound. In self-explaining notation, we conclude

AQe, D) < min{/\Dir(HE),/\(TE,DE)} = \T.,D.).

By testing the EVP for T. with sin §(|y| —€)+, one can see that the evaluation of the
minimum is valid for all € < 1.

For any connected window D of length 32, it can easily be seen that, except for
reflection symmetry, either D D Dy or D D D;, where

Dy = {(z,y) € 00 |y < —€}
Dy = {(z,y) € 90, |z < 1} U[L,5] x {—¢}
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To get lower bounds for A(Q, Dg) and A(2., D1), disconnect the handles from the
torso by means of extra Neumann boundary {£1} x[—¢, ¢]: In slight abuse of notation,
we write A(T;, D;) for A(T., D; N 0T.), and similarly for H.. We have either

(4.2) A, D) > min{A(H., Do), A(T-, Do) } = A(T:, Do) > (75)?
or
(4.3) AQ.,D) > min{/\(HE,Dl),)\(Tg,Dl)} = \(H., D)

The evaluation of the minimum in (4.2), for any e, relies on a test function that
vanishes for y < —e. The evaluation of the minimum in (4.3) is valid for all € < 3,
since then, using comparison functions cos(my/(2 + 2¢)) and sinw(z — 5)4/2(4 — ¢),

MTe,Dy) > (/(2+2€))* > (n/(2(4 —€)))* > A(H:, Dy) -
For € < %, we can also conclude that
A(H:,Dy) < (7/(8—2¢))* < (v/(4+4¢))* < A(T%, D) .
It therefore only remains to prove the middle inequality in
AQe,D) > AN H:,D1) > MT:,D.) > X\Q¢, D>) .

But as € — 0, one has A\(T.,D.) — 0, whereas A\(H.,D;) — (w/8)?. This intu-
itively clear fact can be proved in a straightforward way by writing the quadratic
form [ (u2 +uj)drdy as a quadratic form [(ex(§)~"uf + e~ "x(§)up) d§ dn on L?
with measure ex(§)d¢ dn in a fixed reference domain 10,8 x |—1,1[. Here x(§) =1
for £ < 4, and x(§) =1—¢/4 for £ > 4. If we carry out the limit ¢ — 0 in the CHVP
with the appropriate eigenfunctions, we have the uniform upper bound (7/(8 — 2¢))?
for the eigenvalue, as mentioned before. This controls the W12 norm in the fixed
domain, and actually enforces u,, — 0. The limiting function will indeed not depend
on the n coordinate and solve the one-dimensional eigenvalue problem —uge = Au on

[4,8] 3 &, with u(4) =0, u¢(8) = 0. [ |

5. Some Continuity Results. In this section, we study how the eigenvalue
changes if a window of a particular size is added at a particular location. The basic
philosophy is that windows can be added more cheaply at locations where the eigen-
function was already small before the addition. In the second subsection, we discuss
related continuity properties of the corresponding eigenfunctions.

5.1. Continuity of Eigenvalues. Our first result is an estimate for the increase
of the principal eigenvalue, if a set of small capacity is added to a given window.

LEMMA 5.1. Let Dy D Dy and let uy be the normalized eigenfunction for Dy. Let
G be a domain containing D2\ Dy; in case the dimension d = 2, assume additionally
that G is bounded. Then

/\(Dl) vol (G N Q) + Cap(D2 \ Dl, G) (Sllp U1)2

(3.1)  A(D2) =A(D1) € === (SUpgg u1)? vol (G N Q) G

where cap is the capacity defined in [19, 2.2.1], namely:

cap(Dz \ D1,G) := inf{/ |Vol?
G

v =114n a nbhd of D>\ Dy ; UECSO(G)}.
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PROOF: Let M := supgnqq w1 As explained in [9] near (3.2), it follows from de
Giorgi’s argument (see formula (5.12) in chapter 2 of Ladyzhenskaya—Ural’tseva [17])
that supq u; is finite, and can even be chosen to depend only on 2, not on D;. To
obtain a test function for the CHVP which determines A(D2), we modify u; in G: In
GNQ,let uy ;= min{uy, M (1 —wv)}, where v is one of the functions that approximate
the capacity of Dy \ Dy; outside (if any), let us = u;. Since us = uy on QN OG, this
does not introduce discontinuities, and us is an admissible test function for A(D3).

Clearly

/Ué(:ﬂ)Z/ u%Zl—MZVOI(GﬂQ)

Q Q\G

and
/|VU2|2 g/ |Vu1|2+M2/ |W|2—>/ Vs |? + M2 cap(Ds \ Dy, G)
Q Q G Q

as v runs through a minimizing sequence for the capacity functional. We conclude
(5.1) immediately. [

In applications of the lemma, G should be a small neighbourhood of D, \ Dy, so
that in the numerator on the right hand side of (5.1), the capacity term dominates
the volume term. It can be used to establish continuity of the eigenvalue under
deformations of sufficiently regular windows. The following simplified estimate suffices
to show the continuous dependence of the eigenvalue on the length and position of a
segment in a square:

PROPOSITION 5.2. For a given bounded Lipschitz domain Q C R?, there exists
a nonnegative continuous function n with n(0) = 0 so that for any pair of windows
D, C Dy C 09,

A(D2) < A(Dy) + 7 (diam(Dy \ D1))

where the n is a continuous function with n(0) = 0 which depends only on Q but not
on Dy and Dy. The result applies to the coarse as well as to the fine definition of the
eigenvalue.
PROOF:

We assume Dy \ D; C Bs(xo) where § := diam(D; \ D;) and use the Green’s function
as a legitimate limiting case for v in the capacity functional; namely, for dimension
d =2, let G = Br(xo) and 1 — v := Iny(|z — zo|/6)/In(R/6), with, say, R = V/§
when § < 1. For d > 3, we can take G = Bpr(zo) with R := §(@=2)/ and let
L—v:= (07112 — |z —zo|42)) /(642 — R~(4=2)), For simplicity, we can take
M := supq u; as an upper bound for supgng u1, and obtain the claim with

SApir + 2/ In(6-1/2)

wM? for d = 2
_ 2
(5.2) n(6) == 1—7M325
(d — 1)2de2(5d_2
1w M50 2 for d > 2

where wy is the volume of the unit ball. [ ]
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It should be noted that the modulus of continuity of the eigenvalue cannot be
expressed in terms of o(D5\ Dy) alone. This is due to the fact [8, Thm. 8] that for any
g, there exists a window of measure < € with eigenvalue > Ap;; —e. This observation
also implies, in view of the a-priori estimate for ||u||o and Holder’s inequality, that
an estimate in terms of ||ui]|, is not possible for any p < oo.

THEOREM 5.3. The optimal eigenvalue N, depends continuously on the prescribed
boundary measure of the window.

Proor: We will prove that in dimensions d > 2, the function £ — A, (¢) is
Holder continuous with exponent (d —2)/(d—1), for £ < ¢(09). In d = 2 dimensions,
we will obtain a logarithmic estimate for the modulus of continuity.

Fix ¢; < 0(99), and let D; be an optimal window with o(D;) = ¢;. It follows
from Prop. 5.2 that

)\(Dl U (Bs(zo) N BQ)) — AMD1) < n(d)

for any choice of 2o € 0 and § > 0. We want to choose z so that o ((Bs(zo) N 0€) \
Dl) is bounded away from zero. To do this, we use Fubini’s theorem to estimate

1
£ o((Bs(e) 009\ Dy)dr(w) = T Lo Lo, i i<s o))
= "883 BQEBI )U(Ba(y)) do(y)
> B CONE yienanU(Bg(y)) :

Since 2 is a bounded Lipschitz domain, there exists a constant ¢, depending only on
Q, such that o(Bs(zo)) > 6?1, We conclude that for any value of § there exists a
point xg € 0F2 such that

O'(BJ(I()) \D1) > <]. — %) cdd=1 .

For £y > {1, set

' <#f<am>>/() |

and let Dy = Dy U (Bs(xg) N ON). Since o(Dy) > {2, it follows that
Ae(l2) = Ac(lr) < A(D2) — A(D1) < n(0) -

The claim now follows from the expression for 5 given in Prop. 5.2. [ ]

The punchline of Thm. 5.3 is that we get a uniform modulus of continuity with-
out extra regularity assumptions on the boundary. For smoother 012, stronger results
could be obtained using the tools of Sec. 6. We conjecture (but have not pursued)
that the window D, in Ex. 4.1 is actually optimal, and that the modulus of continuity
at that length in Ex. 4.1 is precisely O(6%/3). This intuition is based on the r'/? sin-
gularity of the eigenfunction at the re-entrant corner, the role of singularities revealed
in Sec. 6, and the estimate from Lemma 5.1. A Lipschitz estimate for £ — A\.({)
should not be expected without further assumptions on 92, but smoothness (a.e.) of
09 will improve upon Thm. 5.3.
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The following simple lemma estimates the change of the eigenvalue under increase
of a window solely in terms of the eigenfunction on the smaller window.

LEMMA 5.4. Given Q C R? and two windows Dy C Dy C 0. Let u; be the
normalized eigenfunction corresponding to \(Dy). Then

vol (2) supp,\ p, U1

1 — /vol () supp,\ p, w1

PROOF: Let € := supp,\p, u1. Then v. = (uy —¢€)4 is an admissible test
function for both the CHVP’s defining A(D2) and A(D;) . We compute

(5.3) A(D2) = A(Dy) < AX(Dy)

(5.4) V.3 = / Vi - V(s — )5 = A(Dy) / wy (1 — €4 ,

where we have used the weak form [ VuVyp = X [up of the eigenvalue equation
Ay = —Au, with ¢ := v.. It follows that

a0 - a0y < L oy
e(uy —e
<A ff(gill— 5)?{
<MD _58)+H2 (vol ()2 .
The triangle inequality ||(u1 —¢&)+||l2 > 1—¢e (vol (Q))l/znow yields the claim. ]
For a given window D C 012, denote by
(5.5) Ds := (U Bg(a:)> NoQ (6>0), Do:=D

zeD

the relative §-neighborhood of D in 0. Continuity of the eigenfunction up to the
boundary is sufficient for continuity of the eigenvalue function § — A(Dy):
THEOREM 5.5. Let u be an eigenfunction for window boundary conditions on D,
and assume that the preferred representative 4 vanishes everywhere on D.
(a) If @ is upper semi-continuous on Q, then A(-) is outer regular at D in the
sense that for every € > 0, there exists a relatively open subset U C 0§} containing D,
with the property that

AU) < A(De) -

(b) If u is continuous up to the boundary of 2, then the map 0 — A(Dys) is right
continuous at § = 0.  We will show below (Thm. 5.7) that the hypothesis of part
(a) is satisfied for C*® domains in R?, and at flat pieces of the boundary in any
dimension. We conjecture that upper semicontinuity may hold at least for smooth
domains in any dimension.

Concerning part (b), continuity up to the boundary can be shown for the eigen-
function by a careful analysis of de Giorgi’s argument, under the assumption that the
window D has positive Lebesgue density at every interface point zo € D N 9Q\ D.
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We conjecture, but cannot prove, that eigenfunctions for optimal windows are con-
tinuous up to the boundary. Below, we show by an example that continuity of the
eigenfunction is not necessary for continuity of 6 — A(Ds).

Proor or THM. 5.5:
If the preferred representative @ is upper semicontinuous on the closure of €2, then the
set

U={zed | ulx) <n}

is a (relatively) open set containing D. By Lemma 5.4, we have that

A(D)
AD) < MU) < 7 oy

< AD) +e,

if n = n(e) is chosen sufficiently small (e.g., n := e(Api () vol (2))~!). This proves
outer regularity. If @ is continuous, then D is compact, and hence there exists a § > 0
so that Ds C U, which proves the second claim. |

Note that assuming that @ vanishes everywhere on D amounts to replacing D
with its refinement, and selecting the fine eigenvalue. Since coarse and fine eigenvalues
agree for the open windows Dy, continuity of A° certainly fails at any window D for
which A\¢(D) < M (D). Cantor sets of zero measure but positive capacity provide
examples of such windows.

However, § — A (D;) cannot be continuous in general either. For an open-dense
window D of small measure, we clearly have A(Ds) = Apjy, for all § > 0. However,
we claim that A\p < Api. To see this, note that up cannot agree with upi,, since
eigenfunctions do not take on ‘extra’ Dirichlet boundary conditions, as was shown
near Fig. 1 in [9]. Since up;, is an admissible candidate for the CHVP for Ap, it
follows from the uniqueness of the minimizer that Ap;; > Ap. We have hereby found
an example of a window whose eigenfunction is discontinuous at ‘most’ (in terms of
measure) of the boundary.

EXAMPLE 5.6. There exists an open window D with discontinuous eigenfunction,
such that still § — N(Dy) is right continuous.

PrOOF: In aplanar domain, parametrize a portion of the boundary by arclength
and refer to segments on the boundary as intervals in this parameter. We will con-
struct two decreasing sequences x,, \( 0 and J,, \, 0 and let I,, := |z, — 0, Ty, + Iy ].
The sequences z,, and §,, will be specified later. The window will be D := |J7 | I,
and we will also define Dy := ngl I,,, with the eigenvalues and normalized eigen-
functions A, Ay, u, uy respectively. If IV is the first index such that zn < §, then

Ds\D C1-6,8[0J [on + 620+ 00+ 85[0 Jon = 00— 8,20 — 6.

It follows from Prop. 5.2 that A(D;) — A(D) < (2N + 1)n(8) < (2N + Dn(zn_1).
Choosing the sequence (z,) such that (2N + 1)np(xy_1) = 0 as N — oo ensures the
right continuity of 6 — A(Ds).

With (z,,) thus fixed, we introduce the compact set K := {0}U{y,, | n € N}, where
Yn = (¢n +Tn41)/2 and construct the sequence (d,) inductively. Let 6, = (x1 —y1)/2.

Since D; has positive Lebesgue density at all interface points, it follows from
de Giorgi’s argument that the corresponding eigenfunction u; is Holder continuous
up to the boundary. Let a := infgu; > 0 and define a,, := (1/2 4+ 1/2")a. We
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will choose dn in such a way that infx uny > an. Assume d1,...,0§_1 have been
constructed. The interval I and thus Dy and uy, will depend on the choice of dy.
But as dy — 0, the local de Giorgi estimates near K remain uniform, because the
L™ estimate for uy does not depend on the window and the interface stays away
from K. Then USSN) converges weakly in W1-2(Q), strongly in L2(f2), and strongly in
L?(09) by the usual compactness arguments. It also converges strongly in W12(€)
to u_1 since /\%N) — An_1; the convergence is uniform in a neighbourhood of K by
the equicontinuity obtained from de Giorgi. Since uy_1 > ay_1 on the compact set
K, we can achieve uy > ay_1 — € for any € > 0 by making § small; in particular
we can achieve uy > an.

It is now easy to show that u is discontinuous at 0. Indeed, as N — oo, uy = u
in the Sobolev spaces mentioned above. Again, the convergence is uniform in a neigh-
bourhood of each single y,,. Therefore u(yy,) > a/2 for each n, whereas u(x,) = 0.
Hence u is discontinuous at 0. |

We finally refer to Lemma 6.1, which gives continuity estimates under distortion
of a window by means of a bi-Lipschitz homeomorphism. Due to the similarity of
proofs, we conveyed it to Section 6.

5.2. On Upper Semicontinuity of Eigenfunctions. Here, we will prove
semicontinuity of eigenfunctions as a consequence of a subharmonicity argument.

THEOREM 5.7. If Q C R? has a CY boundary, then for any measurable window
D C 09, the eigenfunction u has an upper semicontinuous preferred representative .
If Q ¢ R with d > 2, then @ is upper semicontinuous at any boundary point where
the boundary is locally part of a hyperplane.

Proor: Let u be the solution of the CHVP (1.5) for D, the eigenvalue being
A(D). Fix x¢ € 0. We will show that if the 9 coincides with a hyperplane in some
neighborhood of zg, then the limit

(5.6) a(x) := lim % u(y) dy

=0 Jp, (z)NQ2
exists for all points in this neighbourhood and defines an upper semicontinuous func-
tion. This limit agrees with the preferred representative defined in (1.7). In the special
case of two dimensions, the conclusion holds assuming only that 912 is of regularity
CY® neat zyo. We note that u is always smooth in the interior of 2, and there is
nothing to show.

The basic idea is as follows: When the boundary is locally part of a hyperplane,
extend u by even reflection, regardless of the type of boundary conditions. The
nonnegative function u, thus extended, has only such discontinuities as are possible
for a subharmonic distribution, and this fact is shown by means of the test function
(u — ty)+ in the CHVP, where ¢ is smooth nonnegative. Subharmonicity implies
upper semicontinuity according to Thm. 9.3 in [18]. For curved boundary in 2D, the
Riemann mapping theorem locally provides an analog of the reflection.

Consider first the case where there exists a neighborhood V' of xy such that
00 NV is contained in a hyperplane. We may assume that the hyperplane is given
by x4 = 0, that Q lies above the hyperplane, and that V is symmetric under the
reflection (z',z4) — (2, —z4). Let ¢ be a smooth nonnegative function with support
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in V. Since (u — tp)+ is a legitimate candidate for the CHVP when ¢ > 0, we have

(t) (0)
(t) (0)°

e
o

(5.7) >

&
&

where
Ay = [ IVu—to)s . B = [ —to)if

We calculate from the weak Euler equations

A(t):/QV(u—t(p)JrVu—t/QV(u—tn,oﬁVgo

(5.8)
= /\/(u—tcp)+u—t Vchp+t2/ |Vol?,
Q u>tp u>ty
and expand
(5.9) B = [ utu—to) =t [ plu—ter).

Inserting (5.8) and (5.9) into (5.7) and using that A(0) = A and B(0) = 1, we obtain
for t > 0:

0<t 1 (A(W)B(0) - AO)B())

= /ww [~ VuVe + dup| +¢ /ww 196 = 2¢?]

Since all integrals over sets u > ty converge to integrals over 2 by Lebesgue’s domi-
nated convergence theorem, we obtain for ¢ — 0+ that

(5.10) 0< / [—Vuw + /\ugo]
14819/

We now extend u by even reflection u(z', —z4) := u(z', z4) and use (5.10) for the
likewise reflected test function ¢. Adding the reflected and the original (5.10), we
obtain

(5.11) OS/VI:—VUV<,0+/\’U,(,O:| :/V[uAtp+/\u<p}

where we have used that ¢ is C? and supported in V.

We have shown that Au + Au is nonnegative in the sense of distributions. If
v:=u+ 22|22, where M := |jul| < oo, then Av > 0 in the sense of distributions.
By [18, Thm. 9.3]), v is subharmonic, that is,

(5.12) v(z) < %B v

for almost every « € V', provided B, (x) C V. Furthermore, the preferred representa-
tive ¥ of v is upper semicontinuous, and satisfies the subharmonicity condition (5.12)
for all z and r so that B,(z) C V. Since 4 differs from @ by a continuous function, it
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is upper semicontinuous as well. This settles the case where 9Q NV is contained in a
hyperplane, in some neighbourhood of .

In the case where Q C R? we use complex notation. Let V be a neighborhood of
zp € 09 such that 9QNV is of class C*%, and let V, be the intersection of V with Q.
Replacing V' by a subset, we may assume that there exists a conformal map v from
a semidisc By to Vi such that the diameter of the semidisc maps onto V' N 0§, The
function @ = w o ¢ on the semidisc satisfies Ad = |¢'|? (Au) 0 p. Our argument will
rely on the boundedness of |¢'| (shown below). By reflection, we can extend @ into
the full disc B. The extended function @ is still in W1?(B,) since ¢’ € L>; and as
before, the extended function remains in W12?(B). From (5.10), we conclude, using
the conformal invariance of the Dirichlet integral, that

0< /B [~V (wo $)V(p o) + A’ [P(uo ) (p 0 1)]

for all 0 < ¢ € WH2(V,) that vanish on © N OV, ; in particular for all ¢ := Fo¢p!
with @ € C2(B). As with (5.11), we can now conclude that v := @ + MA2d sup |¢'|?
is subharmonic, and finish up the argument as before.

We still need to explain why |¢'| remains bounded near 0f2: this is where the
CY* regularity of the boundary enters. Refer to Figure 5.1. Choose U to be the
intersection of a neighbourhood of zy € 9Q with 2, such that U is simply connected.
Choose a point p € U. The Green’s function of U can be obtained in the form
In |z — p| + £(z) with £ harmonic subject to boundary values — In|z — p|. Near zp, this
harmonic function ¢ is C1* up to the boundary, because the boundary has this reg-
ularity there. This result follows from the Schauder estimates given in [11]; namely
their Thm. 5.1 in connection with Lemma 2.1. If n is a conjugate harmonic to ¢
(namely ny = &, e = —&), then w : z = (2 —p) exp[€(z) +in(z)] is a conformal map
of U onto a disc. (For more details, see [5, Sec. 1.7].) The mapping w inherits the
C1@ regularity from ¢. With a conformal mapping p from the disc onto a half plane,
we select an appropriate semidisc By from this half plane and let ¢ := (pow) g,
with Vi :=¢(By) CU. ]

It is worth noting that a C* boundary is not sufficient for the bounded derivatives
of a Riemann map, as can be seen from the map w(z) = zInz and its inverse, which
map neighbourhoods of 0 in the half planes Rez > 0 or Rew > 0 respectively onto
domains bounded by a C* curves.

6. First Variation, and the Role of Singular Coefficients in Optimality.
In this section, we study how the principal eigenvalue of the Laplacian with window
boundary conditions changes under deformations of the window. The first lemma
contains some estimates for distortions by bi-Lipschitz maps.

LEMMA 6.1. Let ¢ : Q) — Qy be a bi-Lipschitz map. Then for any window D in
Q,, it holds

A1 (D)) < A(D) sup p((D) (DY) (det Dy) ) sup(det D)
where p denotes the spectral radius. In terms of the distortion ratios

a(z) := lim sup [¥@) — ¥l ,  b(x):=1/liminf [9(y) — v(@)]

y—a ly — | y—e ly — x|
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Fic. 5.1. The Riemann mappings used in the proof of Thm 5.7

we have the simpler (but weaker) estimates

A@~1(D))

D) < Sup(@'™) supla™!/b) < (sup ) sup ).

PRrOOF: For any two differentiable functions hi, hy on £ and any diffeomor-
phism ¢, we have the transformation formulas

60 [ @@= [ ow)e (o)) det i) de
and
(6.2) /QVhl (y) - Vha(y) dy = /1/}_1(9) Ve (hy o) (2)T M(2)V,(hy 0 ¢)(z) dz

where the matrix M is given by
(6.3) M (z) = Dyp(x) ™ Dyp(x)~ 1 det Dyp(z) .

Let u be the nonnegative normalized eigenfunction for window D C 012, and take uwo
as a test function in the CHVP for ¢)=(D). The first claim follows from (6.1)—(6.3)
by setting h; = ho = u, and using that the smallest eigenvalue of M (z) is the recip-
rocal of the spectral radius of M (z)~!. The distortion ratio estimates follow for ¢ €
C* from p(Dv(x)T D)) < a(x)® and a(x)? /b(@)* @D < det(Dis(x)? Di(x)) <
a(x)(@=1) /b(z)?, as calculated in an eigenbasis of this symmetric matrix. Both esti-
mates extend to bi-Lipschitz maps by approximation. [ |

Our main result in this section describes the change of the principal eigenvalue
under a diffeomorphism generated by a flow.

THEOREM 6.2. Let Q be a Lipschitz domain in RY, D a window, u its normalized
eigenfunction, and X a vector field of regularity C*(2) N C°(Q) that is ‘parallel’ to
the boundary in the sense that ) is the union of an increasing sequence of smoothly
bounded subdomains Qs, with § N\, 0, such that X is tangential on 0Qs for ¢ sufficiently
small.
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Let iy be the flow of X. Consider the dependence of the first eigenvalue A as D
changes under the flow. Then it holds:

= —2lim OyuLxu ,

(6.4) 9 \w(D) tim [

t=0

where Lxu denotes the directional derivative of u in direction X.

REMARK: The assumptions guarantee that X is tangential to the boundary of
Q at smooth boundary points, and that X vanishes in those boundary points where
the boundary is not C'. Moreover, the flow on the boundary is defined uniquely as
the continuous extension of the flow in the interior.

ProoF: Let ¢y : & — ¢(x) =y, Q@ — Q be the bi-Lipschitz homeomorphism
arising from the vector field X, ie., Loy (z)li=o = X (¢¢(2)), vo(z) = =. Since
X € O, ¢ is a Cl-diffeomorphism in the interior of Q and satisfies a Lipschitz
estimate up to the boundary.

Fi1G. 6.1. The mappings in the proof of Thm. 6.2

Let u;(-) and A(t) be the eigenfunctions and eigenvalue for D(t) := ¢;(D), and
let g be a test function on () whose trace vanishes on D. The variation of geometry
will be expressed as a variation of the operator by referring all windows back to the
coordinates z.

We will denote the pullback of the eigenfunction u; to 2 with window boundary
conditions on D as u; o ¢y =: vy . Similarly f; := g o, the pushforward of the test
function g. The weak eigenvalue equation for u.(-) is

Y, ur(y) - ¥y fily) dy = A(t) / w() foly) dy
Q) Q(t)

where, in our case, (2(t) =, g vanishes on D, and f; vanishes on D(t).

We now use (6.1)—(6.3) with ¢ =4y, hy = ws, ho = f; and expand to first order
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in t. From Ly (z) = X (¢4(2)), 1o(x) = 2, we obtain
P(z) =z +tX(x) + o(t)

. . J
Dipy(z)?; = 6! + taX. + o(t)

Ox?
J . 0xXI
(oY s 25

det Dipy(z) =1+ tdiv X + o(t) .

+ o(t)

The estimates for the remainder terms are uniform in = € Q. Inserting the first and
last estimate into (6.1) with ¢ =4y, h1 = ug, he = f; yields

wfrdy = (vpg(1 + tdiv X) + o(t)) dz ,
where the o(t) term represents an L' function. Similarly, we obtain from (6.2)

Vyur(y) - Vy foly) dy = {vmx) Vag(e) +

. Og vy Ov; Og \ 0XI
+t<(d1VX)Vw’Ut -Ve9 — (89&@ + 6Iz@) oz ) +O(t)} dx

where the o(t) term again represents an L' function. We have used the Einstein
summation convention to express the sum over ¢ and j.

If we truncate the bilinear forms by dropping the o(t) terms, it is immediate
that the eigenvalue will only change by o(t). Since the truncated operators depend
analytically on the perturbation parameter ¢, we may use results from Chapter VII of
Kato [15] to estimate the eigenvalue up to errors of order o(t). Kato’s Thm. VII.4.2
and his discussion in VII §8§6.2,4,5 ascertain, via spectral projections, and for any finite
set, of isolated eigenvalues, that the perturbation theory works as in finite dimensional
spaces. In particular, a simple eigenvalue and its corresponding eigenfunction of
the truncated operators depend analytically on t. We may therefore write down
expansions vy = vy + tv; + O(t?) of the eigenfunction for the truncated problem, and
A(t) = Ao + tA + o(t) of the eigenvalue (for the truncated as well as for the full
problem), and compare like powers of ¢.

Order t° yields

/Vvo-ngx:/\o/vogdx
Q Q

which is just the weak Euler equation for vy. Order t' yields

AL /vogdx + o /{vlg + (div X)vog} dz =

. 0XJ 1 g Ovg  Ouvy Og
/{ oL+ Vg + (div X)Vuo - Vg Oxt \Qz' QzJ = Ox' Oz’
These equations are valid for integration over any subdomain of 2. We will integrate
over {25, where (25 runs through an increasing sequence of smoothly bounded domains
compactly contained in Q such that X is tangent to the boundary of {25. We write

fol, e e,
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for volume and surface integrals, respectively. Using g = vp as a test function, we
obtain in first order

. 0X7 dug O
/\1 f’ug = f(Vvl-Vvo—onovl)-l-f{(dle)(|Vv0|2 —)\0’03) -2 83:1 8;28—:;} .

Since v; lies in W12(£2) and satisfies window boundary conditions for D, it is a valid
test function in the Fuler-Lagrange equation for vy, and we conclude that the first
integral vanishes as § — 0. For the second integral, we use the identity

an 81}0 6110 _ 0 (6110 ) —Xj 0 <8v0 81}0)

B2t 92 9nd . 9z \ gzi LXY ot \ 9z a7

1 . .
= diV(LX'UO V’Uo) + §Lx(AOUé - |V’U0|Z)
and Gauss’ divergence theorem to compute

8X7 vy Ou
. v 2 2y YA " TP0 Y0 [ _
f[{(dWX)U vol” = dovo) =255 7 aa;a'}

- f[div((|vuo|2 - ong)X) — 2div(Vuo Lywvo)

= %(|V1}0|2 — Xov3) X - v —20,v9 Lxvy

The first term under the integral vanishes since X is tangential to the boundary of
Qs by assumption, and the claim follows as § — 0. [ |

We note that, at least formally, the integrand on the right hand side of (6.4)
vanishes on both the Dirichlet and the Neumann parts of the boundary of . The
evaluation of the limit of the integral as § — 0 is far from trivial in higher dimensions,
but reasonably straightforward in two dimensions with nice window geometry. It
amounts to the evaluation of certain singular coefficients at interface points between
the Neumann and Dirichlet arts of 9. It has been shown that in polygonal domains,
in the neighbourhood of a corner, solutions of elliptic boundary problems lie locally
in the direct sum of W?2? with a singular space, and in two dimensions, this singular
space is one-dimensional. See, eg., Grisvard [12], in particular his Thm. 2.4.3. Indeed,
functions in the singular space behave like the explicit harmonic functions Re(cz®)
with « appropriate for the boundary conditions. In this context, it is understood
that an interface point between Dirichlet and Neumann data is a corner even if (in
particular if!) the geometric boundary is smooth there. As noted, corners that can be
made disappear by means of the reflection principle (like the geometric corners of a
rectangle) do not have a singular space. The singular coefficients (aka stress intensity
coefficients) must be calculated (numerically) in practical situations. They depend
on global information. For a wider background concerning singular contributions, see
[7, 12, 16, 21, 23] and much other work by these authors and references given there.

In particular, the variational equation gives rise to the following

COROLLARY 6.3. Consider a segment on the boundary of a rectangle, such that
one endpoint of the segment is a corner of the rectangle, whereas the other endpoint
is a point that is not a corner. Such a segment is not an optimal window, but can be
improved infinitesimally by shifting in the direction that brings the corner point inside
the window
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ProoOF: In self-explanatory notation, we refer to the windows as intervals, let
[a,b] be an interval with corner point b and non-corner point a; we will show (with
some positive constants m, M):

Mla+e,b+e]) <ANla+¢e,b]) +Me*  and  A[a+e¢,b]) < A[a,b]) —me.

From this the claim is immediate.

The first estimate (local near b) follows from Lemma 5.1, with G a ball of radius 2¢
centered at the corner b. The eigenfunction is smooth near b, because reflection in
the Neumann boundary removes the singularity: |u| = O(e) in G, and the estimate
is uniform with respect to small changes at the other end a. The capacity term is
bounded as € — 0, based on a radial test function In (Jx — b1|/¢)/1In2 as in the proof
of Prop. 5.2.

The second estimate (local near a) follows from an evaluation of the singular
boundary integral f(—m Lxud,u. In the particular case of an interface point on a
straight line, the local behavior of a solution u is u = ¢/ sin(¢/2) + v with v € W22,

y
T u:us—l—vzc\/f“sin%—l—v

_ c_ 9
Uy = Uy op1/3 sin 5
r
Q0 / uyzvy—f——c cosf
2r1/2 2
o0 X

NBC DBC
To evaluate the singular boundary integral in terms of the singular coefficient,
define coordinates as in the above figure, with the boundary point a located at (0, 0).
Let us assume that the C! vector field X is given by f(x,y)0, with the coefficient at
the interface f(0,0) = 1. It can easily be seen that the regular function v does not
contribute to the integral, nor do the mixed terms. We have

¢ ¢ > gt 2

Oug 0 t

—2/ Lxud,ude =2 Us Tls dazz—c—/ 2y deU:—c—arctan—,
¢ _; Ox Oy 4 [, 2% +y 2 y

and this converges to —C?T” as y — 0+.

Finally, we estimate the singular coefficient. Choose 7 so small that B,.(0) inter-
sects O() in a straight line as in the above figure, with one radius (V,) being Neumann
boundary and one radius (D,) Dirichlet boundary; let S, := (0B,(0)) N2, and count

¢ from the Dirichlet to the Neumann boundary. Let

—Ah=0 inB.(0)NQ, Jh=00onN,,h=0o0nD,, h=uonS,
—Av=Min B,.(0)NQ, Jv=00onN,,v=00nD,, v=0onS,

Then v = v + h with v > 0. Evaluation on the boundary implies that the singular
coefficient of u is at least as large as the singular coefficient of h. Explicit calculation
of the singular coefficient of h by means of Fourier analysis gives exactly

2 T o . P
> ) sin .
€2 —75 /0 u(re'?) sin 5 dp >0

The above estimate of the singular coefficient is closely related to formula (2.3)
in Dauge et al. [7], which actually gives the exact coefficient (in terms of u). However
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their formula is not designed to show non-vanishing (which relies on using the max-
imum principle), but is instead built on Fredholm properties. (The distinction that
their formula is for a Dirichlet—Dirichlet corner, not a Dirichlet—Neumann corner, is
a minor issue.)

Our argument shows that shortening a window infinitesimally at the interface
decreases the eigenvalue by an amount proportional to the square of the singular
coefficient at the end of the window. Moving a window amounts to shortening it at
one end and lengthening it at the other end. To decrease the eigenvalue, the window
should be moved in the direction of the smaller singular coefficient (i.e., towards
the corner of the square, if it is already close to a corner). If the window consists
of several intervals, nonlocal changes that lengthen one component at the expense
of the other can also be studied in terms of the singular coefficients. Conversely,
singular coefficients can be determined graphically from the slopes in Figure 2.1, for
the geometric configurations depicted there.

As an immediate consequence of the role of singular coefficients, a window con-
sisting of any number of equidistant and congruent arcs on the boundary of a circle
is a critical point for the first eigenvalue. Since these arcs can now be moved inde-
pendently, these are critical points of arbitrarily large index. The optimal window in
a circle is known to be a single arc [9].

Limitations of our result should also be observed. The variations induced by
the flow of vector fields correspond to the ‘weak’, C!-small variations (as opposed to
‘strong’, C°-small variations) that are exploited in the Euler-Lagrange equations of
the classical Calculus of Variations. It is doubtful how significant a role such variations
can play, if it comes to show, say, that a certain open-dense set of small measure is
not an optimal window.

We have not established an analog of the fundamental lemma of the calculus of
variations that would permit elimination of the vector field X. In the absence of
a-priori regularity for optimal windows, such an attempt seems extremely difficult.
There is however some hope to get nontrivial boundary regularity for the optimal
eigenfunction by selecting vector fields constructed from the eigenfunction in some
appropriate way. We plan a further investigation of this issue.

In spite of these limitations, Thm 6.2 does give some insight into the question of
optimal windows, and in particular into the variation of windows with a given a-priori
regularity.
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